掺杂对材料导电性影响的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着各种掺杂技术的不断完善,掺杂已经成为改善材料导电性的重要手段,目前常用的掺杂方法主要有化学掺杂、电化学掺杂和物理掺杂等。然而,关于导电材料的掺杂机理,即掺杂过程中详细的物理和化学图像,尚不十分明确。比如,掺杂元素如何改变材料的电子结构,能否通过掺杂改变材料的电子结构从而进一步对其导电性进行调控等。因此,从理论角度计算掺杂对材料导电性的影响,并分析其掺杂机理,揭示掺杂对材料电子结构影响的信息,建立电子结构与导电性之间的关系,对于设计出性能优异的导电材料具有重要意义。本文采用密度泛函理论并结合非平衡格林函数方法,从理论角度计算了两种不同类型导电材料的电子输运性质,讨论了掺杂对它们导电性的影响,共进行了两部分研究工作:(1)B、P掺杂对碳纳米管/聚硅烷异质结导电性的影响;(2)稀土掺杂对δ-MoN导电性的影响。
     研究了碳纳米管口接枝聚硅烷形成的一维σ-π共轭体系,即碳纳米管/聚硅烷异质结的电子输运性质,重点考察了B原子掺杂、P原子掺杂以及B、P共掺杂聚硅烷主链对其导电性的影响,并对掺杂导致其导电性改变的原因和机理进行了深入分析。研究发现,B原子和P原子掺杂不仅显著提高了碳纳米管/聚硅烷异质结的电导率,还引起了多重NDR效应。采用一种比较的方式对影响体系导电性的掺杂因素包括掺杂原子的种类、浓度以及掺杂位置进行了研究。结果发现,B掺杂体系中的电子具有更好的共轭效应,导致B掺杂体系的电导率高于P掺杂体系;掺杂原子浓度的增大能够明显降低HOMO-LUMO能隙,从而显著增强体系的NDR效应;当B原子或P原子取代聚硅烷主链中心位置的Si原子时,中心聚硅烷分子与左、右电极间的耦合程度最好,此时体系的电导率最大;B、P共掺杂导致体系出现了明显的整流效应,其整流比可达7.19。
     研究了δ-MoN的电子输运性质,讨论了稀土掺杂对其导电性的影响,通过对晶体结构和电子结构的分析探讨了稀土元素的掺杂机理。共选取了五种具有代表性的稀土元素:La、Ce、Pr、Gd和Yb,它们的价电子层结构分别为:4f05d16s2、4f15d16s2、4f35d06s2、4f75d16s2和4f145d06s2,比较全面的考虑了多种稀土元素的4f电子构型对δ-MoN导电性的影响。对于每一种稀土元素,又分别考虑了两种不同的取代位置:Wockoff坐标的2a位置和6c位置。研究发现,除Pr和Yb掺杂提高了δ-MoN的电导率以外,La、Ce和Gd掺杂均使δ-MoN的电导率下降,这主要是由于Pr-4f和Yb-4f轨道电子贡献的态密度峰距离费米能级较近,导致费米能级附近的载流子浓度增大;而La-4f、Ce4f和Gd-4f轨道电子对态密度的贡献均局域在距离费米能级较远的区域,并不能有效增加费米能级附近的载流子浓度,掺杂引起的载流子迁移率的降低是La、Ce和Gd掺杂导致δ-MoN导电性降低的主要原因。当稀土原子取代2a位置和6c位置的Mo原子时对δ-MoN导电性影响的相似性主要归因于两类掺杂体系相似的成键特征。
With the continuous development of doping techniques, doping has becomea very important strategy to improve the conductivity of materials. There areseveral commonly used doping techniques, such as chemical doping,electrochemical doping and physical doping. However, the doping mechanism,i.e., the physical and chemical images in the doping process, is still obscure. Howdoes dopant affect the electronic structure of materials? Wether the conductivityof materials could be tuned by changing the electronic structure through dopingtechiques. It is therefore important to investigate the doping effect and the dopingmechanism from a theoretical point of view. The revelation of information aboutthe doping effect and the construction of relationship between the conductivityand the electronic structure have great significance for designing novel materialswith excellent properties. By combining density functional theory and non-equilibrium Green's function formalism, we calculated the transport properties oftwo different types of materials. The doping effects on their conductivities werediscussed based on the calculated results. This work is composed of two parts:(1) B-, P-doping effects on the conductivity of CNT/oligosilane/CNT hetero-junctions;(2) rare earth element-doping effects on the conductivity of δ-MoN.
     We calculated the transport properties of thirteen one-dimensional σ-πconjugated CNT/oligosilane/CNT heterojunctions (oligosilane chain(s) grafted tothe mouth of CNTs). The effects of B-doping, P-doping and B-, P-codoping uponthe oligosilane moiety on the conductivity of CNT/oligosilane/CNT hetero-junctions were systematically studied. The mechanism of B-and P-dopings wasexplored. We have found that the B-and P-dopings upon the oligosilane moietycould not only enhance the conductivity but also give rise to multiple NDRbehavior for the CNT/oligosilane/CNT heterojunctions. The effects of dopanttype, dopant concentration and doping position on the conductivity of CNT/oligosilane/CNT heterojunctions were comparatively studied. It is foundthat the B-doped systems show higher conductivity than the P-doped ones owingto their better electron conjugation effect. The increase of dopant concentrationcould significantly reduce the HOMO-LUMO gap and thus enhance NDR effect.The doped system possesses the highest conductivity when the dopant B or P sitsat the center of oligosilane chain due to the strong coupling between theoligosilane and the electrodes. The B-, P-codoping could induce a recifyingeffect and the rectification ratio is up to7.19.
     We calculated the transport properties of δ-MoN. The rare earth elementdoping effects on the conductivity of δ-MoN were theoretially investigated. Thedoping mechanism was explained from the crystral structures and the electronicstructures. Five special rare earth elements, La, Ce, Pr, Gd and Yb, were seletedas dopants to substitude Mo atoms in δ-MoN. The valence electronconfigurations of La, Ce, Pr, Gd and Yb are4f05d16s2,4f15d16s2,4f35d06s2,4f75d16s2and4f145d06s2, respectively. Two different substitutional sites wereconsidered:2a and6c sites in the Wyckoff positions. Upon the Pr-and Yb-dopings, we found an increase of the conductivity, while a drop under the La-Ce-, and Gd-dopings. For the Pr-doped and Yb-doped systems, the Pr-4f andYb-4f states contribute peaks near the Fermi level, leading to the increase ofcarrier density, which is benefical to improve the conductivity. On the contrary,the La-4f, Ce-4f and Gd-4f states are localized far away from the Fermi level,which can not effectively increase the carrier density. The drop of theconductivity caused by La-Ce-and Gd-dopings should be assigned to thedecrease of carrier mobility well induced by dopants. The similarity ofconductivities between the systems with dopants sitting at2a site and6c site isattributed to their similar bonding characteristics.
引文
[1] IIJIMA S. Helica microtubules of graphitic carbon[J]. Nature,1991,354:56-58.
    [2]潘正伟,常保和,孙连峰,等.超长、开口定向碳纳米管列阵的制备[J].中国科学,1999,29(8):743-749.
    [3] PEIGNEY A, LAURENT C, DOBIGCON F, et al. Carbon nanotube grownin situ by a novel catalytic method[J]. J Mater Res,1997,12(3):613-615.
    [4] CARROLL D L, REDLICH P, AJAYAN P M. Electronic structrue andlocalized states at carbon nanotube tips[J]. Phys Rev Lett,1997,78(14):2711-2814.
    [5]毛宗强,徐才录,阎军,等.碳纳米纤维储氢性能初步研究[J].新型炭材料,2000,15(1):64-67.
    [6]张立德,牟季美.纳米材料和纳米结构[M].北京:科学技术出版社,2002,29-32.
    [7] TERRONES M. Science and technology of the twenty-first century:Sythesis, properties and applications of carbon nanotubes[J]. Annu Res,2003,330:419-501.
    [8] IIJIMA S, AJAYAN P M, ICHIHASHI S. Growth model for carbonnanotubes[J]. Phys Rev Lett,1992,69:3100-3103.
    [9] AJAYAN P M, ICHIHASHI T, IIJIMA S. Distribution of pentagons andshapes in carbon nano-tubes and nano-particles[J]. Chem Phys Lett,1993,202:384-388.
    [10] IIJIMA S, ICHIHASHI T, ANDO Y. Pentagons, heptagons and negativecurvature in graphite microtubule growth[J]. Nature,1992,356:776-778.
    [11] IIJIMA S. Growth of carbon nanotubes[J]. Mater Sci Eng,1993, B19:172-180.
    [12] DRESSELHAUS M S, DRESSELHAUS G, ELDUND P C. Science offullerenes and carbon nanotubes[M]. San Diego: Academic Press,1996,756-758.
    [13] WILDOER J W G, VENEMA L C, ANDREW A G, et al. Electronic structureof atomically resolved carbon nanotubes[J]. Nature,1998,391:59-62.
    [14]何天白.一种无机高分子-聚硅烷[J].中国科学基金,1996,3:179-185.
    [15] WEST R. Electron delocalization and “aromatic” behavior in cycilcpolysilanes[J]. Pure&Appl Chem,1982,54:1041-1045.
    [16]吴俊军,顾庆超.链状聚硅烷的导电性质和电子状态[J].高分子通报,1995,2:117-120.
    [17] PELIKAN P, KOSUTH M, BISKUPIC S, et al. Electron structure ofpolysilane, are these polymers one-dimensional systems?[J]. Int J QuantumChem,2001,84:157-168.
    [18] BOCK H, ENSSLIN W, FEHER F, et al. Photoelectron spectra andmolecular properties. LI. Ionization potentials of silanes SinH2n+2[J]. J AmChem Soc,1976,98:668-671.
    [19] HERMAN A, DRECZEWSKI B, WOJNOWSKI W. The degree of σ-bond delocalization in polysilanes and its influence on reactivity bythrough-bond interactions the PES scaled Sandorfy C approach[J]. ChemPhys,1985,98:475-481.
    [20] HERMAN A, DRECZEWSKI B, WOJNOWSKI W. σ-bond conjugation inpolysilanes, a pes scaled free-electron approach for the interpretation ofskeletal cleavage reactions[J]. J Organmet Chem,1983,251:7-11.
    [21] ICHIKAWA T, KUMAGAL J, KOIZUMI H. Optical and electronicproperties of polysilane radical anions[J]. J Phys Chem B,1999,103:3812-3817.
    [22] KOBAYASIH T, HATAYAMA K, SUZUKI S, et al. Preparation ofsubstituted network polysilanes and their electrical conductivities[J].Organometallics,1998,17(9):1646-1648.
    [23]曹晴,陆云,薛齐.聚硅烷研究进展(II)聚硅烷的电子结构与电子光谱特性[J].高分子通报,1998,6:40-45.
    [24] NELSON J T, PIETRO W J. Mechanism of extensive electron delocalizationin linear polysilanes[J]. J Phys Chem,1988,92(5):1365-1371.
    [25] BIGELOW R W. A minimal basis-set CNDO/2(S+DES Cl) study on theexcited states of hydrogenated polysilane model compounds[J]. Chem PhysLett,1986,126:63-68.
    [26] TAKEDA K, TERAMAE H, MATSUMOTO N. Electronic structure ofchainlike polysilane[J]. J Am Chem Soc,1986,108(26):8186-8190.
    [27] FUKUSHIMA M, TABEI E, MIKIO A, et al. Electrical conductivity oforganosilicon polymers II: Synthesis and electrical conductivities of iodine-doped polysilanes containing amino groups[J]. Synthetic Metals,1998,96:239-244.
    [28]李光亮.有机硅高分子化学[M].北京:科学出版社,1999,271-272.
    [29] FUKUSHIMA M, TABEI E, ARAMATA M, et al. Electrical conductivity oforganosillion polymers III: Carrier mobility analysis of iodine-dopedpolysilane by hall effect measurement[J]. Synthetic Metals,1998,96:245-248.
    [30] TANAKA H, IWASAWA H, WANG D, et al. Spin-on n-type silicon filmsusing phosphorous-doped polysilanes[J]. Japan J Appl Phys,2007,46:L886-L888.
    [31]徐冰,雷艳秋,于逢源,等.聚硅烷导电性能及氧化掺杂[J].化工新型材料,2004,32(4):5-9.
    [32]雷艳秋,孙争光,黄世强.有机硅聚合物功能材料的研究与应用[J].有机硅材料,2004,18(1):27-31.
    [33]彭育,朱幻,蔡鑫,等.聚硅烷的性能及其应用进展[J].胶体与聚合物,2011,29(3):141-144.
    [34]楚增勇.聚硅烷的奇异特性及其应用[J].有机硅材料,2000,14(4):25-28.
    [35] HAYASHI T, UCHIMARU Y, REDDY N P, et al. Synthesis and conductivityof germanium-or silicon-containing polymers[J]. Chem Lett,1992,21:647-650.
    [36] LIU Y, WANG C, LI M, et al. Synthesis and properties of polysilanes withtetrathiafulvalene as pendant group[J]. New J Chem,2008,32:505-510.
    [37] XING X, GUO A, LIU L, et al. Synthesis and electrical property ofantimony-substituted polysilanes and iron-substituted polysilanes[J]. OpenMater Sci J,2012,6:28-33.
    [38]冯春祥,宋永才,谭自烈.元素有机化合物及其聚合物[M].长沙:国防科技大学出版社,1997,271-273.
    [39] KOBAYASHI T, HATAYAMA K, SUZUKI S, et al. Preparation ofsubstituted network polysilanes and their electrical conductivities[J].Organometallics,1998,17:1646-1648.
    [40] KOBAYASHI T, SHIMURA H, MITANI S, et al. Network polysilanes:Synthesis, electrical conductivity, charge-transfer interaction, andphotoconductivity[J]. Angew Chem,2000,112:3110-3114.
    [41] KABETA K, WAKAMATSU S, IMAI T, et al. Photo chemical conversion ofelectrically conductive polysilane films into insulators[J]. Synthetic Metals,1996,82:201-205.
    [42] KABETA K, WAKAMATSU S, IMAI T. Preparation of substituted networkpolysilanes by a disproportionation reaction of ethoxydisilane initiated by asmall amount of organolithium reagents[J]. J Polym Sci Part A: PolymChem,1997,35:455-461.
    [43]邢欣,李效东,王戈,等.聚硅烷导电性能的研究进展[J].有机硅材料,2002,16(4):21-24.
    [44] TABEI E, FUKUSHIMA M, MORI S. Conductivity of doped N-carbazolyl-substituted polysilanes[J]. Synthetic Metals,1995,73:113-116.
    [45] WESSON J P, WILLIAMS T C. Organosilane polymers. II.Poly(ethylmethyl-co-dimethylsilylene) and poly(methypropyl-co-dimethyl-silylene)[J]. J Polym Sci: Polym Chem Ed,1980,18:959-965.
    [46] CUI Y, DUAN X, HU J, et al. Doping and electrical transport in siliconnanowires[J]. J Phys Chem B,2000,104:5213-5216.
    [47] ZHANG G, YUAN H, ZHANG H, et al. Theoretical studies of the transportproperty of oligosilane[J]. Sci China Chem,2010,53(12):2571-2580.
    [48] OHSHITA J, WATANABE T, KANAYA D H, et al. Polymericorganosiliconsystems.22. Synthesis and photochemical properties ofpoly[(disilanylene)oligophenylylenes] and poly[(silylene)biphenylylenes][J].Organometallics,1994,13:5002-5012.
    [49] MORISAKI Y, FUJIMURA F, CHUJO Y. Synthesis and properties of novelσ-π-conjugated polymers with alternating organosilicon and [2,2]paracyclophane units in the main chain[J]. Organometallics,2003,22(17):3553-3557.
    [50] FANG M C, WATANABE A, MATSUDA M. Synthesis of σ-π conjugatedalternating silylene-diacetylene copolymers and their optical and electricalproperties[J]. Chem Lett,1994,23:13-16.
    [51] FANG M C, WATANABE A, MATSUDA M. Emission spectra of σ-π-conjugated organosilicon copolymers consisting of alternatingdimethylsilylene and aromatic units[J]. Macromolecules,1996,29:6807-6813.
    [52] OHSHITA J, UEMURA T, INOUE T. Preparation of poly(silylene-p-phenylene)s bearing a benzo crown pendant group and their iono-andsolvatochromic behavior in the emission spectra[J]. Organometallics,2006,25:2225-2229.
    [53] CORRIU R, GERBIER P, GUERIN C, et al. Pyrolysis ofpoly[(silylene)diacetylenes]: Direct evidence between their morphology andthermal behavior[J]. J Organomet Chem,1993,449:111-118.
    [54] OHSHITA J, ISHII M, UENO Y, et al. Polymeric organosilicon systems.20.Synthesis and some reactions of functionalized organosilicon polymers,poly[(silylene)phenylenes][J]. Macromolecules,1994,27:5583-5590.
    [55] OHSHITA J, YAMASHITA A, HIRAOKA T, et al. Polymeric organosiliconsystems.27. Preparation and reactions of poly[(ethoxysilylene)phenylenes]and thermal properties of the resulting polymers[J]. Macromolecules,1997,30:1540-1549.
    [56] CHICART P, CORRIU R J P, MOREAU J J E, et al. Selective syntheticroutes to electroconductive organosillicon polymers containing thiopheneunits[J]. Chem Mater,1991,3(1):8-10.
    [57] KWAK G, MASUDA T. Synthesis, characterization and optical properties ofa novel Si-containing σ-π-conjugated hyperbranched polymer[J]. MacromolRapid Comm,2002,23:68-72.
    [58] KAKIMOTO M, KASHIHARA D, YAMAGUCHI Y, et al. Synthesis ofpoly[disilanyleneethynyleneoligo(thienylene)ethynylene]s and theirphotoconductivity[J]. Macromolecules,2000,33:761-765.
    [59] MOREAU C, SEREIN-SPIRAU F, BORDEAU M, et al. Electrochemicalsynthesis of functional aryl-and heteroarylchlorosilanes. Application to thepreparation of donor-acceptor or donor-donor organosilicon molecules[J].Organometallics,2001,20(10):1910-1917.
    [60] OHSHITA J, HASHIMOTO M, LIDA T, et al. Synthesis oforganosilanylene-thienylene alternating oligomers bearing ether side chains.Peculiar solvatochromic behavior in their fluorescence spectra[J].Organometallics,2001,20(21):4295-4297.
    [61] TANG H, ZHU L, HARIMA Y, et al. Photophysical properties of σ-π-conjugated alternating oligothienylene-oligosilylene polymers[J]. J polymSci,1999,37:1873-1880.
    [62] LI H, WEST R. Structure and photophysical properties of silicon-containingphenyleneethynylene polymers [J]. Macromolecules,1998,31:2866-2871.
    [63] NGUYEN P, GOMEZ-ELIPE P, MANNERS I. Organometallic polymerswith transition metals in the main chain [J]. Chem Rev,1999,99(6):1515-1548.
    [64] FANG M C, WANTANABE A, MATSUDA M. Electrochemical studies ofσ-π conjugated organosilicon copolymers [J]. Polymer,1996,37:163-169.
    [65]黄汉生.国外导电聚合物的开发动向[J].化工新型材料,2004,31(10):36-37.
    [66] SHANG Y, YANG L, ZHANG G, et al. Theoretical studies on organosiliconoligomers containing ethenylene moieties[J]. J Polym Res,2001,18:1889-1902.
    [67]陈丹, σ-π共轭体系导电高分子的理论研究[D].哈尔滨:哈尔滨理工大学,2009,43-48.
    [68] KAKIMOTO M, OHSHITA J, ISHIKAWA M. Visible light photoconductionof poly(disilanyleneoligothienylene)s and doping effect of C60[J].Macromolecules,1997,30:7816-7820.
    [69] JONES R G, VATARU A, CHOJNOWSKI J. Silicon-containing polymers:The science and technology of their synthesis and applications[M]. TheNetherlands: Kluwer Academic Publishers,2000,310-311.
    [70] YUAN C, WEST, R. Organosilicon polymers with alternating σ-and π-conjugated systems[J]. Appl Organomet Chem,1994,8:423-430.
    [71] OHSHITA J, TAKATA A, KAI H, et al. Synthesis of polymers withalternating organosilanylene and oligothienylene units and their optical,conducting, and hole-transporting properties[J]. Organometallics,2000,19(22):4492-4498.
    [72] MANHART S, ADACHI A, SAKAMAKI K, et al. Synthesis and propertiesof organosilicon polymers containing9,10-diethynylanthracene units withhighly hole-transporting properties[J]. J Organomet Chem,1999,592:52-60.
    [73] PONOMARENKO S A, KIRCHMEYER S. Conjugated organosiliconmaterials for organic electronics and photonics[J]. Adv Polym Sci,2011,235:33-110.
    [74] OHSHITA J, NODONO M, KAI H, et al. Synthesis and optical,electrochemical, and electron-transporting properties of silicon-brigedbithiophenes[J]. Organometallics,1999,18(8):1453-1459.
    [75] KUNAI A, UEDA T, HORATA K, et al. Polymeric organosilicon systems.26. Synthesis and photochemical and conducting properties ofpoly[(tetraethyldisilanylene)oligo(2,5-thienylenes)][J]. Organometallics,1996,15:2000-2008.
    [76] MARK J E, ALLCOCK H R, WEST R. Inorganic Polymers[M]. New York:Oxford University Press,1998,261-262.
    [77] CHICHART P, CORRIU R J P, MOREAU J J E. Selective synthetic routesto electroconductive organosilicon polymers containing thiophene units[J].Chem Mater,1991,3:8-10.
    [78] YAMASHITA H, TANAKA M. A new method for functionalization of Si-Sibond-containing polymers by insertion of acetylenes into polymerbackbones[J]. Chem Lett,1992,21:1547-1550.
    [79] NALWA H S. Handbook of organic conductive molecules and polymers[M].Chichester: John Wiley,1997,15-28.
    [80] HARIMA Y, KIM D H, TSUTITORI Y, et al. Influence of extended π-conjugation units on carrier mobilities in conducting polymers[J]. ChemPhys Lett,2006,420:387-390.
    [81] TANAKA K, AGO H, YAMABE T, et al. Electronic structures oforganosilicon polymers containing thienylene units[J]. Organometallics,1994,13:3496-3501.
    [82] KUNUGI Y, HARMA Y, YAMASHITA K, et al. Electrochemical aniondoping of poly[(tetraethyldisilanylene)oigo(2,5-thienylene)] deriratives andtheir p-type semiconducting properties[J]. J Electroanal Chem,1996,414:135-139.
    [83] LI M, ZHOU C, FENG S, et al. Studies on the synthesis and optical andconducting properties of poly[methytetraphenylphenylsilylene-co-1,4-bis(methylphenylsilyl)phenylene][J]. Eur Polym J,2003,39:1623-1627.
    [84] ZHANG D, WANG Y. Synthesis and applications of one-dimensional nano-structured polyaniline: An overview[J]. Mater Sci Eng B,2006,134:9-19.
    [85] XIA Y, YANG P, SUN Y, et al. One-dimensional nanostructures: synthesis,characterization, and applications[J]. Adv Mater,2003,15:353-389.
    [86] ZHU Y C, BANDO Y, XUE D F, et al. Oriented assemblies of ZnS one-dimensional nanostructures[J]. Adv Mater,2004,16:831-834.
    [87] LU J G, CHANG P, FAN Z. Quasi-one-dimensional metal oxide materials-synthesis, properties and applications[J]. Mater Sci Eng R,2006,52:49-91.
    [88] KUCHIBHATLA S V, KARAKOTI A S, BERA D, et al. One-dimensionalnanostructured materials[J]. Prog Mater Sci,2007,52:699-913.
    [89] ZANG L, CHE Y, MOORE J S. One-dimensional self-assembly of planar π-conjugated molecules: adaptable building blocks for organic nanodevices[J].Acc Chem Res,2008,41(12):1596-1608.
    [90] ALESHIN A N, LEE H J, PARK Y W, et al. One-dimensional transport inpolymer nanofibers[J]. Phys Rev Lett,2004,93:19661(1)-19661(4).
    [91] SHE J, XIAO Z, YANG Y, et al. Correlation between resistance and fieldemission performance of individual ZnO one-dimensional nanostructures[J].ACS Nano,2008,2(10):2015-2022.
    [92] YU B, SUN X H, CALEBOTTA G A, et al. One-dimensional germaniumnanowires for future electronics[J]. J Cluster Sci,2006,17:579-597.
    [93] LU X, WANG C, WEI Y. One-dimensional composite nanomaterials:Synthesis by electrospinning and their applications[J]. Small,2009,21:2349-2370.
    [94] ZHAO Y S, FU H, PENG A, et al. Construction and optoelectronicproperties of organic one-dimensional nanostructures[J]. Acc Chem Res,2010,43(3):409-418.
    [95] JIE J, ZHANG W, BELLO I, et al. One-dimensional II–VI nanostructures:Synthesis, properties and optoelectronic applications[J]. Nanotoday,2010,5:313-336.
    [96] LU X, ZHANG W, WANG C. One-dimensional conducting polymernanocomposites: synthesis, properties and applications[J]. Prog Polym Sci,2011,36:671-712.
    [97] HAN W, CHANG C W, ZETTL A. Encapsulation of one-dimensionalpotassium halide crystals within BN nanotubes[J]. Nano Lett,2004,4(7):1355-1357.
    [98] KITAURA R, IMAZU N, KOBAYASHI K, et al. Fabrication of metalnanowires in carbon nanotubes via versatile nano-template reaction[J]. NanoLett,2008,8(2):693-699.
    [99] OUYANG M, HUANG J, LIEBER C M. Scanning tunneling microscopystudies of the one-dimensional electronic properties of single-walled carbonnanotubes[J]. Phys Chem,2002,53:201-220.
    [100] CHATTOPADHYAY S, GANGULY A, CHEM K, et al. One-dimensionalgroup III-nitrides: growth, properties, and applications in nanosensing andnano-optoelectronics[J]. Crit Rev Solid State Mater Sci,2009,34:224-279.
    [101] WANG Z L. Nanobelts, nanowires, and nanodiskettes of semiconductingoxides-from materials to nanodevices[J]. Adv Mater,2003,15:432-436.
    [102] ANTONOV R D, JOHNSON A T. Subband population in a single-wallcarbon nanotube diode[J]. Phys Rev Lett,1999,83:3274-3276.
    [103] FREITAG M, RADOSAVLJEVIC M, ZHOU Y, et al. Controlled creationof a carcon nanotube diode by a scanned gate[J]. Appl Phys Lett,2001,79:3326-3328.
    [104] YAO Z, POSTMA H W, BALENTS L, et al. Carbon nanotubeintramolecular junctions[J]. Nature,1999,402:273-276.
    [105] ZHOU C, JING K, YNILMEZ E, et al. Modulated chemical doping ofindividual carbon nanotubes[J]. Science,2000,290:1552-1555.
    [106] TANS S J, VERSCHUEREN A R M, DEDDER C. Room-temperaturetransistor based on a single carbon nanotube[J]. Nature,1998,393:49-52.
    [107] POSTMA H W, TEEPEN T, YAO Z, et al. Carbon nanotube single-electrontransistors at room temperature[J]. Science,2001,293:76-79.
    [108] RUECKES T, KIM K, JOSLEVICH E, et al. Carbon nanotube-basednonvolatile random access memory for molecular computing[J]. Science,2000,289:94-97.
    [109] BACHTOLD A, HADLEY P, NAKANISHI T, et al. Logic circuits withcarbon nanotube transistors[J]. Science,2001,294:1317-1320.
    [110] DERYCKE V, MARTEL R, APPENZELLER J, et al. Carbon nanotubeinter-and intramolecular logic gates[J]. Nano Lett,2001,1(19):453-456.
    [111] MAEDA Y, SATO Y, KAKO M, et al. Preparation of single-walled carbonnanotube-organosilicon hybrids and their enhanced field emissionproperties[J]. Chem Mater,2006,18:4205-4208.
    [112] BREWER L. Bonding and structures of transition metals[J]. Science,1968,161:115-122.
    [113] CALAIS J L. Band structure of transition metal compounds[J]. Adv Phys,1977,26:847-885.
    [114] CHEM J G. Carbide and nitride overlayers on early transition metalsurfaces: Preparation, characterization, and reactivities[J]. Chem Rev,1996,96(4):1477-1498.
    [115] OYAMA S T. Preparation and catalytic properties of transition metalcarbides and nitrides[J]. Catalysis Today,1992,15:179-200.
    [116] VANDENBERG J M, MATTHIAS B T. Superconductivity and structuralbehavior of hexagonal MoN and related Mo compounds[J]. Mater Res Bull,1974,9:1085-1089.
    [117] GULBI SKI W, SUSZKO T. Thin films of Mo2N/Ag nanocomposite-thestructure, mechanical and tribological properties[J]. Surf Coat Tech,2006,201:1469-1476.
    [118] INUMARU K, BABA K, YAMANAKA S. Preparation of superconductingmolybdenum nitride MoNx(0.5≤x≤1) films with controlled composition[J].Physica B,2006,383:84-85.
    [119] BULL C L, KAWASHIMA T, MCMILLIAN P F, et al. Crystal structureand high-pressure properties of γ-Mo2N determined by neutron powderdiffraction and X-ray diffraction[J]. J Soild State Chem,2006,179:1762-1767.
    [120] LEE H J, CHOI J G, COLLING G W, et al. Temperatrue-programmeddesorption and decomposition of NH3over molybdenum nitride films[J].Appl Surf Nitride Films,1995,89:121-130.
    [121] MAOUJOUD M, JARDINIER-OFFERGELD M, BOUILLON F. Synthesisand characterization of thin-film molydenum nitrides[J]. Appl Surf Sci,1993,64:81-89.
    [122] CHOI J G, BRENNER J R, COLLING G W, et al. Synthesis andcharacterization of molybdenum nitride hydrodenitrogenation catalysts[J].Catalysis Today,1992,15:201-222.
    [123] RUDNIK P J, GRAHAM M E, SPROUL W D. High rate reactivesputtering of MoNxcoatings[J]. Surf Coat Technol,1991,49:293-297.
    [124] LI X, TANG B, PAN J, LIU D, XU Z. Tribological properties of Mo-Nhard coatings on Ti6Al4V by double glow discharge technique[J]. J MaterSci Technol,2003,19(4):291-293.
    [125] ANITHAA V P, VITTAB S, MAJORA S. Structure and properties ofreactivity sputtered γ-Mo2N hard coatings[J]. Thin Solid Films.1994,245(1-2):1-3.
    [126] MCMILLAN P F. New materials from high-pressure experiments[J].Nature Mater,2002,1:19-25.
    [127] SOIGARD E, MCMILLAN P F, CHAPLIN T D, et al. High-pressuresysthesis and study of low-compressibility molybdenum nitride (MoN andMoN1-x) phases[J]. Phys Rev B,2003,68:132101(1)-132101(4).
    [128] LI X, LI Z H, GAO Y Z, et al. Conductivity of (NH4)3[CrMo6O24H6]·7H2Otreated by Nd chemistry-heated diffused permeation[J]. J Mater SciTechnol,2005,21:776-778.
    [129]周百斌,韦永德,李中华,等.稀土对K10H3[Y(SiW11O39)2]的多元渗及导电性[J].中国稀土学报,2002,20:83-87.
    [130]王威力.稀土改性钛酸钡导电粉及抗表静电导电涂料的制备[D].哈尔滨:哈尔滨工业大学,2007,20-21.
    [131]胡洁梓,赵新兵,余红明,等.稀土元素掺杂对LiFePO4正极材料电导率和电化学性能的影响[J].功能材料,2007, A04:1394-1397.
    [132] DREIZLER R M, CROSS E K U. Density functional theory[M], Berlin:Springer-Vertag,1990,15-21.
    [133] GAO G Y, YAO K L, LIU Z L, et al. Magnetism and electronic structureof Cr-doped rutile TiO2form first-principles calculations[J]. J Magn MagnMater,2007,313:210-213.
    [134] KAWAHARA M, KAWAMURA F, YOSHIMURA M, et al. A first-principles study on nitrogen solubility in Na flux toward theoretical searchfor a novel flux for bulk GaN growth[J]. J Cryst Growth,2007,303:34-36.
    [135] VALI R, HOSSEINI S M. First-principles study of structural, dynamical,and dielectric properties of κ-Al2O3[J]. Comp Mater Sci,2004,29:138-144.
    [136] MOMIDA H, OGUCHI T. First-principles study on exchange force imageof NiO(001) surface using a ferromagnetic Fe probe[J]. Surf Sci,2005,590:42-50.
    [137] QIAN G X, MARTIN R M, CHADI D J. First-principles study of theatomic reconstructions and energies of Ga-and As-stabilized GaAs(100)surfaces[J]. Phys Rev B,1988,38:7649-7663.
    [138] LANGRETH D C, PERDEW J P. Theory of nonuniform electronicsystems. I. Analysis of the gradient approximation and a generalizationthat works[J]. Phys Rev B,1980,21:5469-5493.
    [139] PERDEW J P, WANG Y. Accurate and simple analytic representation ofthe electron-gas correlation energy[J]. Phys Rev B,1992,45:13244-13249.
    [140] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradientapproximation made simple[J]. Phys Rev Lett,1996,77:3865-3868.
    [141] KOHN W, MEIR Y, MAKAROV D E. Vander waals energies in densityfunctional theory[J]. Phys Rev Lett,1998,80:4153-4156.
    [142] LANDAUER R. Spatial variation of currents and fields due to localizedscatterers in metallic conduction[J]. IBM J Res Dev,1957,1:223-231.
    [143] STARK J G. Chemistry Data Book [M]. London: John Murray,1975,30-32.
    [144] ZHANG G, MA J, JIANG Y, et al. Charge-doped and heteroatom-substituted polysilane, poly(vinylenedisilanylene), poly(butadienylene-disilanylene): electronic structures and band gaps[J]. J Phys Chem B,2005,109(28):13499-13509.
    [145] GAN K J, TSAI C S, CHEN Y W, et al. Voltage-controlled multiple-valued logic design using negative differential resistance devices[J]. SolidState Electron,2010,54:1637-1640.
    [146] ESAKI L. New phenomenon in narrow germanium p-n junctions[J]. PhysRev,1958,109:603-604.
    [147] ZHANG G, LI D, SHANG Y, et al. Transport properties of double quantumdots formed ferrocene units[J]. J Phys Chem C,2011,115(13):5257-5264.
    [148] PATI R, MCCLAIN M, BANDYOPADHYAY A. Origin of negativedifferential resistance in a strongly coupled single molecule-metal junctiondevice[J]. Phys Rev Lett,100:246801(1)-246801(4).
    [149] ZENG C G, WANG H Q, WANG B, et al. Negative differential-resistancedevice involving two C60molecules[J]. Appl Phys Lett,2000,77:3595(1)-3595(3).
    [150] LIN Y M, JENKINS K A, VALDES-GARCIA A, et al. Operation ofgraphene transistors at gigahertz frequencies[J]. Nano Lett,2009,9(1):422-426.
    [151] MASUM H K M, ZAHID F, LAKE R K. Negative differential resistance inbilayer graphene nanoribbons[J]. Appl Phys Lett,2011,98:192112(1)-192112(3).
    [152] BRANDBYGE M, MOZOS J L, ORDEJON P, et al. Density-functionalmethod for nonequilibrium electron transport[J]. Phys Rev B,2002,65:165401(1)-165401(17).
    [153] LI X, CHEN K, WANG L, et al. Effect of length and size of heterojunctionon the transport properties of carbon-nanotube devices[J]. Appl Phys Lett,2007,91:133511(1)-133511(3).
    [154] FAN Z, CHEN K. Negative differential resistance and rectifying behaviorsin phenalenyl molecular device with different contact geometries[J]. ApplPhys Lett,2010,96:053509(1)-053509(3).
    [155] CHEN J, REED M A, RAWLETT A M, et al. Large on-off ratios andnegative differential resistance in a molecular electronic device[J]. Science,1999,286:1550-1552.
    [156] SEMINARIO J M, ZACARIAS A G, TOUR J M. Theoretical study of amolecular resonant tunneling diode[J]. J Am Chem Soc,2000,122(13):3015-3020.
    [157] CHEN L, HU Z, ZHAO A, et al. Mechanism for negative differentialresistance in molecular electronic devices: local orbital symmetrymatching[J]. Phys Rev Lett,2007,99:146803(1)-146803(4).
    [158] CORNIL J, KARZAZI Y, BRéDAS J L. Negative differential resistance inphenylene ethynylene oligomers[J]. J Am Chem Soc,2002,124(14):3516-3517.
    [159] GENG H, YIN S, CHEN K Q, et al. Effect of intermolecular interactionand molecule-electrode couplings on molecular electronic conductance[J].J Phys Chem B,2005,109:12304-12308.
    [160] LAGERQVIST J, CHEN Y C, VENTRA M D. Shot noise in parallelwires[J]. Nanotechnology,2004,15: S459-S464.
    [161] LANG N D, AVOURIS P. Electrical conductance of parallel atomicwires[J]. Phys Rev B,2000,62:7325-7329.
    [162] BRANDBYGE M, MOZOS J L, ORDEJóN P, et al. Density-functionalmethod for nonequilibrium electron transport[J]. Phys Rev B,2002,65:165401(1)-165401(17).
    [163] YIN X, LIY, ZHANG Y, et al. Theoretical analysis of geometry-correlatedconductivity of molecular wire[J]. J Chem Phys Lett,2006,422:111-116.
    [164] STOKBRO K, TAYLOR J, BRANDBYGE M, et al. Theoretical study ofthe nonlinear conductance of di-thiol benzene coupled to Au(111) surfacesvia thiol and thiolate Bonds[J]. Comput Mater Sci,2003,27:151-160.
    [165] REED A E, CURTISS L A, WEINHOLD F. Intermolecular InteractionsFrom a Natural Bond Orbital, Donor-acceptor Viewpoint[J]. Chem Rev,1988,88:899-926.
    [166] AVIRAM A, RATNER R A. Molecular Rectifiers[J]. Chem Phys Lett,1974,29:277-283.
    [167] STOKBRO K, TAYLOR J, BRANDBYGE M J. Do Aviram-Ratner diodesrectify?[J]. J Am Chem Soc,2003,125:3674-3675.
    [168] CUI Y, LIEBER C M. Functional nanoscale electronic devices assembledusing silicon nanowire building blocks[J]. Science,2001,291:851-853.
    [169] ZHANG G L, YUAN H L, ZHANG H, et al. Theoretical studies on thetransport property of oligosilane with p-n junction[J]. Int J Quant Chem,2011,111:4214-4223.
    [170] MATTHIAS B T, HULM J K. A search for new superconductingcompounds[J]. Phys Rev,1952,87:799-806.
    [171] BEZINGE A, YVON K, MULLER J, et al. High-pressure high-temperatureexperiments on δ-MoN[J]. Solid State Commun,1987,63(2):141-145.
    [172] ZHAO X D, RANGE X J. High pressure synthesis of molybdenum nitrideMoN[J]. J Alloy Compds,2000,296:72-74.
    [173] CENDLEWSKA B. Superconducting MoNxprepared by isostatic directnitriding at high pressure and high temperature[J]. J Phys F: Met Phys,1987,17: L71-L74.
    [174] LIECHTENSTEIN A I, ANISIMOV V I, ZAANEN J. Density-functional theory and strong interactions: Orbial ordering in mott-hubbardinsulators[J]. Phys Rev B,1995,52: R5467-R5470.
    [175] ANISIMOV V I, ARGASETIAWAN F, LICHTENSTEIN A I. First-principles calculations of the electronic structure and spectra of stronglycorrelated systems: the LDA+U method[J]. J Phys: Condens Mater,1997,9:767-808.
    [176] BULL C L, MCMILLAN P F, SOIGNARD E. Structure determination ofdelta-MoN prepared at high pressure and high temperature by neutron andX-ray diffraction[J]. J Solid State Chem,2004,177:1488-1492.
    [177] CANTELE G, DEGOLI E, LUPPI E, et al. First-princple study of n-andp-doped sillion nanoclusters[J]. Phys Rev B,2005,72:113303(1)-113303(4).
    [178] ZHONG G H, WANG J L, ZENG Z. Eletronic and magnetic structures of4f in Ga1-xGdxN[J]. J Phys: Condens Matter,2008,20:295221(1)-295221(7).
    [179] LOSOVYJ Y B, WOOTEN D, SANTANA J C. Comparison of n-typeGd2O3and Gd-doped HfO2[J]. J Phys: Condens Matter,2009,21:045602(1)-045602(8).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700