氯化物体系Cr-Ni-ZrO_2复合电沉积研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业对材料表面性能要求的提高,多功能合金镀层的研究和应用日愈广泛。铬及其合金镀层不仅外观漂亮,还具有硬度高、耐磨性好、耐蚀性好等优点,已得到广泛的研究和应用。为了取代重污染的六价铬电镀,国内外学者致力于研究环保、低毒的三价铬体系电镀,但三价铬体系的电镀还存在镀液不稳定、镀层难增厚等问题。二氧化锆是一种具有高熔点、热膨胀系数大、导热系数小、耐磨性及耐腐蚀性能优良的无机非金属材料,已被广泛应用于各种领域。本文将纳米ZrO2粉末加入镀液中,通过复合电沉积使纳米ZrO2与铬、镍发生共沉积生成性能良好的Cr-Ni-ZrO2复合镀层。研究了在低电流密度区,低浓度的Ni2+对三价铬电沉积的影响。探讨了镀液中各成分及工艺条件对电沉积Cr-Ni-ZrO2复合镀层的影响。采用SEM、EDS及XRD分别测定了镀层的表面形貌、组成及组织结构,检测了镀层的结合力、耐蚀性、孔隙率和硬度等性能。研究结果和结论如下:
     (1)在低电流密度区,往三价铬镀液中加入低浓度的Ni2+,所得镀层外观明显好于不含Ni2+的镀液,电沉积25min,镀层厚度为0.46~0.93μm,基本上满足工业生产装饰铬的要求。三价铬电沉积的阴极极化曲线表明,三价铬镀液中低浓度Ni2+的存在,使Cr3+电沉积总反应的极化曲线位于更负的区域,说明Ni2+使Cr3+电沉积总反应的阴极极化增强,更有利于三价铬电沉积形成蓝膜,证明了往三价铬镀液中加Ni2+能够促进三价铬的电沉积。
     (2)通过单因素实验研究了镀液中各组分如辅助络合剂、主盐、纳米Zr02等浓度对电沉积Cr-Ni-ZrO2复合镀层的影响,采用正交实验对镀液配方进行优化。研究了镀液温度、pH值、电流密度、电沉积时间和搅拌速率对电沉积Cr-Ni-ZrO2复合镀层的影响。在最佳工艺条件下,采用最优的镀液配方电沉积所得镀层,外观光亮,厚度达到8.50μm。SEM和EDS检测结果表明,镀层表面光滑细致,纳米ZrO2粒子均匀分散于镀层中,但不足的是有少许ZrO2粒子发生团聚。镀层中主要含有Cr、Ni、O和Zr四种元素,其质量分数分别为:82.6%、0.41%、9.34%、7.65%,纳米Zr02与Cr、Ni实现了共沉积。
     (3)与Cr-Ni合金镀层的表面形貌相比,Cr-Ni-ZrO2复合镀层的表面较为平整、微裂纹减细。另外XRD检测结果表明所得Cr-Ni-ZrO2复合镀层为非晶态结构。结合力试验表明Cr-Ni-ZrO2复合镀层的与铜基体的结合力良好。孔隙率试验表明Cr-Ni-ZrO2复合镀层比Cr-Ni合金镀层的结晶更为致密,孔隙率减小。硬度测试表明,镀层中纳米ZrO2粒子的存在,使镀层硬度提高达664.6HV。对镀层的交流阻抗试验和Tafel试验表明,在酸性和碱性介质中,Cr-Ni-ZrO2复合镀层的耐蚀性能优于Cr-Ni合金镀层;在中性介质中,Cr-Ni合金镀层的耐蚀性能略优于Cr-Ni-ZrO2复合镀层。
     (4)Cr3+电沉积的循环伏安曲线和阴极极化曲线表明,Cr3+电沉积还原反应有两个明显的反应平台,具体发生何反应还有待研究。镀液的阴极极化曲线表明,Cr3+镀液中的Ni2+主要用于促进Cr3+的电沉积,极少用于与Cr3+发生共沉积而生成Cr-Ni合金镀层;辅助络合剂B能够提高镀液的分散能力;添加剂A有利于镀层晶粒的细化,提高镀层光亮度;镀液中加入纳米ZrO2,使Cr3+电沉积的阴极极化增强,加快电沉积反应。
Due to its favorable properties such as desirable appearance, high hardness, resistance to wear and corrosive environments etc., Cr-Ni alloy coatings especially obtained by electrodeposition have been being the subject of investigation by numbers of researchers. Environment-friendly and low-toxic trivalent chromium electrodeposition has been being widely studied to replace the heavy-polluting hexavalent chromium electrodeposition both at home and abroad. However, it is of some disadvantage like unstable plating bath, difficult to get thick coatings and so on for trivalent chromium deposition. Owing to its superior properties such as high strength, high melting point, desirable heat stability and wear resistance, nano-ZrO2 particles have been widely used to modify the hardness, abrasive and wear resistance of metal deposits currently. In this work, nano-ZrO2 particles were added to the Cr-Ni plating bath in order to prepare the Cr-Ni-ZrO2 composite coatings with desirable properties by means of co-electrodeposition. Effect of little amount of Ni ions in the bath on trivalent chromium electrodeposition under the condition of low current density was studied. The influence of bath component and process parameters on the co-electrodeposition of Cr-Ni-ZrO2 were also studied. Properties of Cr-Ni-ZrO2 coatings such as surface morphology, composite, organizational structure, corrosion resistance, void fraction and hardness were characterized by means of SEM, EDS, XRD, Tafel plots and electrochemical impedance spectroscopy (EIS) separately. Analyses of the results are as follows:
     (1) Cr coatings obtained from the plating bath with little amount of nickel ions are of better appearance than that of without nickel ions. The thickness of the coatings obtained from the plating bath with little amount of nickel ions are 0.46~0.93μm, which meets the industrial requirement. Results of cathodic polarization cures show that the LSV of the plating bath shift towards positive side when nickel is added to the bath. That is to say, nickel ions can strengthen cathodic polarization of trivalent chromium and promoting the forming of blue film. It is demonstrated that the addition of little amount of nickel ions has a catalytic effect on chromium deposition.
     (2) Effects of concentration of auxiliary complexing agent, main salt, nano-ZrO2 particles and additive A on the thickness and appearance of Cr-Ni-ZrO2 coatings were studied by single-factor experiments, and the bath formula was optimized by orthonormal experiments. Effects of tempture, pH, current density, deposition time and stirring speed on the thickness and appearance of Cr-Ni-ZrO2 coatings were studied. The Cr-Ni-ZrO2 composite coatings obtained under the optimum process condition are bright and are of the thickness of 8.5μm. Results of SEM and EDS show that nano-ZrO2 particles are well distributed in the coatings and the surface morphology of Cr-Ni-ZrO2 composite coatings is homogeneous and finely crystallized. However, some ZrO2 particles in the coatings have lager diameter (100nm) than before (30nm), given some of them agglomerate. Mass fractions of the main element in the coating are as follows:Cr 82.6%, Ni 0.41%, Zr 7.65%, and O 9.34%.
     (3) Compared with Cr-Ni alloy coatings, Cr-Ni-ZrO2 composite coatings take more even and more compact surface. Analysis of XRD demonstrates that structure of Cr-Ni-ZrO2 composite coatings is amorphous. Kinds of performance test show that Cr-Ni-ZrO2 composite coatings possess good adhesion, low void fraction and high hardness (664.6HV). Tafel plots and EIS of Cr-Ni-ZrO2 composite coatings and Cr-Ni-alloy coatings demonstrate that Cr-Ni-ZrO2 composite coatings have much better corrosion resistance than Cr-Ni alloy coatings in both acid and alkaline corrosive medium. However, Cr-Ni-ZrO2 composite coatings are more easily corroded than Cr-Ni-alloy coatings in neutral corrosive medium.
     (4) Analyses of cyclic voltammogram curves and cathodic polarization cures show that trivalent chromium ions are deposited by a two-step reduction, but the detaied reductions are remaied to study further. Conclusions are made by analyzing cathodic polarization as follows: the nickel ions in the bath barely co-deposited with trivalent chromium ions but tend to boost the deposition of trivalent chromium ions; addition of auxiliary complexing agent A is good for dispersion of the plating bath; the additive A in the bath refines grains of the coatings and brightening the coatings; the addition of nano-ZrO2 particles strengthens the cathodic polarization of trivalent chromium and boosting the deposition rate.
引文
[1]庞建超,李世杰,曾晓明.现代表面工程技术的发展与应用[J].新材料的开发与应用,2005(1):46-49.
    [2]于杨,解念锁.先进表面工程技术及应用研究[J].科技创新导报,2009,31:78.
    [3]王一夫.三价铬电镀进展简述[J].表面工程资讯,2007(6):7-8.
    [4]李家柱,林安,甘复兴.取代重污染六价铬电镀的技术与应用[J].电镀与涂饰,2004,23(5):30-33.
    [5]李国斌,彭荣华,马淞江.电沉积Ni-Cr合金工艺研究[J].材料保护,2004,37(11):22-23.
    [6]Lashmore D S, Weisshaus I, Pratt K. Electrodeposition of nickel-chromium alloys[J]. Plating and Surface Finishing,1986(3):48-55.
    [7]G Saravanan, S Mohan. Pulsed electrodeposition of microcrystalline chromium from trivalent Cr-DMF bath[J]. Journal of Applied Electrochemistry,2009,39(8):1393-1397.
    [8]杨余芳,李强国.电沉积Ni-Cr合金的研究现状与发展[J].电镀与涂饰,2008,27(2):8-11.
    [9]El-Sharif M, McDougall J, Chisholm C U. Electrodeposition of thick chromium coatings from environmentally acceptable chromium(Ⅲ)-glycine complex[J]. Transactions of the Institute of Metal Finishing,1999,77(4):139-144.
    [10]雷华山,何湘柱,舒绪刚.甘氨酸体系三价铬电沉积工艺研究[J].表面技术,2009,38(1):57-60.
    [11]Anil Baral, Robert Engelken. Modeling, optimization and comparative analysis of trivalent chromium electrodeposition from aqueous glycine and formic acid baths[J]. Journal of Electrochemical Society,2005,152(7):504-512.
    [12]Renz R P, Fortman J J, Taylor E J. Electrically mediated process for functional trivalent chromium to replace hexavalent chromium scaleup for manufacturing insertion[J]. Platinig and Surface Finishing,2003,90(6):52-59.
    [13]杨余芳,龚竹青,邓丽元,等.三价铬镀液中电沉积纳米晶体Fe-Ni-Cr合金箔[J].中南大学学报,2006,37(3):509-514.
    [14]何湘柱,龚竹青,蒋汉瀛.三价铬水溶液电镀非晶态铬工艺[J].中国有色金属学报,1999,9(3):646-650.
    [15]何湘柱,龚竹青,蒋汉瀛.Cr(Ⅲ)水溶液电沉积非晶态铬的电化学[J].中国有色金属学报,2000, 10(1): 95-99.
    [16]Nahid Mashkouri Najafi, Mohammad Eidizadeh, Shahram Seidi, et al. Developing electrodeposition techniques for preconcentration of ultra-traces of Ni, Cr and Pb prior to arc-atomic emission spectrometry determination[J]. Microchemical Journal,2009,93(2):159-163.
    [17]许利剑,龚竹青,杨余芳,等.电镀工艺条件对铁-镍-铬合金镀层成分和硬度的影响[J].电镀与涂饰,2006,25(4):8-11.
    [18]Ching An Huang, Che Kuan Lin, Chao Yu Chen. Hardness variation and corrosion behavior of as-plated and annealed Cr-Ni alloy deposits electroplated in a trivalent chromium-based bath[J]. Surface & Coatings Technology,2009,203:3686-3691.
    [19]马正青,黎文献,谭教强.电沉积Fe-Cr合金研究[J].表面技术,2001,30(1):1-3.
    [20]K-L Lin, C-J Hsu, I-M Hsu. Electroplating of Ni-Cr on Steel with Pulse Plating[J]. Journal of Materials Engineering and Preformance,1992,1(3):359-362.
    [21]Watson A, Chisholm C U, El-sharif M R. The role of chromium Ⅱ and Ⅵ in the electrodeposition of chromium nickel alloys from trivalent chromium-amide electrolytes[J]. Transactions of the Institute of Metal Finishing,1986,64(4):149-153.
    [22]赵黎云,钟丽萍,黄逢春.电镀铬添加剂的发展与展望[J].电镀与精饰,2001,23(5):9-12.
    [23]迟洪忠,刘慎中.镍-铬合金电镀[J].电镀与精饰,2001,23(3):23-26.
    [24]吴慧敏,艾佑宏.杂质对三价铬电沉积行为的影响[J].湖北大学学报,2007,29(1):57-59.
    [25]雷华山,何湘柱,舒绪刚.三价铬电沉积研究状况[J].材料导报,2008,3(5):25-26.
    [26]李卫东,周晓荣,左正忠,等.电沉积复合镀层的研究现状[J].电镀与涂饰,2000,19(5):44-49.
    [27]王周成,倪永金,唐毅.电化学方法制备金属基复合材料研究进展[J].材料导报,2006,20(7):51-53.
    [28]郭鹤桐,张三元.复合电镀技术[M].北京:化学工业出版社,2006:26-75.
    [29]李莉,魏子栋,李兰兰.电沉积纳米材料研究现状[J].电镀与精饰,2004,26(3):9-14.
    [30]周海飞,杜楠,赵晴,复合电沉积工艺研究现状[J].电镀与涂饰,2005,24(6):41-45.
    [31]马志坤,赵新民,杜峰.复合镀层的现状与发展[J].电刷镀技术,2001(2):1-3.
    [32]梁平,丁红燕,周广宏.金属基纳米复合镀层的制备方法[J].电镀与精饰,2008,30(2):33-33.
    [33]钟诚.复合镀研究的新进展[J].四川化工,2004(1):16-19.
    [34]程秀,揭晓华,蔡莲淑,等.Ni-P-SiC(纳米)化学复合镀层的组织与性能[J].材料工程,2006(1):43-46.
    [35]王正,任晨星,徐向俊.金刚石复合镀层的研究[J].腐蚀与防护,2001,22(7):283-286.
    [36]邵建兵,朱永伟,黎向峰,等.Ni-P-金刚石化学复合镀层耐磨性能研究[J].金刚石与磨料磨具工程,2008(5):25-29.
    [37]付海龙,戴光,邹龙庆.金属橡胶表面沉积镍基纳米TiN复合镀层的研究[J].表面技术,2011,40(1):90-92.
    [38]赵海军,刘磊,朱建华,等.复合电镀镍基自润滑材料的研究进展[J].机械工程材料,2004,28(7): 1-3.
    [39]张兴,龙秀丽.复合电沉积Cu-石墨复合镀层的研究[J].电镀与精饰,2010,32(5):22-25.
    [40]陈卫祥,甘海洋,涂江平,等.Ni-P-纳米碳管化学复合镀层的摩擦磨损特性[J].摩擦学学报,2002,22(4):81-83.
    [41]韩贵,陈卫祥,夏军宝.化学镀耐磨自润滑Ni-P复合镀层的摩擦磨损性能[J].摩擦学学报,2004,24(3):216-218.
    [42]蒋斌,徐滨士,董世运.纳米复合镀层的研究现状[J].材料保护,2002,35(6):1-3.
    [43]N A Polyakvo, Y M Polukrov, V N Kudryavtesev. Electrodeposition of Composite Chromium Coatings from Cr(Ⅲ) Sulfate-Oxalate Solution Suspensions Containing Al2O3, SiC, Nb2N and Ta2N Particles[J]. Protection of Metals and Physical Chemistry of Surfaces,2010,46(1):78-51.
    [44]Wang C Y. Synthesis and characterization of Ni-P-TiO2 ultrafine composite particles[J]. Materials Science and Engineering,2000,77:135-137.
    [45]于杰,刘建平,赵国鹏,等.Ni-SiC纳米复合镀层的耐高温氧化性能[J].表面技术,2004,33(6):31-33.
    [46]陈尚东,孙挺,王传胜.A3钢水性体系镍铝复合脉冲电镀层的高温防护性能[J].材料保护,2009,40(8):34-36.
    [47]吴元康,佘妮,熊晓辉.纳米晶金刚石织构粒子增强银基电接触复合镀层的研究[J].电镀与涂饰,2002,21(3):6-11.
    [48]陈劲松,黄英慧,刘志东.电沉积复合镀层研究的新动态[J].电镀与精饰,2007,28(2):21-25.
    [49]迟广俊,姚素薇,范君.Ni/TiO2复合镀层光催化抗茵性能的研究[J].材料科学与工艺,2003,12(1): 52-56.
    [50]耿后安,魏锡文.纳米Cr2O3的制备及其化学复合镀层光催化性研究[J].腐蚀与防护,2003,24(12):522-524.
    [51]舒绪刚,何湘柱,黄慧民.纳米复合电沉积技术研究进展[J].材料保护,2007,40(7):52-55.
    [52]Wang S C, Wei W C J. Kinetics of electroplating process of nano-sized ceramic particle/Ni composite[J]. Materials Chemistry and Physics,2003,78(3):574-580.
    [53]Garcia I, Fransaer J, Celis J P. Electrodeposition and sliding wear resistance nickel composite coatings containing micron and submicron SiC particles[J]. Surface and Coatings Technology,2001, 148(2/3):171-178.
    [54]许艺,张旭东,涂伟毅.微纳米复合电沉积影响因素及在电刷镀中的应用[J].机械工程师,2008(8):50-52.
    [55]Sun K H, Hong J Y. Formation of bilayer Ni-Si-C composite coatings by electrodeposition[J]. Surface Coatings and Technology,1998,108:564-569.
    [56]李雪松,杨友,吴化.黑Cr-C纳米复合电沉积工艺中电流密度的确定[J].电镀与环保,2007,27(3): 17-18.
    [57]Steinbach J, Ferkel H. Nanostructured Ni-Al2O3 films pared by DC and pulse DC electroplating[J]. Scripta Materialia,2001,44(8/9):813-816.
    [58]Podlaha E J, Landoh D. Pulse-reserve plating of nanocomposite thin films[J]. Journal of Electrochemistry Society,1997,144(7):200-204.
    [59]范云鹰,张英杰,董鹏,等.复合电沉积的影响因素[J].电镀与涂饰,2007,26(10):4-7.
    [60]Yeh S H, Wan C C. Codeposition of SiC Powders with Nickel in a Watts Bath. Journal of Applied Electrochemistry,1994,24(10):993.
    [61]郭会清,方红,禹建鹰.复合镀中分散微粒共沉积的若干问题探讨[J].中原工学院学报,2001,13(1):29-31.
    [62]杜克勤,陈慧光,李娟.镍-聚四乙烯复合电沉积机理的研究[J].大连铁道学院学报,2001,22(3):96-100.
    [63]Anani A, Mao Z, Srinivasan S, etal. Dispersion deposition of metal particle composites and the evaluation of dispersion deposited nickel-lanthanum nickelate electrocatalyst for hydron evolution[J]. Journal of Applied Electrochemistry,1991,21(8):683-689.
    [64]Hayashi H, Izumi S, Tari I. Composition of α-alumina particles from acid copper sulfate bath[J]. Journal of the Electrochemistry Society,1993,21(8):683-689.
    [65]Buelens C, Celis J P, Roos J R. Electrochemical aspect of codepsition of gold copper with inert particles[J]. Journal of the Electrochemistry Society,1983,13(4):541-547.
    [66]C T J Low, R G A Wills, F C Walsh. Electrodeposition of composite coatings containing nanoparticles in a metal deposit[J]. Surface and Coatings Technology,2006,206:371-383.
    [67]胡飞木,吴坚强,黄敏,等.以Guglielmi模型研究脉冲电流下Ni-SiC复合电沉积[J].电镀与涂饰,2010,29(1):1-4.
    [68]李卫东,胡进,左正忠.有关复合电沉积机理研究[J].武汉大学学报(自然科学版),2000,46(6):695-700.
    [69]许乔瑜,刘芳,卢锦堂,等.铁-纳米ZrO2复合电镀层的组织与性能[J].机械工程材料,2007,31(9): 51-54.
    [70]吴化,李雪松,严川伟,等.添加超硬纳米微粒复合镀层形成机理及耐磨性[J].腐蚀科学与防护技术,2005,17(6):399-401.
    [71]宋影伟,单大勇,陈荣石,等.AZ91D镁合金化学复合镀Ni-P-ZrO2的工艺与性能[J].中国有色金属学报,2006,]6(4):625-629.
    [72]姚素薇,姚颖悟,张卫国,等.Ni-W/ZrO2纳米复合镀层耐高温氧化性能分析[J].天津大学学报,2003,40(3):308-311.
    [73]谭澄宇,梁英,夏长清,等.Ni/ZrO2复合镀层电沉积行为与耐高温氧化性能的研究[J].材料保护,2000,33(10):1-3.
    [74]司东宏,薛玉君,申晨.超声电沉积制备Ni-ZrO2纳米复合镀层及其结构和性能的研究[J].表面技术,2010,39(3):10-12.
    [75]刘胜宾,崔霞,李光明,等.中温酸性纳米化学复合镀Ni-P-ZrO2的研究[J].电镀与涂饰,2010,29(6):22-24.
    [76]屠珍密,郑剑,李宁,等.三价铬电镀铬现状及发展趋势[J].表面技术,2007,36(5):59-63.
    [77]A H Ching, Y C Chao, C C Hsu. Characterization of Cr-Ni multilayers electroplated from a chromium(Ⅲ)-nickel(Ⅱ) bath using pulse current[J]. Surface and Coatings Technology,2007,57: 61-64.
    [78]Hadi Adelkhani, Mohammad Reza Arshadi. Properties of Fe-Ni-Cr alloy coatings by using direct and pulse current electrodepositon[J]. Journal of Alloys and Compounds,2009,476:234-237.
    [79]H J Jang, R H Kim, H S Kwon. Study on corrosion resistance of gas cylinder materials in HF, HCl and HBr environments[J]. Corrosion Science,2009,44(6):445-452.
    [80]Jamese H, Lindsay. Decorative and hard chromium plating[J]. Plating and Surface Finishing,2004 (8):16-17.
    [81]刘建平,胡耀红,詹益腾.三价铬电镀的研究与发展[J].表面技术,2003,32(3):5-7.
    [82]A A Edigaryan, G E Goryunov, E N Lubnin. Distribution of Components of Binary Nickel-Chromium Alloys Electrodeposited from Sulfate-Oxalate Solutions[J]. Russian Journal of Electrochemistry,2004,40(12):1266-1271.
    [83]杨余芳,李强国.Ni-Cr合金共沉积的电化学特性[J].材料保护,2008,41(5):15-18.
    [84]吕玮,张永祥,林爱琴.非晶态铁铬合金镀层的研究[J].电镀与涂饰,2003,22(6):7-11.
    [85]Xiangzhu He, Xinli Zhou, Xiaowei Zhang. Effect of Ni2+ on Chromium Electrodeposition in Cr(Ⅲ)Plating Bath[J]. Advanced Materials Research,2011,150/151:1555-1559.
    [86]李大光,黄林源,何湘柱,等.Cr-Fe-ZrO2复合镀层的结构与耐腐蚀性研究[J].表面技术,2010,39(3): 13-15.
    [87]舒绪刚,何湘柱,黄慧民,等.纳米Zr02在复合镀中的应用[J].机械工程材料,2008,32(3):1-4.
    [88]Survilience S, Lisowska-Oleksiak A, Cesuniene A. Effect of ZrO2 on Corrosion Behavior of Chromium Coatings[J]. Corrosion Science,2007,50:338-344.
    [89]曾华梁,吴仲达,陈均武,等.电镀工艺手册[M].北京:机械工业出版社,1989:]56-307.
    [90]何湘柱,龚竹青,蒋汉瀛.光亮Fe-Ni合金电沉积工艺的研究[J].湘潭矿业学院学报,1998,13(3):36-42.
    [91]曾振欧,姜腾达,汪启桥,等.三价铬硫酸盐溶液快速镀装饰铬[J].电镀与涂饰,2010,29(4):1-4.
    [92]周琦,史敬伟,程秀莲.电镀铬添加剂的对比研究[J].电镀与涂饰,2006,28(2):37-39.
    [93]杨建文,邓型深,徐浩森,等.4种羧酸盐配位剂对装饰性三价铬电镀的作用[J].材料保护,2009,42(6):39-41.
    [94]汪启桥,曾振欧,康振华,等.三价铬硫酸盐镀硬铬的辅助络合剂研究[J].电镀与涂饰,2009,28(5): 5-8.
    [95]高丽霞,王丽娜,齐涛,等.离子液体AlCl3/Et3NHCl中电沉积法制备金属铝[J].物理化学学 报,2008,24(6):939-944.
    [96]Zhaowen Wang, Hongmin Kan, Zhongning Shi, et al. Electrochemical Deposition and Nucleation of Aluminum on Tungsten in Aluminum Chloride-Sodium Chloride Melts[J]. Journal of Materials Science Technology,2008,24(6):915-918.
    [97]彭群家,穆道彬,马莒生.Ni/ZrO2复合电沉积机理的研究[J].电化学,1999,5(1):68-72.
    [98]魏攀,陈斌,何方波.锌-镍/纳米氧化铝复合电沉积及镀层结构性能研究[J].电镀与涂饰,2010,29(5):1-5.
    [99]屠振密,郑剑,李宁,等.三价铬电镀铬现状及发展趋势[J].表面技术,2007,36(5):59-63.
    [100]郭信镐.硬铬电镀用添加剂及阳极[J].电镀与涂饰,2002,21(5):49-50.
    [101]杜荣斌.氟化物体系电沉积三价铬镀工艺的研究[J].化学研究,2005,16(3):44-46.
    [102]李云燕,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2005: 79-121.
    [103]丁秀山.正交试验设计方法在测试用例设计中的应用[J].计算机工程与应用,2004,40(20):62-63.
    [104]吴慧敏,艾佑宏,吴琼.三价铬电镀铬的工艺研究[J].表面技术,2007,36(1):62-64.
    [105]张胜利,朱玉法,冯绍彬.三价铬体系铬-镍合金电镀工艺及镀层性能的研究[J].材料保护2005,38(5):35-37.
    [106]张景双,石金声,石磊,等.电镀溶液与镀层性能测试[M].北京:化学工业出版社,2003.
    [107]李凌杰,王莎,肖印.AM60镁合金在汽车发动机冷却液中的腐蚀电化学行为[J].电化学,2010,]6(4):425-429.
    [108]Deliang Qiu, AipingWang, Yansheng Yin. Characterization and corrosion behavior of hydroxyapatite/zirconia composite coating on NiTi fabricated by electrochemical deposition[J]. Applied Surface Science,2010,257:1774-1778.
    [109]姚颖悟,姚素薇,宋振兴.电沉积Ni-Cr合金在NaCl溶液中的腐蚀行为[J].材料工程,2006(9):42-44.
    [110]马叙,姚素薇,张卫国,等.电沉积Fe-W-ZrO2纳米复合镀层的结构与腐蚀行为[J].物理化学学报,2007,23(10):1617-1621.
    [111]查全性.电极过程动力学导论[M].北京:科学出版社,2002:129-143.
    [112]V S Protsenko, T E Butyrina, F I Danilov. Applying a theory of generalized variables to electrochemical kinetics:Interpreting the baths[J]. Protection of Metals,2007,43(4):429-428.
    [113]Bard A J, Faulkner L R.电化学方法原理和应用[M].邵元华,朱果逸,董献堆,等译.北京:化学工业出版社,2008:96-153.
    [114]郑利峰,郑国渠,曹华珍.氨络合物体系中镍在玻璃碳上的电化学成核机理[J].材料科学与工程学报,2003,21(6):882-885.
    [115]刘宇,谭澄宇,贾志强.铜离子对镍在玻碳电极上电结晶行为的影响[J].中南大学学报,2010,43(1):143-148.
    [116]Baosong Li, An Lin, Wu Xu. Electrodeposition and characterization of Fe-Cr-P amorphous alloys from trivalent chromium sulfate electrolyte[J]. Journal of Alloys and Compounds,2008,453: 93-101.
    [117]吕玮,张永祥,林爱琴.非晶态Fe-Cr合金镀层的电沉积机理探讨[J].福建师范大学福清分校学报,2008,85(8):13-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700