Ni含量及回火工艺对300M钢组织与性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
300M钢作为低合金超高强度钢的典型代表,因其成本低(合金元素含量低)、生产工艺简单而广泛用于航空、航天领域,如制造飞机大梁、起落架、发动机轴、高强度螺栓、固体火箭发动机壳体和化工高压容器等。为了提高300M钢的韧性,本文通过调整韧化元素Ni的含量,研究Ni含量对300M钢的连续冷却转变、显微组织演变以及力学性能变化的影响规律,并且研究了回火工艺对高Ni含量300M钢的组织与性能的影响,取得如下主要研究结果:
     300M钢的Ms点随着Ni含量的增加而逐渐降低,Ni含量由2%提高至5%时,Ms点由270℃降到220℃;元素Ni促进300M钢的马氏体相变,推迟其贝氏体相变,并使其连续冷却转变过程中贝氏体相变区逐渐右移,当Ni含量分别为2%和4%时,发生贝氏体转变的临界冷速约为0.28℃/s和0.05℃/s,而Ni含量提高到5%时,冷却速度为0.03℃/s时仍未发生贝氏体相变;随着Ni含量的提高,300M钢淬火后残余奥氏体的体积分数逐渐增加,强度降低而冲击韧性提高。
     3%Ni含量的300M钢在150℃~600℃回火时,随着回火温度的升高,抗拉强度单调降低,屈服强度和硬度先升高后降低,且在250℃~300℃回火时达到峰值,当回火温度高于400℃,抗拉强度和屈服强度降低速度加快;随着回火温度的升高,冲击韧性在250℃~300℃时达到极大值,在450℃时达到极小值,该钢在450℃附近存在第二类回火脆性,。在回火过程中,试验钢的马氏体及残余奥氏体均发生分解。当回火温度较低时(150℃~350℃),在马氏体基体中主要析出细小的ε-碳化物,此时试验钢具有最佳的强韧性配合。随着回火温度的进一步提高,马氏体和残余奥氏体的分解速度加快,而ε-碳化物也逐渐转变为M_3C型碳化物,当回火温度提高到600℃时,残余奥氏体量最小,ε-碳化物完全转变为M_3C型碳化物。
In the aviation and aerospace fields, 300M steel, as a typical representative of low-alloy high strength steel, due to its low content of alloying elements, low cost, simple production technology, are widely used, such as the manufacture of aircraft beams, landing gear, engine shaft, high strength bolts, solid rocket motor case and chemical high-pressure containers. Based on the 300M steel, in order to improve its toughness, we adjust Ni content of 300M steel, study the effect of Ni content to continuous cooling transformation and microstructure evolution of microstructure, the impact of changes of mechanical properties. The results obtained are as follows:
     With the Ni content increases from 2% to 5%, Ms temperature of 300M steel reduces from the 270℃to 220℃; Ni element promotes martensitic transformation, delays bainite transformation, with the Ni content increases, during continuous cooling transformation, bainitic transformation zone of 300M steel shifts to the right gradually; when the increase of Ni content is 2%, the critical cooling rate of bainitic transformation is about 0.28℃/s, when the Ni content increases to 4%, the critical cooling rate of bainitic transformation is about 0.05℃/s, while the Ni content increases to 5%, the bainite transformation has not occurred even the cooling rate is 0.03℃/s. With Ni content increases, the volume fraction of retained austenite of 300M steel after quenching gradually increases, which reduces the strength while increases the impact toughness of test steel.
     After tempered at the range from 150℃to 600℃, the tensile strength of 3% Ni test steel decreases, the yield strength and hardness increases firstly and then decreases, at 250℃~300℃reaches a peak, and when the tempering temperature is higher than 400℃, the decreased rate of tensile strength and yield strength increase; there is a second class of temper brittleness of 3% Ni steel, with the tempering temperature increase the impact toughness reaches the maximum value at 250℃~ 300℃,and reaches the minimum value at 450℃.
     During the process of tempering ,martensite and retained austenite of test steel are decomposed, when the tempering temperature below (150℃~ 350℃), a large number of tinyε-carbide are precipitated in the martensitic body , then strength and toughness of test steel achieves the best match. With further increase of the tempering temperature, the decomposition of martensite and retained austenite gets faster,ε-carbide gradually transforms into M_3C, when the tempering temperature increases to 600℃, the retained austenite volume fraction reaches the minimum value,ε-carbide transforms into M_3C completely. Keywords 300M steel; Ni content; microstructure; continuous cooling
引文
1.刘宪民,王春旭,刘蕤等.超高强度钢的历史及发展.钢铁, 2001, 36(12):109-114
    2.董瀚.合金钢的现状与发展趋势.特殊钢, 2000, 21(5): 1-10
    3.万翛如,许昌淦.高强度及超高强度钢.北京:机械工业出版社, 1988: 2-4
    4.范长刚,董瀚等.低合金超高强度钢的研究进展.机械工程材料. 2006, 30(8): 1-3
    5.赵振业,李志,刘天琦等.探索新强韧化机制,开拓超高强度钢新领域.中国工程科学, 2003, 5(9): 39-42
    6.赵振业,李春志,李志等.探索强韧化机理,创新超高强度高韧性不锈钢.中国有色金属学报, 2004, 5: 204
    7.万翛如,许昌淦.高强度及超高强度钢.北京:机械工业出版社, 1988: 2-4
    8.万翛如. Aermet100-极好综合性能的超高强度钢.北京航空航天大学学报, 1996, 22(60): 639
    9. Garrison W. M. Ultrahigh-strength steel for aerospace applications[J]. JOM, 1990, 5: 20-24
    10. Dahl J. M, Novotny P. M. Airframe and landing gear ally. Advanced Materials and Processes, 1999, (3): 23-25
    11. G. R. Speich, W. C. Leslie. Tempering of steel. Metallurgical Transactions, 1972, 3(5): 1043-1054
    12.厉勇,王春旭,田志凌,刘宪民,张景海.一种低合金超高强度钢组织与性能的研究.钢铁, 2008, 43(5): 75-79
    13.万翛如.新型高合金二次硬化型超高强度钢的发展.材料工程, 1994, 11:1-5
    14.石琳.下一代飞机用超高强度钢.航空工程与维修, 2000, 3:39-40
    15.李杰,李志,颜鸣皋.高合金超高强度钢的发展.材料工程, 2007, 4: 61-65
    16.张国英,张辉,曾梅光.新型钢材料强韧性与微结构.北京:科学出版社, 2005: 14-16
    17.姜越,尹钟大,朱景川,李明伟.超高强度马氏体时效钢的发展.特殊钢, 2004, 25(2): 1-5
    18. Lee E. W. AI-Li alloys and ultrahigh-strength steels for U.S.Navy aircraft. JOM, 1990, 42(5): 11- 14
    19.李阿妮,王春旭,刘宪民.二次硬化型超高强度钢的发展.材料导报网刊, 2007, V2(1): 13-16
    20.罗承萍,许麟康,查健中. 300M超高强度钢板条马氏体的晶体学研究.金属学报, 1993, 29(7): 312- 317
    21. Sastry, Maloney J L, Raghavan K S. A comparison of the fracture behavior of two comercially produced heats of HY180 differing in sulfide type. MetTrans, 1991, 22A: 2277
    22. Koji Sato. Improving the Toughness of Ultrahigh Strength Steel. University of California, 2002: 23-25
    23.赵振业,合金钢设计.北京:国防工业出版社, 1999: 10-12
    24. Handerhan K Moody N R.A coMParison of the fracture behavior of two heats of steel 300M.MetTrans, 1991, 22A: 103
    25.徐祖耀.低碳钢中的残余奥氏体.上海金属, 1995, 17(1): 1-5
    26.李桂荣.浅谈残余奥氏体对钢的性能影响.山西建筑, 2002, 28(5): 63
    27.朱子新,杜则裕,胡光立.残余奥氏体对300M超高强度钢冲击疲劳性能的影响.天津大学学报, 2001, 34(3): 379-380
    28.崔忠圻,覃耀春.金属学与热处理.北京:机械工业出版社, 2007: 234-292
    29.蒋周洪. 40MnMoV钢中的残余奥氏体及其对力学性能的影响.热加工工艺, 1995, 4: 46
    30. Novotny P M.An aging study of Carpenter AerMet100 alloy. Gilbert R.Speich Symposium, Montreal, Canada, 1992: 215.
    31. L. E. Iorio, J. L. Maloney, Warren, M. Garrison Jr. The Influence of Carbon, Chromium and Moly- bdenum Contents on the Tempering Behavior of High Strength
    14 Cobalt/10 Nickel Secondary Hardening Steels. 40th MWSP. Conf.Proc, ISS 1998: 901-919
    32. Hitoshi Tashiro. The Challenge for Maximum Tensile Strength Steel Cord. NIPPON STEEL TECHNICAL REPORT, 1999, 7(80): 6-8
    33.钟群鹏,赵子华.断口学.北京:高等教育出版社, 2006: 3-5
    34. H. Kwon, C. M. Kim, K. B. Lee. Effects of Co and Ni on Secondary Hardening and Fracture Behavior of Martensitic Steels Bearing W and Cr. Metallurgical and Materials Transactions A, 1998, 29A(1): 397-401
    35. Dr. Charles J. Kuehann, Birl Industrial Research Laboratory: Ferrium Division, USA. Professor Gregorg B Olson, North western University, Department of Materials Science and Engineering, USA. Computer-Aided Systems Design of Advanced Steels. 1997, 5, 14
    36. Warren M. Garrison Jr. James L.Maloney.Lanthanum Additions and the Toughness of Ultra-high Strength Steels and the Determination of Appropriate Lanthanum Additions. Materials Science and Engineering A, 2005, 403(1-2): 299-310
    37.王继尧,晁月盛,赵秉军等. 30CrMnSiA钢的回火组织转变.材料科学与工艺, 1994, 2(4): 36-37
    38. H. R. Yang, K. B. Lee, H. Kwon. Effects of Ni Additions and Austenitizing Temperature on Secondary Hardening Behavior in High Co-Ni Steels.Metallurgical and Materials Transactions A, 2001, 32A(9): 2393-2396
    39. K. B. Lee, H.R.Yang,H.Kwon.Effects of Alloying Additons and Austenitizing Treatments on Secondary Hardening and Fracture Behavior for Martensitic Steels Containing Both Mo and W. Metallurgical and Materials Transactions A, 2001, 32A(7): 1659-1670
    40. L. E. Iorio, W. M. Garrison Jr. The Effects of Titanium Additions on AF1410 Ultra-high-strength Steel. Metallurgical and Materials Transactions A, 2006, 37A(4): 1165-1173
    41. H. Kwon. Comparison of Secondary Hardening Embrittlement in Tungsten and Molybdenum Steels. Metallurgical Transactions A, 1991, 22A(5): 1119-1122
    42.胡正飞,吴杏芳,王春旭.新型高钴镍合金钢的微观组织和性能.材料研究学报, 2002, 16(3): 331-336
    43.雍岐龙.钢铁材料中的第二相.北京:冶金工业出版社, 2006: 20-25
    44. Schmidt M, Hemphill R. Innovations in Ultrahigh Strength Technology Proc. 34thSagamore Army Mater.U. S. Army Mater Technology. Lab, Watertown, MA, 1990: 239
    45. Ayer R, Machmeier P M. Transmission Electron Mictoscopy Examination of Hardening and toughening Phenomena in AerMet 100. Metallurgical Transactions A. 1993, 24A (1993): 1943-1955
    46.胡正飞,吴杏芳,王春旭.高Co-Ni合金钢中二次碳化物的析出与转化.金属学报. 2001, 37(4): 381-385
    47. C. D. Little, P. M. Mechmeier. High strength fracture resistant weldable steels, U. S. Patent, 1978: 76-85
    48.古田,金建军,钟平,王洪涛.航空用新型超高强度钢16NiCo.材料工程. 1994, 10: 18-21
    49.李杰,王丽,李志等.热处理对高Co-Ni超高强度钢冲击断口的影响.航空材料学报. 2008, 28(1): 35-39
    50. T. Maki, C. M. Wayman. Transmission electron microscopy studies of thin foil martensite in Fe-Ni and Fe-Ni-Co alloys. Acta Metallurgica. 1977, 25(6): 681-693
    51.钟炳文,赵振业.超高强度钢的精细组织与强韧性.航空材料. 1989, 9(1): 16-22
    52.王晓敏.工程材料学.北京:机械工业出版社, 1999: 24-29
    53. P. M. Machmeier, C. D. Little, M.H.Horowitz,R.P. Oates.Development of strong martensitic steel having good fracture toughness. Met. Technol, 1979,6(8): 291
    54.钟平,古宝珠,金建军等. 16Co14NiCr2Mo钢回火脆性的研究.金属热处理学报.1996, 17(2): 37-41
    55.王笑天,谈育煦,张鸿庆等.高韧性低碳马氏体型超高强度钢的设计及典型钢种的组织结构与性能.西安交通大学学报. 1982, 16(1): 13-21
    56.束德林.金属力学性能.北京:机械工业出版社, 1997: 15-16, 107-108
    57. Brown W F.Aerospace Structure Metals Handbook. Metal and leramics Information Center. 1989: 291
    58.胡光立,谢希文.钢的热处理.西北工业大学出版社, 2004, 9: 14-15
    59.戚正风.金属热处理原理.北京:机械工业出版社, 1986:146

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700