几种高温高残留聚环三磷腈—酰胺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚磷腈及其衍生物是一类以氮磷原子交替排列再通过有机取代侧基构建的新型有机无机杂化高分子材料,具有优异的耐热、耐磨、阻燃和耐辐射等特性。本文改进六氯环三磷腈(HCCP)合成工艺,进而合成四种高温高残留的聚环三磷腈-酰胺,揭示其热分解和高温高残留的规律和机理,再合成一系列不同磷腈环含量的聚环三磷腈-醚酰胺,考察磷腈环比例对热分解和高温高残留特性的影响规律,还合成聚环三磷腈-砜微球,评价其填充改性的环氧树脂固体润滑涂层摩擦磨损特性,并探讨涂层的耐磨机理。
     针对直接合成法和复式催化剂法产率低的不足,改用缚酸剂法以PCl_5和NH_4Cl合成出HCCP,不仅反应时间缩短2/3,且产率达82.3%,纯度达99.2%。同时筛选出HCCP最佳合成条件:氯苯为溶剂,吡啶为缚酸剂,原料摩尔配比为nPCl_5︰nNH_4Cl︰n吡啶=1︰(1.25-1.30)︰(3.00-3.50),反应温度130℃~135℃,反应时间2h。另外又通过亲核取代合成六苯氧基环三磷腈。采用FTIR、NMR、XRD、DSC、TG分析这两种环三磷腈的结构和纯度及热性能。
     采用HCCP与苯酚、对苯二胺、4,4’-二氨基二苯醚、4,4’-二氨基二苯砜、乙二胺合成出四种具有活性双端胺基的磷腈-二胺,然后分别与对苯二甲酰氯低温溶液缩聚生成四种聚环三磷腈-酰胺:聚环三磷腈-芳酰胺、聚环三磷腈-醚酰胺、环三磷腈-砜酰胺、环三磷腈-半芳酰胺。采用FTIR、NMR、XRD、TGA、SEM、元素分析仪分析这些聚磷腈衍生物的结构和热失重及固体残留物形貌。四种聚环三磷腈-酰胺起始分解温度约198℃~259℃,最大热分解速率温度约350℃~400℃,600℃固体残留率为36.9%~62.6%。XRD分析表明四种聚环三磷腈-酰胺室温为非晶态结构。热失重分析表明环三磷腈结构的引入,破坏主链的规整性和主链中苯环与酰胺基团间的共轭作用,抑制分子链段间氢键的形成,降低聚酰胺起始分解温度,而后期热分解速率减缓。高温分解固体残留物的FTIR、SEM和元素分析表明含有大量磷元素和P-O-P键及P=O键,证明600℃下磷腈环开环和交联反应,有中强酸物质的生成,促进芳香环的碳化和凝胶态转变,毯层状固体残留物覆盖在聚合物表面,阻碍热量传递和内部小分子物质外溢,进而减缓后期热分解速率,提高固体残留率。合成出四种具有高温高残留特性的聚环三磷腈-酰胺,揭示其热分解和高温高残留的规律和机理。
     采用含有活性双端胺基的1,1,3,5-四苯氧基-3,5-二(4',4''-二胺基二苯醚基)环三磷腈和对苯二胺及对苯二甲酰氯三种反应单体,低温溶液缩聚合成一系列主链含不同磷腈环含量的聚环三磷腈-醚酰胺。采用FTIR、XRD、TGA、SEM、水接触角分析聚环三磷腈-醚酰胺的结构和热失重及表面能。随着磷腈环比例的增大,聚合物结晶性能显著下降,由晶态结构逐步转变为非晶态结构,起始分解温度由467.9℃逐步降低到198.6℃,而高温固体残留率却先增加后降低。一定含量磷腈环的引入,热分解过程中生成的中强酸物质有效促进苯环碳化和凝胶态物质生成,显著提高聚合物的高温固体残留率。然而,随着磷腈环比例的增大,分解生成中强酸量增多,碳化过程中裂解脱水严重,对毯层状固体残留物的消耗和膨胀作用增强,导致高温固体残留率略有降低。磷腈环比例的逐步增大使聚环三磷腈-醚酰胺由亲水性转变为超疏水性。
     采用沉淀聚合法,以HCCP和4,4’-二羟基二苯砜为反应单体,合成出聚环三磷腈-砜微球(PZs),其为非晶态结构,起始分解温度为457.5℃,600℃固体残留率为63.1%,平均粒径为493nm。按PZs不同填充量制备一系列环氧树脂固体润滑涂层试样,3wt.%填充量时摩擦系数由纯环氧树脂的0.61降低到最小值0.38,比磨损率降低到最小值13.2×10~(-11)mm~3/Nm。涂层磨痕SEM分析表明纯环氧树脂涂层粘着磨损显著,PZs微球加入首先起到固体润滑作用,减少摩擦热的生成,其次有利于摩擦热的扩散,再者改善涂层耐热性,综合效果是减弱涂层与摩擦副的粘着作用,磨痕较光滑无凹坑,未见明显成片剥落,从而降低摩擦系数,减少磨损率。另外,PZs中氮磷元素丰富,大量存在于聚合物转移膜中,促进摩擦化学作用,有效发挥固体润滑功能。
Polyphosphazene and its derivatives are a class of novel macromoleculescontaining alternate phosphorus-nitrogen single and double bonds with two changingorganic side groups to be prepared new organic-inorganic hybird materials with awide range of chemical and physical properties, like excellent heat resistance, wearresistance, flame retardant and radicalization resistance performances in many areas.The synthetic process of hexachlorocyclotriphosphazene (HCCP) was improved,firtly. Four high-temperature residual poly(cyclotriphosphazene amide)s weresynthesized to study the mechanism of thermal decomposition and high residualduring high temperature progress. And a series of different phosphazene ringcontents of poly(cyclotriphosphazene-ether amide)s were synthesized to investigatedthe influence of the proportion of phosphazene ring on the characteristics of thermaldecomposition and high-temperature residual. Polycyclotriphosphazene-sulfonemicrospheres were synthesized to evaluate the friction and wear properties of itsmodificated epoxy resin solid lubrication coating, and discussed the wearmechanism.
     In order to overcome the disadvantage of low yield at direct synthesis andcompound catalyst method, use acid agent method to synthetized HCCP throughPCl_5and NH_4Cl. The reaction time shortened2/3and achieved the yield of82.3%,the sublimation temperature of coarse product was120oC and the purity was99.2%.The influencing factors of reaction such as reaction time, temperature, bind acidagent etc were researched to obtain the best synthesis condition. Used chlorobenzeneas solvent, pyridine as the bind acid agent, nPCl_5:nNH_4Cl:npyridine=1:(1.25-1.3):(3.0-3.5), the reaction temperature was130-135oC, thereaction time was2h. Through nucleophilic replace, anotherhexaphenoxycyclotriphosphazene were synthesized. Using FTIR, NMR, XRD, DSCand TGA analyse the structure, purity and thermal performance of the two cyclotriphosphazene derivatives.
     Four phosphazene-diamines with active end amino groups were synthesized intwo steps from phenol, PPD, ODA, DDS and EDA via nucleophilic substitution andcatalytic reduction with HCCP. Four poly(cyclotriphosphazene amide)s weresynthesized from these diamines by direct polycondensation reaction withterephthaloyl chloride and pyridine in N-methyl pyrrolidinone, respectively. Theinitial decomposition temperature of the4poly(cyclotriphosphazene amide)sbetween198to259°C, the maximum thermal degradation rate between350to400°C, and the solid residual rate at600°C between36.9%to62.6%, respectively. XRDanalysis showed that the poly(cyclotriphosphazene amide)s belong to the amorphousstructure at room temperature. Thermo-gravimetric analysis showed that theintroduction of cyclotriphosphazene structure destroy the conjugation effect betweenbenzene ring and amide groups and the regularity of the main chain, inhibit theformation of hydrogen bond between molecular chain segments and lower initialdecomposition temperature of polyamide, but retard thermal decomposition rate oflate. FTIR, SEM and elemental analysis of high temperature solid residues analysisshowed that lots of phosphorus and P-O-P and P=O bonds in the residues whichprove that phosphazene rings openedand crosslinked at600°C, acid substances weregenerated to promote the aromatic ring carbonization and gel state transition, carpetlayered solid residues covered on polymer surface, impeded the heat transfer andinternal smaller molecules spillover, slowed decomposition late rate and improvedthe rate of solid residues.
     Using one reactive double end amino TPAPCP, PPD and TPC as reactivemonomers to synthetic a series of containing different proportion of phosphazenering poly(cyclotriphosphazene-ether amide)s via low temperature polycondensationreaction. Crystalline properties of the polymers decreased with the proportion ofphosphazene ring increases. The structure gradually transformed into amorphousfrom crystalline structure, the initial decomposition temperatures were graduallyreduced from467.9°C to198.6°C. But the high-temperature solid residue rate wassignificantly increased at first and then decreased. The introduction of the proportion of phosphazene ring structure is generated acid materials to effectively promote thebenzene ring carbonization and gel state carbide material in the process of thermaldecomposition, and improve the high temperature solid retention rate of the polymer.But with the increase of proportion of phosphazene ring, the acid amount increasedand benzene ring carbonization dehydration seriously, enhanced the consumptionand expansion of blanket carbon layer, which led to lower the high temperature solidretention rate. The hydrophobic properties increased with the introduction of thephosphazene ring structures and the super-hydrophobic was changed fromhydrophilic.
     One step to synthesize PZs with HCCP and BPS via precipitation polymerization.The initial decomposition temperature of the PZs is457.5°C, solid residual rate is63.09%at600°C, an average particle diameter of493nm and amorphous structureat room temperature. The frictional coefficient of the epoxy/PZs composite coatingreduced from0.61of pure EP to a minimum0.38and the volumetric wear ratereached a minimum13.2×10~(-11)mm~3with3wt.%PZs filling. The SEM morphologyof grinding crack showed that pure epoxy coating reflected a typical adhesive wear.PZs microspheres have an effect of solid lubrication, reduce the friction heat andpromote the proliferation of it. Meanwhile, improve the heat-resisting performanceand reduce the adhesion effect with friction pair, which led to decrease the frictioncoefficientand and reduce the wear rate. In addition, nitrogen and phosphoruselements abundanted in the PZs which rich in in polymer transfer membrane topromote friction chemistry and facilitate solid lubrication function.
引文
[1] Abraham K. M., Alamgir M., Perrotti S. J. Rechargeable solid-state Li batteries utilizingpolyphosphazene poly(ethlene oxide) mixed polymer electrolytes [J]. Journal ofElectroanalytical Society,1988,135(2):535-536.
    [2] Allcock H. R. Water-soluble polyphosphazenes and their hydrogels [J]. Macromolecules,1996,248:3-29.
    [3] Allcock H. R., Cameron C. G., Skloss T. W., et al. Molecular motion of phosphazene boundnonlinear optical chromophores [J]. Macromolecules,1996,19(2):233-238.
    [4] Allcock H. R., Crane C. A., Morrissey C. T., et al. Living cationic polymerization ofphosphoranimines as an ambient temperature route to polyphosphazenes with controlledmolecular weight [J]. Macromolecules,1996,29(3):7740-7747.
    [5] Allcock H. R., Krause W. E. Polyphosphazenes with adamantyl side groups [J].Macromolecules,1997,30(19):5683-5687.
    [6] Allcock H. R., Laredo W. R., Morford R. V. Polymer electrolytes derived frompolynorbornenes with pendent cyclophosphazenes: poly(ethylene glycol) methyl ether(PEGME) derivatives [J]. Solid State Ionics,2001,139(2):27-36.
    [7] Allcock H. R., Nelson J. M., Prange R., et al. Synthesis of telechelic polyphosphazenesvia the ambient temperature living cationic polymerization of aminophosphoranimines [J]. Macromolecules,1999,32(2):5736-5743.
    [8] Allcock H. R., Powell E. S., Maher A. E., et al. Telechelic polyphosphazenes: Reaction ofliving poly(dichlorophosphazene) chains with alkoxy and aryloxy phosphoranimines [J].Macromolecules,2004,37(10):3635-3641.
    [9] Coles S. J., Davies D. B., Eaton R. J., et al. Structural and stereogenic properties of spiro-and ansa-substituted1,3-propanedioxy derivatives of a spermine-bridgedcyclotriphosphazene [J]. Polyhedron,2006,25(4):953-962.
    [10] Jimenez J., Laguna A., Benouazzane M., et al. Metallocyclo-and polyphosphazenescontaining gold or silver: Thermolytic transformation into nanostructured materials [J].Chemistry-A European Journal,2009,15(48):3509-3520.
    [11] Waltman R. J., Kobayashi N., Shirai K., et al. The tribological properties of a newcyclotriphosphazene-terminated perfluoropolyether lubricant [J]. Tribology Letters,2004,16(1):151-162.
    [12] Zhu Y., Huang X. B., Fu J. W., et al. Morphology control between microspheres andnanofibers by solvent-induced approach based on crosslinked phosphazene-containingmaterials [J]. Materials Science and Engineering: B,2008,153(1-3):62-65.
    [13] Stokes H. N. On the chloronitrides of phosphoru [Z]. US patent,1895275-290.
    [14] Stokes H. N. On the chloronitrides of phosphorus (II)[J]. American Chemistry Journal,1897,19(3):782-796.
    [15] Allcock H. R., Desorcie J. L., Riding G. H. The organometallic chemistry of phosphazenes[J]. Polyhedron,1987,6(2):119-157.
    [16] Allcock H. R. Reactions of inorganic high polymers as a route to tailored solids [J]. SolidState Ionics,1988,26(2):143-149.
    [17] Allcock H. R. Inorganic Polymers: Review [J]. Journal of Organometallic Chemistry,1979,172(2):35-49.
    [18] Allcock H. R. Phosphazene High Polymers [J]. American Chemistry Journal,1989,2(4):525-532.
    [19] Allcock H. R., Brennan D. J. Organosilicon derivatives of cyclic and high polymericphosphazenes [J]. Journal of Organometallic Chemistry,1988,341(1-3):231-239.
    [20] Allcock H. R., Pucher S. R., Fitzpatrick R. J., et al. Antibacterial activity and mutagenicitystudies of water-soluble phosphazene high polymers [J]. Biomaterials,1992,13(12):857-862.
    [21] Allcock H. R., Pucher S. R., Scopelianos A. G. Poly[(amino acid ester)phosphazenes] assubstrates for the controlled release of small molecules [J]. Biomaterials,1994,15(8):563-569.
    [22] Allcock H. R., Pucher S. R., Visscher K. B. Activity of urea amidohydrolase immobilizedwithin poly[di(methoxyethoxyethoxy)phosphazene] hydrogels[J]. Biomaterials,1994,15(7):502-506.
    [23] Chatani Y., Yatsuyanagi K. Structural studies of polyphosphazenes1: Molecular andcrystal structures of poly(dichlorophosphazene)[J]. Macromolecules,1987,20(5):1042-1045.
    [24] Pentini M., Barbetta A., Masci G. Solution behavior of the poly[bis(carboxylatophenoxy)phosphazene] polyelectrolyte [J]. Macromolecules,1993,30(2):1042-1045.
    [25] Jolly W. L., Avanzino S. C., Rietz R. R. Advances in inorganic chemistry andradiochemistry [J]. Inorganic Chemistry,1977,16(1):964-973.
    [26] Coxon G. E., Sowerby D. B. Cyclic inorganic compounds—VI. The vibrational spectra ofpentameric bromophosphonitrile [J]. Spectrochimica Acta Part A: Molecular Spectroscopy,1968,24(12):2145-2149.
    [27] Schmidpeter A., Brecht H. Zur chemischen verschiebung der31P-resonanz in methyl-undphenylphosphorverbindungen (1)[J]. Inorganic and Nuclear Chemistry Letters,1968,4(10):563-568.
    [28] Coxon G. E., Sowerby D. B. Cyclic inorganic compounds. V.Cholorobromotriphosphonitriles [J]. Inorganica Chimica Acta,1967,1(3):381-386.
    [29] John K., Moeller T. Phosphonitrilic bromides [J]. Journal of Inorganic and NuclearChemistry,1961,22(3-4):199-204.
    [30] Store T. H. Process for the preparation of phosphonitrile chloride oligomer [J]. Polyhedron,1987,5(3):119-127.
    [31] Horie K., Morita Y., Mikamori Y. Cyclic phosphonitrile chloride oligomers [J].Macromolecules,2006,12(4):2335-2341.
    [32]颜红侠,宁荣昌,马晓燕.三聚磷腈的制备工艺[J].应用化学,2001,18(2):163-164.
    [33] Kinoshita I., Ugata Y. Suzue M. Phosphorus nitride chloride oligomer [J]. Macromolecules,2006,5(3):103-108.
    [34] Hesub M., Baton R. L. Selective oligomer production [J]. Polymer Science,2004,8(2):678-684.
    [35]孙德,李然,张龙.五氯化磷与氨基甲酸铵合成六氯环三磷腈的研究[J].天然气化工,2009,34(2):48-50.
    [36] Coxon G. E., Palmer T. F., Sowerby D. B. Chloro-and bromo-phosphonitriles [J].Inorganic and Nuclear Chemistry Letters,1966,2(8):215-217.
    [37] Rice R. G., Daasch L. W., Holden J. R., et al. Some new trimeric phosphoronitridicdihalides [J]. Journal of Inorganic and Nuclear Chemistry,1958,5(3):190-200.
    [38] Shaw A., Bott R., Vonrhein C., et al. A novel combination of two classic catalytic schemes[J]. Journal of Molecular Biology,2002,320(2):303-309.
    [39] Hayter R. G., Humiec F. S. Some mercaptides and mercaptide complexes of nickel andpalladium [J]. Journal of Inorganic and Nuclear Chemistry,1964,26(5):807-810.
    [40] Manhas B. S., Chu S. K., Moeller T. Isomerization of the1,3,5-tribromo-1,3,5-triphenyl-triphosphonitriles [J]. Journal of Inorganic and Nuclear Chemistry,1968,30(1):322-325.
    [41] Moeller T., Vicentini G. Observations on the rare earths-LXXVII: AnhydrousN,N-dimethylacetamide adducts of the tri-positive perchlorates [J]. Journal of Inorganic andNuclear Chemistry,1965,27(7):1477-1482.
    [42] Moeller T., Cullen G. W. Observations on the rare earths-LXIX An electrochemicalinvestigation of ethylenediamine solutions of lanthanum nitrate [J]. Journal of Inorganicand Nuclear Chemistry,1959,10(1-2):141-148.
    [43] Schmidpeter A., Brecht H. Zur chemischen verschiebung der31P-resonanz in methyl-undphenylphosphorverbindungen (1)[J]. Inorganic and Nuclear Chemistry Letters,1968,4(10):563-568.
    [44] Cotton F. A., Troup J. M., Billups W. E., et al. Synthesis and structure proof of a new ringsystem from the reaction of diironnonacarbonyl and naphtho-cyclopropene [J]. Journal ofOrganometallic Chemistry,1975,102(3):345-351.
    [45] Cotton F. A., Webb T. R. A novel new metallocycle: Cyclohexa-1,4-(tetracarbonylchromium)-2,3,5,6-(dimethylarsenic)[J]. Inorganica Chimica Acta,1974,10(0):127-131.
    [46] Calderon J. L., Shaver A., Cotton F. A. Complexes of polypyrazolyborate ligands: VI.Some complexes containing cycloheptatrienyl groups and their tricarbonyliron adducts [J].Journal of Organometallic Chemistry,1973,57(1):121-126.
    [47] Cotton F. A., Jeremic M., Shaver A. Complexes of polypyrazolylborate ligands. IV.Boron-hydrogen-molybdenum bridge bonding in the so-called sixteen electron complex
    [dihydrobis-(3,5-dimethyl-1-pyrazolyl)boratel-(trihaptocycloheptatrienyl)dicarbonylmolybdenum in the crystal [J]. Inorganica Chimica Acta,1972,6(2):543-551.
    [48] Prons V. N., Grinblat M. P., Klebanskii A. L. Thermal polymerization offluoralkoxychloro-cyclotriphosphazotrienes [J]. Polymer Science,1974,16(7):1878-1882.
    [49] Allcock H. R., Kugel R. L., Avlan K. J. Phosphonitrilic compounds. VI. High molecularweight poly(alkoxy and aryloxyphosphazenes)[J]. Phosph Onitrilic Compounds,1996,2(5):1709-1715.
    [50] Allcock H. R., AlShali S., Ngo D. C., et al. Small-molecule model phosphazenes withpara-substituted phenoxy side groups: Synthesis, crystal structures and comparisons withcorresponding high polymers [J]. Journal of the Chemical Society-Dalton Transactions,1996,5(17):3549-3559.
    [51] Allcock H. R., Crane C. A., Morrissey C. T., et al. A new route to the phosphazenepolymerization precursors, Cl(3)P=NSiMe(3) and (NPCl(2))(3)[J]. Inorganic Chemistry,1999,38(2):280-283.
    [52] Allcock H. R., Dudley G. K. Lower critical solubility temperature study of alkyl ether basedpolyphosphazenes [J]. Macromolecules,1996,29(4):1313-1319.
    [53] Allcock H. R., Gebura M., Kwon S., et al. Amphiphilic polyphosphazenes as membranematerials: influence of side group on radiation cross-linking [J]. Biomaterials,1988,9(6):500-508.
    [54] Potts M. K., Hagauer G. L., Sennett M. S. Monomer concentration effects on the kineticsand mechanism of the boron trichloride catalyzed solution polymerization ofhexachlorocyclotriphosphazene [J]. Macromolecules,1989,11(2):4235-4239.
    [55] Honeyman C. H., Manners I., Morrissey C. T., et al. Ambient Temperature Synthesis ofPoly(dichlorophosphazene)with Molecular Weight Control [J]. Journal American ChemicalSociety,1995,117(3):7035-7036.
    [56] Halluin G. D., Jaeger R. D., Chambrette J. P. Synthesis of poly (dichorophosphazenes) fromC13P=NP(O)C12,1. kinetics and mechanism [J]. Macromolecules,1992,6(25):1254-1258.
    [57] Zhang P. C., Zhang Z. W., Yang Y. X., et al. Folate-PEG modifiedpoly(2-(2-aminoethoxy)ethoxy)phosphazene/DNA nanoparticles for gene delivery:Synthesis, preparation and in vitro transfection efficiency [J]. International Journal ofPharmaceutics,2010,392(1-2):241-248.
    [58] Orme C. J., Klaehn J. R., Stewart F. F. Gas permeability and ideal selectivity ofpoly[bis-(phenoxy)phosphazene], poly[bis-(4-tert-butylphenoxy)phosphazene], andpoly[bis-(3,5-di-tert-butylphenoxy)1.2(chloro)0.8phosphazene][J]. Journal of MembraneScience,2004,238(1-2):47-55.
    [59] Hu N., Fried J. R. The atomistic simulation of the gas permeability ofpoly(organophosphazenes). Part2. Poly[bis(2,2,2-trifluoroethoxy)phosphazene][J].Polymer,2005,46(12):4330-4343.
    [60] Bissessur R., Gallant D., Brüning R. New poly[bis-(methoxyethoxyethoxy)phosphazene]MoS2nanocomposite [J]. Solid State Ionics,2003,158(1-2):205-209.
    [61] Aliferis T., Iatrou H., Hadjichristidis N., et al. Synthesis of3-and4-arm star-blockcopolypeptides using multifunctional amino initiators and high vacuum techniques [J].Macromolecular Symposia,2006,240(5):12-17.
    [62] Allcock H. R. The crucial role of inorganic ring chemistry in the development of newpolymers [J]. Phosphorus Sulfur and Silicon and the Related Elements,2004,179(4-5):661-671.
    [63] Allcock H. R. Polymerization of cyclic phosphazenes [J]. Polymer,1980,21(6):673-683.
    [64] Gleria M., Jaeger R. D. Polyphosphazenes: A review [J]. Opics in Current Chemistry,2005,3(2):165-251.
    [65] Kupka T., Pasterny K., Pasterna G., et al. From planar to nonplanar cyclotriphosphazenes[J]. Journal of Molecular Structure-Theochem,2008,866(1-3):21-26.
    [66] Li X. L., Li Z. G., Jing Y. Q., et al. Fluorescent organic nanoparticles self-assembled fromhexa[p-(carbonylglycin methylester) phenoxy] cyclotriphosphazene in solution [J]. Journalof Colloid and Interface Science,2012,5(7):41-49.
    [67] Matyjaszewski K., Miller P. J., Fossum E., et al. Synthesis of block, graft and star polymersfrom inorganic macroinitiators [J]. Applied Organometallic Chemistry,1998,12(10-11):667-673.
    [68] Moriya K., Yamane T., Suzuki T., et al. Mesogenicity of organophosphazenes: The effectof phosphazene rings and side groups on the phase transition [J]. Phosphorus Sulfur andSilicon and the Related Elements,2002,177(6-7):1427-1432.
    [69] Moriya K., Masuda T., Suzuki T., et al. Liquid Crystalline Phase Transition inHexakis(4-(N-(4'-alkoxyphenyl)iminomethyl)phenoxy)cyclotriphosphazene [J]. MolecularCrystals and Liquid Crystals Science,1998,318(2):267-277.
    [70] Neenan T. X., Allcock H. R. Synthesis of a heparinized poly(organophosphazene)[J].Biomaterials,1982,3(2):78-80.
    [71] Nair C. P., Sunitha M., Ninan K. N. Cyclomatrix phosphazene polymers via Alder-enereactions [J]. Polymers&Polymer Composites,2002,10(6):457-465.
    [72] Ochiai K., Takita S., Eiraku T., et al. Phosphodiesterase inhibitors. Part3: Design, synthesisand structure-activity relationships of dual PDE3/4-inhibitory fused bicyclicheteroaromatic-dihydropyridazinones with anti-inflammatory and bronchodilatory activity[J]. Bioorganic&Medicinal Chemistry,2012,20(5):1644-1658.
    [73] Sethuraman S., Nair L. S., El-Amin S., et al. In vivo biodegradability and biocompatibilityevaluation of novel alanine ester based polyphosphazenes in a rat model [J]. Journal ofBiomedical Materials Research Part A,2006,77(4):679-687.
    [74] Thomas K., Chandrasekhar V., Zanello P., et al. Platinum (II) and palladium (II) complexesof tetrakis(pyrazolyl)cyclotriphosphazenes[J]. Polyhedron,1997,16(7):1003-1011.
    [75] Muralidharan K., Elias A. J. Preparation of the first examples of ansa-spiro substitutedfluorophosphazenes and their structural studies: Analysis of C-H center dot center dotcenter dot F-P weak interactions in substituted fluorophosphazenes [J]. Inorganic Chemistry,2003,42(23):7535-7543.
    [76] Moriya K., Yamane T., Suzuki T., et al. Phase transition in cyclic organophosphazenes: theeffect of side chains on mesomorphism [J]. Molecular Crystals and Liquid Crystals,2001,364(11):787-794.
    [77] Allcock H. R., Prange R., Hartle T. J. Poly(phosphazene-ethylene Oxide) di-and triblockcopolymers as solid polymer electrolytes [J]. Macromolecules,2001,34(8):5463-5470.
    [78] Allcock H. R., Kellam E. C. The synthesis and applications of novelaryloxy/oligoethyleneoxy substituted polyphosphazenes as solid polymer electrolytes [J].Solid State Ionics,2003,156(3):401-414.
    [79] Allen C. A., Cummings D. G., McCaffrey R. R. Separation of Cr ions from Co and Mn ionsby poly[bis(trifluoroethoxy)phosphazene] membranes [J]. Journal of Membrane Science,1989,43(2-3):217-228.
    [80] Allcock H. R., OConnor S., Olmeijer D. L., et al. Polyphosphazenes bearing branched andlinear oligoethyleneoxy side groups as solid solvents for ionic conduction [J].Macromolecules,1996,29(23):7544-7552.
    [81] Allcock H. E., Kwon S., Riding G. H., et al. Hydrophilic polyphosphazenes as hydrogels:radiation cross-linking and hydrogel characteristics of poly [bis(methoxyethoxyethoxy)phosphazene][J]. Biomaterials,1988,9(6):509-513.
    [82] Jaeger R. D., Gleria M. Poly(organophosphazene)s and related compounds: Synthesisproperties and applications [J]. Progress in Polymer Science,1998,8(23):179-276.
    [83] Allcock H. R. Recent developments with an impact on the future of polyphosphazenescience and technology [J]. Phosphorus Sulfur and Silicon and the Elated Elements,1999,146(5):61-64.
    [84] Allcock H. R. Inorganic-organic polymers as a route to biodegradable materials [J].Macromolecules,1999,144(3):33-46.
    [85] Parker J. A., Devendra K., George M. F. Fire and heat-resistant laminatin gresins based onmaleimido-substituted aromatic cyclotriphosphazenes [J]. Macromolecules,16(2):1250-1301.
    [86]张亚峰,龚克成,刘安华.环状含硅聚磷腈制备与热性能[J].合成材料老化与应用,2000,4(1):5-13.
    [87] Zhang T., Cai Q., Wu D. Z., et al. Phosphazene cyclomatrix network polymers: Someaspects of the synthesis, characterization, and flame-retardant mechanisms of polymer [J].Journal of Applied Polymer Science,2005,95(4):880-889.
    [88] Zhou Y. B., Huang X. B. Synthesis and characterization of novel thermoplasticpoly(oligophosphazene-urethane)s [J]. Polymer International,2009,58(4):710-714.
    [89] Allcock H. R., Maher A. E., Ambler C. M. Side group exchange inpoly(organophosphazenes) with fluoroalkoxy substituents [J]. Macromolecules,2003,36(15):5566-5572.
    [90] Reed C. S., Kevor S. T., Paul W. Thermal stability and compressive strengh ofcalcium-deficient hydrozyapatite-poly[bis(carboxylatophenoxy)phosphazene] composites[J]. Chemistry of Materials,1996,2(8):440-447.
    [91] Huang X. B., Yin L., Tang X. Z. Synthesis and characterization of a new organic-inorganichybrid polyphosphazene polymer [J]. Science in China Series B: Chemistry,2008,50(1):46-50.
    [92] Fu J. W., Huang Y. W., Pan Y., et al. An attempt to prepare carbon nanotubes bycarbonizing polyphosphazene nanotubes with high carbon content [J]. Materials Letters,2008,62(25):4130-4133.
    [93] Denq B. L., Hu Y. S., Chiu W. Y., et al. Thermal degradation behavior and physicalproperties for poly(methyl methacrylate) blended with propyl ester phospjazene [J].Polymer Degradation And Stability,2007,57(3):269-278.
    [94] Mustapha E. G., Abderrahim E. B., Salah E. H. Thermal degradation of a reactive flameretardant based on cyclotriphosphazene and its blend with DGEBA epoxy resin [J].Polymer Degradation And Stability,2009,94(6):2101-2106.
    [95] Bunyemin C., Mahmut D., Adem K., et al. Synthesis, thermal and photophysical propertiesof phenoxy-substituted dendrimic cyclic phosphazenes [J]. Inorganica Chimica Acta,2010,366(8):161-172.
    [96] Liu W. M., Ye C. F., Zhang Z. F., et al. Relationship between molecular structures andtribological properties of phosphazene lubricants [J]. Wear,2002,252(5-6):394-400.
    [97] Liu W. M., Zhu J. M., Liang Y. M. Effect of bridged cyclotriphosphazenes as lubricants onthe tribological properties of a steel-on-steel system [J]. Wear,2005,258(5-6):725-729.
    [98] Perettie D. J. The Effect of Phosphazene additives to passivate and stabilize lubricants atthe head/disk interface [J]. Tribology International,2003,36(4-6):489-491.
    [99] Perettie D. J., Morgan T. A., Zhao Q., et al. The use of phosphazene additives to enhancethe performance of PFPAE lubricants [J]. Journal of Magnetism and Magnetic Materials,1999,193(1-3):318-321.
    [100] Rodríguez-Fernández L., Lennard W. N., Massoumi G. R., et al. Sub-monolayerphosphorus coverage measurements on CrCoTaNiP hard disks using PIXE [J]. NuclearInstruments and Methods in Physics Research Section B: Beam Interactions with Materialsand Atoms,1998,136-138(1):1191-1195.
    [101] Ye C. F., Liu W. M., Chen Y. X., et al. Tribological behavior of Dy-sialon ceramics slidingagainst Si3N4under lubrication of fluorine-containing oils [J]. Wear,2002,253(5-6):579-584.
    [102] Zhu J. M., Liang Y. M., Liu W. M. Effect of novel phosphazene-type additives on thetribological properties of Z-DOL in a steel-on-steel contact [J]. Tribology International,2004,37(4):333-337.
    [103] Zhu J. M., Liu W. M., Chu R. Z., et al. Tribological properties of linear phosphazeneoligomers as lubricants [J]. Tribology International,2007,40(1):10-14.
    [104] Nader B. S., Kar K. K., Morgan C. E. Development and tribological properties of newcyclophosphazene high temperature lubricants for aircraft gas turbine engines [J]. TribologyTransactions,1992,35(1):37-44.
    [105]叶乘峰,张泽扶,刘维民.磷噤润滑剂的研究进展[J].摩擦学学报,2001,21(3):235-239.
    [106] Zhu J. M., Liang Y. M., Liu W. M. Effect of novel phosphazene-type additives on thetribological properties of Z-DOL in a steel-on-steel contact [J]. Tribology International,2004,37(3):333-337.
    [107] Nader B. S., Kar K. K., Morgan T. A. Development and tribological properties of newcyclophosphazene high temperature lubricants for aircraft gas turbine engines [J]. TribologyTransactions,1992,35(1):3744-3748.
    [108] Gleria M., Bertani R., Jaeger R. D., et al. Fluorine containing phosphazene polymers [J].Journal of Fluorine Chemistry,2004,125(4):329-337.
    [109] Zhu J. M., Liu W. M., Chu R. Z. Tribological properties of linear phosphazene oligomers aslubricants [J]. Tribology International,2007,40(5):10-14.
    [110] Perettie D. J. The Effect of Phosphazene additives to passivate and stabilize lubricants atthe head/disk interface [J]. Tribology International,2003,36(4-6):489-491.
    [111] Zhao Z. M., Hushan B. B., Kajdas C. Tribological performance of PFPE and X-1Plubricants at head-disk interface. Part II. Mechanisms [J]. Tribology Letters,1999,2(6):141-148.
    [112]姚淑焕,徐建军,叶光斗.苯胺基环磷腈的合成及PVA阻燃纤维的制备[J].高分子材料科学与工程,2009,25(7):13-16.
    [113] Taylor J. P., Allcock H. R. Phosphorylated phosphazenes as flame retardant polymers andpolymer additives [J]. Polymer prepringts,1999,40(2):910-916.
    [114] Ran L., Wang X. D. Synthesis, characterization, thermal properties and flame retardancy ofa novel nonflammable phosphazene-based epoxy resin [J]. Polymer Degradation AndStability,2009,94(3):617-624.
    [115] Kao M. F., James T. F. Process for producing phosphazene compound [J]. Macromolecules,1976,8(3):350-401.
    [116]聂旭文,崔燕军,唐晓真.一种无机有机聚合物中间体-六(甲基丙烯酸羟乙酯)三聚磷腈的合成[J].应用化学,20(4):385-387.
    [117] Chen-Yang Y. W., Chuang J. R., Yang Y. C., et al. New UV-curable cyclotriphosphazenesas fire-retardant coating materials for wood [J]. Journal of Applied Polymer Science,1998,69(1):115-122.
    [118] Mathew D., Nair C., Ninan K. N. Phosphazene-triazine cyclomatrix network polymers:some aspects of synthesis, thermal-and flame-retardant characteristics [J]. PolymerInternational,2000,49(1):48-56.
    [119]宋青,崔燕军,唐小真.线性聚二氯磷腈衍生物用于提高聚丙烯、尼龙6的阻燃[J].塑料工业,2004,32(12):385-387.
    [120] Tao K., Li J., Xu L., et al. A novel phosphazene cyclomatrix network polymer: Design,synthesis and application in flame retardant polylactide [J]. Polymer Degradation andStability,2011,96(7):1248-1254.
    [121]李然,孙德,张龙.六(苯胺基)环三磷腈的合成及其在ABS树脂无卤阻燃中的应用[J].化工新型材料,2007,35(9):75-77.
    [122] Wade C. W. Biocompatibility of eight poly(phosphazenes) In: Organometallic polymers [J].Biomacromolecules,1978,2(5):178-236.
    [123] Caliceti P. M., Lora S., Marsilio F. S., et al. Amino-acid esters and imidazole derivarives ofpolphosphazenes-Influence in release of drugs, degradability and swelling [J]. Farmaco,1994,49(1):69-74.
    [124] Caliceti P., Aldini N. N., Fini M., et al. Bioabsorbable polyphosphazene matrices assystems for calcitonin controlled release [J]. Framaco,1997,52(11):697-702.
    [125] Carenza M., Lora S., Palma G., et al. Enhanced biocompatibility of polyphosphazenesachieved by radiation grafting [J]. Radiation Physics and Chemistry,1996,48(2):231-236.
    [126] Caliceti P., Veronese F. M., Lora S. Polyphosphazene microspheres for insulin delivery [J].International Journal of Pharmaceutics,2000,211(1-2):57-65.
    [127] Qiu L. Y., Zhu K. Novel biodegradable polyphosphazenes containing glycine ethyl esterand benzyl esterof amino acethydroxamic acid as cosubstituents [J]. Journal of AppliedPolymer Science,2000,77(5):2987-2995.
    [128] Qiu L. Y., Zhu K. Novel blends of poly[bis(glycine ethyl ester) phosphazene] andpolyesters or polyanhydrides: compatibility and degradation characteristics in vitro [J].Polymer International,2000,49(3):1283-1288.
    [129] Lee S. B., Song S. A New Class of Biodegradable Thermosensitive Polymers.2. Hydrolyticproperties and salt effect on the lower critical solution temperature ofpoly(organophosphazenes) with methoxypoly(ethylene glycol) and amino acid esters asside groups.[J]. Macromolecules,1999,32(5):7820-7827.
    [130] Nukavarapu S. P., Sangamesh G. K., Brown J. L., et al.Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissueengineering [J]. Biomacromolecules,2008,9(7):563-569.
    [131] Blonsky P. M., Shriver D. F., Austin P., et al. Complex formation and ionic conductivity ofpolyphosphazene solid electrolytes [J]. Solid State Ionics,1986,18(3):258-264.
    [132] Tonge J. S., Sheriver D. F. Increased dimentional stability in ionically conductingpolyphosphazene systems [J]. Journal of the Electrochemistry Society,1987,134(6):269-270.
    [133] Nazri G. A., Meibuhr S. C. Effect of r-radiation on the structure and ionic conductivity of2-(2-methoxy-ethoxy-ethoxy) polyphosphazene/LiCF3SO3[J]. Journal of theElectrochemistry Society,1989,136(4):2450-2454.
    [134] Coltrain B. K., Ferrar W. T. Polyphosphazene molecular composites. In situ polymerizationof tetrathoxy silane [J]. Polymer Bulletin,1992,4(5):358-364.
    [135] Coltrain B. K., Ferrar W. T. Novel miscible blends of etheric polyphosphazenes with acidicpolymers [J]. Polymer Preprints,1992,98(4):153-156.
    [136] Coltrain B. K., Ferrar W. T. Polyphosphazene molecular composites II. In situpolyamerizations of titanium, zirconium and aluminum alkoxides [J]. Polymer Preprints,1993,34(3):266-273.
    [137] Kim C., Kim J. S., Lee M. H. Ionic conduction of sol-gel derived polyphosphazenersilicatehybird network [J]. Synthetic Metals,1998,98(2):153-156.
    [138] Morales E., Acosta J. L. Conductivity and electrochemical stability of composite polymerelectrolytes [J]. Solid State Ionics,1998,111(8):109-115.
    [139] Morales E., Acosta J. L. Synthesis and characterization of polymeric electrolytes for solidstate magnesium batteries [J]. Electrochimica Acta,1998,43(3):791-797.
    [140] Morales E., Acosta J. L. Thermal and electrical characterization of plasticized polymerelectrolytes based on polyethers and polyphosphazene blends [J]. Solid State Ionics,1997,96(5):99-106.
    [141] Abraham K. M., Alamgir M. Dimensionally stable MEEP-based polymer electrolytes andsolid-state lithium batteries [J]. Chemistry materials,1991,3(2):339-348.
    [142] Del R. J., Martin P. J., Acosta J. L. Conductivity studies of solid polymer electrolytes basedon polyethers and polyphosphazene blends [J]. Journal of Applied Polymer Science,1998,70(5):2181-2186.
    [143] Acosta J. L., Morales E., Jurado J. R. Characterization of cathodes for rechargeable lithiumbatteries based on Solid Polymer Electroylytes [J]. Macromolecules,1996,34(7):5463-5470.
    [144] Allcock H. R., Prange R., Hartle T. J. Properties of poly(phosphazene-siloxane) blockcopolymers synthesized via telechelic polyphosphazenes and polysiloxanephosphoranimines [J]. Macromolecules,2001,59(6):6858-6865.
    [145] Allcock H. R. Reflection Groups on the Octave Hyperbolic Plane [J]. Journal of Algebra,1999,213(2):467-498.
    [146] Allcock D., Carlson J. A., Toledo D. Real cubic surfaces and real hyperbolic geometry [J].Comptes Rendus Mathematique,2003,337(3):185-188.
    [147] Chen-Yang Y. W., Chen H. C., Lin F. J., et al. Preparation and conductivity of thecomposite polymer electrolytes based on poly[bis(methoxyethoxyethoxy)phosphazene],LiClO4and Al2O3[J]. Solid State Ionics,2003,156(3-4):383-392.
    [148] Chen-Yang Y. W., Chen S. F., Yuan C. Y., et al. Preparation and properties ofnadic-end-capped cyclotriphosphazene-containing polyimide/carbon fiber composites [J].Journal of Applied Polymer Science,2003,90(3):810-818.
    [149] Chen-Yang Y. W., Chen S. Y., Yuan C. Y., et al. Preparation and characterization ofcomposite polymer electrolytes based on LTV-curable vinylic ether-containingcyclotriphosphazene, LiClO4, and alpha-Al2O3[J]. Macromolecules,2005,38(7):2710-2715.
    [150] Chen-Yang Y. W., Hwang J. J., Kau J. Y. Polybisaminophosphazene-silver nitratecomplexes: Coordination and properties [J]. Journal of Polymer Science Part A: PolymerChemistry,1997,35(6):1023-1031.
    [151] Chen-Yang Y. W., Lee H. F., Chen S. F. A study of synthesis and thermal properties ofcyclotriphosphazene-containing polyimides [J]. Phosphorus Sulfur and Silicon and theRelated Elements,1996,109(1-4):75-78.
    [152] Chen-Yang Y. W., Lee H. F., Yuan C. Y. A flame-retardant phosphate andcyclotriphosphazene-containing epoxy resin: Synthesis and properties [J]. Journal ofPolymer Science Part A-Polymer Chemistry,2000,38(6):972-981.
    [153] Chen-Yang Y. W., Yuan C. Y., Li C. H., et al. Preparation and characterization of novelflame retardant (aliphatic phosphate)cyclotriphosphazene-containing polyurethanes [J].Journal of Applied Polymer Science,2003,90(5):1357-1364.
    [154] Liu H. J., Hwang J. J., Chen-Yang Y. W. Effects of organophilic clay on thesolvent-maintaining capability, dimensional stability, and electrochemical properties of gelpoly(vinylidene fluoride) nanocomposite electrolytes [J]. Journal of Polymer Science Part A:Polymer Chemistry,2002,40(22):3873-3882.
    [155] Allcock H. R., Chang Y. K., Welna D. T. Ionic conductivity of covalently interconnectedpolyphosphazene-silicate hybrid networks [J]. Solid State Ionics,2006,177(5-6):569-572.
    [156] Allcock H. R., Kellam E. C., Morford R. V. Gel electrolytes from co-substitutedoligoethyleneoxy/trifluoroethoxy linear polyphosphazenes [J]. Solid State Ionics,2001,143(3-4):297-308.
    [157] Allcock H. R. Reactions of inorganic high polymers as a route to tailored solids [J]. SolidState Ionics,1989,32(2):761-764.
    [158] Allcock H. R., Chang Y., Welna D. T. Ionic conductivity of covalently interconnectedpolyphosphazene–silicate hybrid networks [J]. Solid State Ionics,2006,177(5-6):569-572.
    [159] Allcock H. R., Clay K. E., Morford R. V. Gel electrolytes from co-substitutedoligoethyleneoxy/trifluoroethoxy linear polyphosphazenes [J]. Solid State Ionics,2001,143(3-4):297-308.
    [160] Allcock H. R., Kellam E. C. The synthesis and applications of novelaryloxy/oligoethyleneoxy substituted polyphosphazenes as solid polymer electrolytes [J].Solid State Ionics,2003,156(3-4):401-414.
    [161] Allcock H. R., Laredo W. R., Morford R. V. Polymer electrolytes derived frompolynorbornenes with pendent cyclophosphazenes: poly(ethylene glycol) methyl ether(PEGME) derivatives [J]. Solid State Ionics,2001,139(1-2):27-36.
    [162] Allcock H. R., Wood R. M. Design and Synthesis of Ion-Conductive Polyphosphazenes forFuel Cell Applications: Review [J]. Journal of Polymer Science: Part B: Polymer Physics,2006,44(7):2358-2368.
    [163] Exarhos G. J., Miller P. J., Risen W. M. Calculation of ionic conductivity activationenergies in ionic oxide glasses from spectroscopic data [J]. Solid State Communications,1975,17(1):29-33.
    [164] Exarhos G. J., Risen W. M. Cation vibrations in inorganic oxide glasses [J]. Solid StateCommunications,1972,11(5):755-758.
    [165] Huang Y. W., Fu J. W., Pan Y., et al. Pervaporation of ethanol aqueous solution bypolyphosphazene membranes: Effect of pendant groups [J]. Separation and PurificationTechnology,2009,66(3):504-509.
    [166] Pan Y., Tang X. Z. Synthesis and characterization of azobenzene-containing side-chainphotorefractive polymers [J]. European Polymer Journal,2008,44(2):408-414.
    [167] Pan Y., Tang X. Z. Synthesis and characterization of new photorefractive polymers withhigh glass-transition temperatures [J]. Synthetic Metals,2009,159(17-18):1796-1799.
    [168] Pan Y., Tang X. Z., Zhu L., et al. Synthesis and characterization of a new high-Tgphotorefractive material [J]. European Polymer Journal,2007,43(3):1091-1095.
    [169] Allcock H. R., Nelson J. M., Reeves S. D. Ambienttemperature Direet Synthesis ofPoly(organophosphazenes) Via the Living Cationic Polymeriz ation of OrganosubstitutedPhospho Ranimine [J]. Macromolecules,1997,30(1):50-53.
    [170] Rose S. H. High perfomance elastomers-Polyphoshazene [J]. Journal of Polymer Science,1968,2(6):837-839.
    [171] Perdigon J. A., Tarazona M. P., Saiz E. Synthesis and characterization ofpoly[bis(2-phenylethoxy) phosphazene][J]. Anales de Quimica,1996,92(6):385-389.
    [172] Alekperov D., Shirosaki T., Sakurai T., et al. Synthesis and conformational characterizationof oligopeptide-cyclotriphosphazene hybrids [J]. Polymer Journal,2003,35(5):417-421.
    [173] Andrianov A. K., Cohen S., Visscher K. B., et al. Controlled release using ionotropicpolyphosphazene hydrogels [J]. Journal of Controlled Release,1993,27(1):69-77.
    [174] Jaglowskit A. J., Singler R. E., Atkins E. D. Liquid crystalline behavior ofpoly[((6-(4-phenylphenoxy)hexyl)oxy)(trifluoroethoxy)-phosphazene][J]. Macromolecules,1995,38(2):1668-1672.
    [175] Hart D. L., Manderss W. F., Stein R. S. A liquid crystalline poly(organophosphazene)[J].Macromolecules,1987,14(2):1726-1727.
    [176] Kim C., Allcock H. R. Liquid crystalline side-chain phosphazenes [J]. Macromolecules,1987,20(1):1727-1728.
    [177] Park S., Kim J. S., Chang Y. A covalently interconnected phosphazene-silicate network:Synthesis and surface functionalization [J]. Journal of Inorganic and OrganometallicPolymers,1998,4(8):205-214.
    [178] Chang Y., Allcock H. R. A covalently interconnected phosphazene-silicate hybrid network:Synthesis, characterization, and hydrogel diffusion-related application [J]. AdvancedMaterials,2003,6(5):537-541.
    [179] Prange R., Allcock H. R. Telechelic Syntheses of the first phosphazene siloxane blockcopolymers [J]. Macromolecules,1999,25(3):6390-6392.
    [180] Kireyev V. V., Bittirova F. A., Mitropol G. I., et al. Synthesis and study ofpolyalkoxyphosphazenes [J]. Polymer Science,1984,26(1):156-161.
    [181] Kajiwara M., Hashimoto M., Saito H. Phosphonitrilic chloride:21. Synthesis of chelatingpolymers with cyclophosphazene thiocarbamate and the properties of chelating polymers[J]. Polymer,1973,14(10):488-490.
    [182] Kajiwara M., Hashimoto M., Saito H. Phosphonitrilic chloride:30. Synthesis of chelatingpolymers from cyclophosphazene derivatives and studies of their electrical conductivity andthermal properties [J]. Polymer,1975,16(12):861-863.
    [183] Kajiwara M., Makihara M., Saito H. Phosphonitrilic chloride:37. Reaction of1,1-diamino-3,3,5,5-tetrakis (2,2,2-trifluoroethoxy) cyclotriphosphazene with organosilanes[J]. Polymer,1977,18(10):1045-1046.
    [184] Kraus L. M., Jernigan Jr. H. M., N. Haire R., et al. Characterization of IN Vivo Effects ofDilithium Carbamyl Phosphate on Dog Hemoglobin Structure and Function [J].Biochimicaet Biophysica Acta (BBA)-Protein Structure,1977,491(2):497-502.
    [185] Kraus W. L., Weis K. E., Katzenellenbogen B. S. Determinants for the repression ofestrogen receptor transcriptional activity by ligand-occupied progestin receptors [J]. TheJournal of Steroid Biochemistry and Molecular Biology,1997,63(4-6):175-188.
    [186] Kraus-Friedmann N. Calcium sequestration in the liver: Review article [J]. Cell Calcium,1990,11(10):625-640.
    [187] Allcock H. R. The synthesis of functional polyphosphazenes and their surfaces [J]. ApplidOrganometallic Chemistry,1998,12(10-11):659-666.
    [188] Allcock H. R. Recent developments with an impact on the future of polyphosphazenescience and technology [J]. Phosphorus Sulfur and Silicon and the Elated Elements,1999,146(5):61-64.
    [189] Allcock H. R., Laredo W. R., Kellam E. C., et al. Polynorbornenes bearing pendentcyclotriphosphazenes with oligoethyleneoxy side groups: Behavior as solid polymerelectrolytes [J]. Macromolecules,2001,34(4):787-794.
    [190] Yi C. W., Peng Z. H., Wang H. P., et al. Synthesis and characteristics of thermoplasticelastomer based on polyamide-6[J]. Polymer International,2011,60(12):1728-1736.
    [191] Lai C. C., Jen C. W., Chang Y. S., et al. Preparation and properties of multifunctional nylon6composite material [J]. Journal of Composite Materials,2011,45(26):2707-2715.
    [192] Zhao J.,Xu H. J.,Fang J. H.Synthesis and Characterization of Sulfonated Polyamides [J].Chemical Journal of Chinese Universities-Chinese,2012,33(5):1106-1109.
    [193] Toiserkani H. Modified poly(ether-imide-amide)s with pendent benzazole structures:Synthesis and characterization [J]. Journal of Applied Polymer Science,2012,125(2):1576-1585.
    [194] Allcock H. R., Fitzpatrick R. J., Salvti L. Functionalization of the surface ofpoly[bis(trifluoroethoxy)phosphazene] by reactions with alkoxide nucleophiles [J].Chemistry Material,1991,2(3):450-455.
    [195] Shim S., Yang S., Choe S. Mechanism of the formation of stable microspheres byprecipitation copolymerization of styrene and divinylbenzene [J]. Journal of PolymerScience Part A: Polymer Chemistry,2004,5(42):3967-3972.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700