污泥外循环复合膜生物反应器脱氮回收磷研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市污水中的氮、磷未经有效处理即排放,会造成水体富营养化,从而带来巨大的经济损失。膜生物反应器因其具有良好的除污染性能和优良的出水水质而逐渐应用于污水处理,然而,它却存在着除磷效率低等问题。本文提出一种新型的复合式MBR组合工艺,通过添加填料强化MBR脱氮,同时进行污泥外循环厌氧释磷,提高工艺除磷性能并进行磷回收。
     在小试试验研究中,以系统对TN的去除率为评价指标,确定HRT和DO的最佳值为:HRT在4.0h左右,DO在0.8~1.5mg/L左右。通过厌氧释磷静态试验确定:厌氧释磷适宜的时间为2.0h,乙酸钠最佳投加量为至溶液中COD浓度为356mg/L。污泥外循环复合膜生物反应器(ASR-HSMBR)工艺由于增加污泥外循环厌氧释磷,系统对TP的去除效果明显高于HSMBR工艺。出水中磷浓度稳定在1mg/L左右,磷的去除率基本在80%以上,解决了MBR除磷效果不好的弊端。采用人工配置的富磷污水,分别考察了pH值、初始磷浓度、物料比、钙离子浓度等因素对磷回收过程的影响。得出结论:pH在8.5~9.0之间;Mg:N:P摩尔比为2:2:1有利于生成MgNH4PO4沉淀;同时试验发现初始磷浓度越高越有利于回收;钙离子浓度越高越不利于鸟粪石的生成。
     在中试试验研究中,HSMBR对COD和NH4+-N的平均去除率分别高达95.3%和90.1%。试验启动初期,系统对TN的平均去除率仅有20%左右。通过增加填料的投加量可强化系统脱氮效能,后期系统出水TN浓度在10mg/L左右,TN去除率达80%以上。在HSMBR系统运行初期,出水中TP浓度基本在1.0~2.0mg/L之间,系统对TP的去除率在80%左右。但随着试验的进行,系统对TP的去除率不断下降至65%左右。厌氧释磷过程选取厌氧搅拌为3h左右,厌氧释磷周期为3d。增加外循环释磷后,系统对TP的平均去除率高达90.2%。与单独HSMBR工艺对TP的去除效果对比表明,ASR-HSMBR工艺通过污泥外循环,解决了HSMBR工艺存在的除磷效果不理想的问题。同时污泥外循环厌氧释磷过程不会影响HSMBR对有机物以及氮的去除效果。在厌氧释磷充分后,采用化学沉淀法回收磷,富磷污水来自厌氧释磷环节,因此磷回收效果直接受厌氧释磷过程的影响。
The nitrogen and phosphorus in wastewater without effective treatment causes water eutrophication, then it brings huge economic losses. Membrane Bioreactor is gradually used in wastewater treatment for its good performance and excellent effluent, however it exists in the low efficiency of phosphorus removal. This paper proposes a new kind of HMBR, by adding bio-filler to improved nitrogen removal, meanwhile through the processes of activated sludge recycle and anaerobic release phosphorus, it can improve the process phosphorus performance and phosphorus recycling.
     In the laboratory, the optimal HRT is 4h and optimal DO value ranges from 0.8 to 1.5mg/L, for the aim of the removal of TN. Through the static test, the optimal time of anaerobic release phosphorus is 2.0 h and the optimal dosing quantity of acetic acid sodium to solution is 356mg/L of COD concentration. Because of the recycle of activated sludge, the removal efficiency of TP by ASR-HSMBR significantly higher than HSMBR process. In the effluent, TP concentration is about lmg/L, and the removal efficiency is above 80%, it can solve the disadvantages of MBR. Using artificial phosphorus wastewater, the study focuses on the influence of the pH value, material ratio, initial phosphorus concentration and calcium ion concentration to phosphorus recycling. In the conclusion:the optimal pH is 8.5~9.0 between 9.0; Mg:N:P ratio is 2:2:1; Meanwhile the study find that the higher the concentration of initial phosphorus, the more conducive to recovery. The high concentration of calcium ion goes against the generatation of struvite.
     In the pilot test, the average removal efficiencies of COD and NH4+-N are 95.3% and 90.1%,respectively. At the beginning, the average of TN removal is only 20%. the efficiency of denitrification increase through the increase of bio-filler, during later stage the TN concentrations in effluent is about 10mg/L, TN removal efficiencies up to 80%.And the TP removal efficiency is about 80% in the initial, but it drop to 65%.The optimal time of anaerobic release phosphorus is 3.0 h, and the optimal cycle is 3d.After the recycle of activated sludge processes, the removal efficiency is up to 90.2%.Meanwhile it does not affect the organic and nitrogen removal, on the contrary, the removing efficiency of TN increases in HSMBR. After anaerobic phosphorus release, using chemical precipitation method to phosphorus recovery, in the supernatant the phosphate concentration is 1.29 mg/L, the average removal efficiency is 89.79%.
引文
[1].曹斌,黄霞,北中敦,等.A2/O—膜生物反应器强化生物脱氮除磷中试研究[J].中国给水排水,2007,23(3):22-26.
    [2].操家顺,杨雪冬,Mark Van Loosdrecht.BCFS-生物除磷新工艺[J].中国给水排水,2002,18(3):23~26.
    [3].陈雷,秦蓁蓁,李绍峰.影响膜生物反应器处理效果的因素研究[J].辽宁化工,2009,38(2):73~76.
    [4].陈瑶,颜学宏,钮心洁,等.鸟粪石沉淀法从污水厂同时回收氮磷[J].工程建设,2008,40(5):52-54.
    [5].陈瑶,李小明,曾光明,等.污水磷回收中磷酸盐沉淀法的影响因素及应用[J].工业水处理,2006,26(7):10-14.
    [6].成英俊,张捍民,张兴文等.生物膜-膜生物反应器脱氮除磷性能[J].中国环境科学.2004,24(1):72~75.
    [7].顾国维,何义亮.膜生物反应器-在污水处理中的研究和应用[M].北京:化学工业出版社.2002.
    [8].顾平.中空膜生物床处理生活污水中的中试研究[J].中国给水排水,2000,16(3):3-8.
    [9].国家环境保护局.水和废水监测分析方法(第4版)[M].北京:中国环境科学出版社,2002,362-368.
    [10].韩丹,汪永辉,洪飞宇,等.复合式膜生物反应器内的同步硝化反硝化研究[J].净水技术,2008,27(1):54-60.
    [11].郝晓地.可持续除磷脱氮BCFS工艺[J].给水排水,2002,28(9):7~9.
    [12].郝晓地,甘一萍.排水研究新热点-从污水处理过程中回收磷[J].给水排水,2003,29(1):20~23.
    [13].将京东,徐远,马三剑,等.鸟粪石结晶沉淀法处理NH4+-N废水[J].水处理技术,2008,34(2):48-49.
    [14].刘强,王晓昌,刘永军.膜生物反应器的研究进展[J].环境科学与技术,2009,32(7):78-81.
    [15].刘硕,王宝贞,王正等.复合式膜生物反应器强化脱氮除磷的实验研究[J].现代化工,2006,26(5):40~44.
    [16].李辰,黄廷林,何文杰,等.复合淹没式膜生物反应器处理城市污水的中试研究[J].中国给水排水,2007,23(19):103-105.
    [17].李红兵,顾国维,谢维民.中空纤维膜生物反应器处理生活污水的特性[J].环境科学,1999,20(2):53-56.
    [18].李军,江定国,刘红,等.复合式膜生物反应器处理生活污水[J].中国环境科学,2006,26(3):271-274.
    [19].李军,夏定国,赵琦,等.淹没复合式膜生物反应器技术[J].城市环境与城市生态,2001,14(4):5-7.
    [20].李军,王淑莹.污水处理生物反应器技术探讨[J].哈尔滨建筑大学学报,2002,35(2):61-72.
    [21].李绍峰,崔崇威,黄君礼,等.DO和HRT对MBR同步硝化反硝化影响研究[J].哈尔滨工业大学学报,2007,39(6):887-890.
    [22].李志东,李娜,张洪林.膜生物反应器(MBR)处理废水的研究进展[J].净水技术,2007,26(1):18-21.
    [23].马东华,李杰.复合膜生物反应器处理生活污水的特性研究[J].兰州交通大学学报(自然科学版),2006,25(1):62-64.
    [24].孙秀云,王连军,田爱军.MBR在污水处理中的应用污染防治技术[J].2003,16(4):39-41.
    [25].田淑媛,杨睿,顾平.生物除磷工艺技术发展[J].城市环境与城市生态.2000,8(4):45-47.
    [26].王宝贞,张军等.MBR在污水处理与回用工艺中的应用[J].环境工程,2001,19(5):9-11.
    [27].王亚宜,彭永臻,王淑莹.反硝化除磷理论、工艺及影响因素[J].中国给水排水.2003,19(1):33~36.
    [28].王绍贵,张兵,汪慧贞.以鸟粪石的形式在污水处理厂回收磷的研究[J].环境工程.2005,23(3):78~80.
    [29].万兴,黄海燕,万金保.复合膜生物反应器的除污性能研究[J].中国给水排水,2007,23(21):58-58.
    [30].魏源送,郑祥,刘俊新.国外膜生物反应器在污水处理中的研究进展[J].工业水处理,2003,23(1):2-7.
    [31].杨琦,尚海涛,王洪臣,等.一体式膜生物反应器处理生活污水的中试研究[J].环境污染治理技术与设备,2006,7(9):134-138.
    [32].杨磊,王栋,张静姝,等.超滤膜生物反应器处理生活污水的试验研究[J].膜科学与技术,1999,19(3):29-31.
    [33].袁建磊.强化膜生物反应器除磷性能及磷回收试验研究[D].哈尔滨工业大学,2007.
    [34].张捍民,肖景霓,成英俊等.强化膜生物反应器脱氮除磷性能对比试验研究[J].环境科学学报,2005,25(2):242~248
    [35].张利民,王水,韩敏,等.太湖流域望虞河西岸地区氮磷污染来源解析及控制对策[J].J.LakeSci.(湖泊科学),2010,22(3):315-32.
    [36].张立秋,封莉,邹联沛,等.一体式与复合式MBR运行特性对比研究[J].给水排水,2002,28(12):17~19.
    [37].张全忠,韩春梅.膜生物反应器的应用现状及存在的问题[J].环境科学与管理,2005,30(4):42-46.
    [38].张颖,顾平,邓晓钦.膜生物反应器在污水处理中的应用进展[J].中国给水排水,2002,18(4):90-92.
    [39].张竹青,金晶,胡明忠HSMBR反应器处理高浓度NH4-N+废水影响因素研究[J].化工技,2009,17(1):12-15.
    [40].赵东辉,管利群.海龙水库水体富营养化变化趋势及其污染防治措施[J].农业与技术,2010,30(4):93-95.
    [41].郑兴灿,李亚新(主编).污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998.
    [42].郑祥,朱小龙,樊耀波.膜生物反应器处理毛纺废水的中试研究[J].中国给水排水,2001,22(4):91-94.
    [43].朱亮,朱凤春,许旭昌,等MBR/PAC组合工艺处理污水厂尾水的中试研究[J].中国给水排水,2009,25(5):59-62.
    [44].邹雪,赵宗升.鸟粪石沉淀过程中的影响因素试验研究[J].山西建筑,2007,33(16):18-19.
    [45]. Battistoni P., Fava G., Pavan P., Musacco A., Cecchi F.. Phosphate removal in anaerobic liquors by struvite crystallization without addition of chemicals:preliminary results[J]. Water Res.,1997, 31:2925-2929.
    [46]. Bruce E. R., Perry L. M.. Environmental Biotechnology:principles and applications[J]. Metcalf and Eddy, Inc. McGraw-Hill,2001.
    [47]. Budd W.E., OKAY R.W.. Biological Treatment of Waste Water and Industrial Wastes[M]. U S:Dorr Oliver Incorporated,1969.3,472,765.
    [48]. Chiemchaisri C.,Yamamoto K.,Vigneswarons S..Household membrane bioreactor for domestic wastewater treatment[J]. Wat.Sci.Tech.1992,27(1):171-178.
    [49]. Cote P., Thompson D.. Wastewater treatment using membrane:the North American experience[J]. Wat. Sci. Tech.2000,41(10-11):209-215.
    [50]. Silva D. G. V., Urbain V., Abeysinghe D. H., Rittmann B.E.. Advanced analysis of membrane bioreactor performance with aerobic-anoxic cycling[J]. Water Sci.Technol,1998,38 (45):505-512.
    [51]. Gerber A., Villiers R. H., Mostert E. S. et al. The phenomenon of simultaneous phosphate uptake and release and its importance in biological nutrient Removal in:Biological Phosphate Removal from wastewaters[J]. Pergamon Press, Oxford.1987:123-134.
    [52]. Guo H. Y., Zhou J.T., Su J, Zhang Z.Y.. Integration of nitrification and denitrification in airlift bioreactor[J]. Biochem. Eng. J.2005(23):57-62.
    [53]. Hascoet M.C. Florentz M.. Influence of nitrates on biological phosphorus removal nutrient wastewater[J]. Water SA,1985,11(1):23-26.
    [54]. Pochana K., Keller J., Study of factors affecting simultaneous nitrification and denitrification (SND) [J].WaterSci. Technol.199939 (6):61-68.
    [55]. Kerrn-Jespersen J. P., Henze M.. Biological phosphorus uptake under anoxic and aerobic condition[J]. Wat Res.1993,27 (4):617-624.
    [56]. Yamamoto K., Hiasa M., Mahmood T.,et al.Direct solid-liquid separation using hollow fiber membrane in an activat—ed sludge aeration tank[J].Wat Sci Tech,1989,21:43-54.
    [57]. Yamagiwa K., Oohira Y., Ohkawa A..Simultaneous removal of carbonaceous and nitrogenous pollutants by a plunging liquid jet bioreactor with crossflow filtration operated under intermittent aeration[J].Bioresource Technol,1995,53:57-62.
    [58]. Ahn K.H., Song K.G., Cho E., et al. Enhanced biological phosphorus and nitrogen removal using a sequencing anoxic/anaerobic membrane bioreactor (SAM) process [J]. Desalination.2003, 157:345-352.
    [59]. Lee H.J., Bae J.H., Cho K.M.. Simultaneous nitrification and denitrification in a mixed methanotrophic culture[J]. Biotechnology Letters 2001,23:935-941.
    [60]. de Kreuk M.K., van Loosderecht M.C.M.. Formation of Aerobic Granules and Conversion Processes in an Aerobic Granular Sludge Reactor at Moderate and Low Temperatures[J]. Water Research,2005,39:4476-4484.
    [61]. Pedro A.C., Simon G.M., Inaki T.. Biological phosphorus removal using a biofilm membrane reactor:operation at high organic loading rates[J]. Wat. Sci. Tech.1999,40(4-5):321-329.
    [62]. He S.B., Xue G., Wang B.Z.. Factors affecting simultaneous nitrification and de-nitrification (SND) and its kinetics model in membrane bioreactor[J]. Journal of Hazardous Materials,2009, 168:704-710.
    [63]. Low S. C., Juan H. H.,Low K. S..A combined VSEP and membrane bioreactor system[J].Desalination,2005,183:353-362.
    [64]. Stephenson T.,Judd S.,Jefferson B.,et al. Membrane bioreactors for wastewater treatment[M].London:IWA Publishing,2000·59-111.
    [65]. Stephenson T.. Types of membrane bioreactors for wastewater treat-ment-An introduction[C].Proceedings of the 1st InternationalMeeting on Membrane Bioreactors for Wastewater Treatment,Cran-field University, Cranfild,UK,1997.
    [66]. Stratful I., Scrimshaw M. D., Lester J. N.. Conditions influencing the precipitation of magnesium ammonium phosphate[J].Water Res.,2001,35(17):4 191-4 199.
    [67]. Tadashi S., Hiroyasu S., Takashi M.. Quantitative Estimation of Role of Denitrifying Phosphate Accumulating Organisms in Nutrient Removal [J].3rd IWA World Congress.2002, Melbourne, Australia.
    [68]. Tatsuli U., Kenji H.. Domestic wasterwater treatment by a submerged membrane bioreactor with gravitational filtration[J]. Wat.Res.1999,33(12):2888-2892.
    [69]. Kuba T., Van Loosdrecht M.C.M., et al. Phosphorus and Nitrogen Removal with Minimal COD Requirement by Integration of Nitrification in a Two-sludge system[J]. Wat Res.1996, 42(12):1702-1710.
    [70]. Mino T., Van Loosdrecht M. C. M., Heijnen J. J.. Microbiology and Biochemistry of the Enhanced Biological Phosphate Removal Process[J]. Wat Res.2003,32:3193-3207.
    [71]. Wachtmeister A., Kuba T., Van Loosdrecht M. C. M.. A sludge characterization for aerobic and denitrifying phosphorus removing sludge[J]. Wat Res.1997,31(3):471-478.
    [72]. Wanner. J., Cech J.S., Kos M.. New Process Design for Biological Nutrient Removal [J]. Water Sci.Tech.1992,25(4-5):445-448.
    [73]. Huang X., Liu R., Qian Y.. Behaviour of soluble microbial products in a membrane bioreactor[J]. Process Biochemistry,2000,36:401-406.
    [74]. Xie L.Q.,Xie P.,Li S. X.. The low TN:TP ratio,a cause or a result of Microcystis blooms [J]. Water Res.2003,37(8):2073-2080.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700