电泳—氧化扩散法制备NiO/NiFe_2O_4涂层及其熔盐气氛腐蚀研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对铝电解惰性阳极用合金导杆目前存在的抗高温氧化性能差,在熔盐腐蚀过程中表面的氧化膜易剥落等问题,尝试在合金基体上制备一层致密的、粘附性较好的惰性涂层为研究目标。论文在国家“863”、“973”等项目的资助下,使用电沉积、电泳、氧化扩散处理法制备NiO/NiFe2O4涂层。探讨了电沉积-电泳制备Ni/Fe2O3复合涂层的工艺设计、电泳-氧化扩散处理法制备NiO/NiFe2O4复合涂层的高温下的氧化过程及形成机理,并采用研究了其抗冰晶石熔盐气氛腐蚀行为。
     论文主要完成了以下工作:
     1)利用EPD技术在稳定的水悬浮液中可以制备出较均匀、致密的Fe2O3膜。在pH值为3时,zeta电位达到最大值,高达67 mV,此时悬浮体保持较高的稳定性。电泳沉积工艺条件对沉积层的厚度与致密度有显著的影响。随沉积时间的延长,沉积速率逐渐衰减;延长电泳沉积时间有利于提高Fe2O3沉积层的厚度;通过控制沉积时间可以得到不同致密度的沉积层;通过改变阴阳两极之间的电场强度或调整两极之间的距离,电泳沉积Fe2O3的厚度会发生很大的变化。当电场强度为30V/cm,沉积时间为120s时,可以制备出均匀、无裂纹、相对密度为56%的Fe2O3膜。
     2)研究氧化铁粉末的形貌以及粒度对电泳沉积的影响。选用5种氧化铁粉末在同一条件下进行电泳沉积后发现,纳米粉的沉积层致密度要高于亚微米氧化铁粉的,且球形粉末的沉积层致密度高于杆状氧化铁粉的。同时研究了高温处理对杆状亚微米Fe2O3膜的致密度及膜与基体之间结合性能的影响。经1000℃与1100℃热处理4h后,Fe2O3膜的致密度有所提高,与基体之间的结合强度改善。
     3、)使用DSC方法确定了电泳-氧化法制备NiO/NiFe2O4复合涂层的温度范围为750-1200℃。运用Ni/Fe2O3扩散偶证明样品经1000℃氧化扩散处理后,Fe、Ni、O等元素发生了互扩散,且Fe原子的扩散速度要大于Ni原子的。
     4)先采用电沉积-电泳方法在Ni基体高温合金上制备电镀Ni/电泳Fe203复合涂层,再通过后续空气中进行的高温氧化处理方法来获得为NiO/NiFe2O4复合氧化物涂层。结果表明:经1000、1100和1200℃下氧化后,氧化膜中均有NiO和NiFe2O4生成。氧化温度为1000°C时涂层表面还存在没有参与反应的Fe203,但随氧化温度增加,Fe203层随之消失。温度为1100与1200℃时氧化膜中的NiO、NiFe2O4相与镀Ni基体之间形成了冶金结合,并且通过扩散形成了NiFe204析出相。Ni基体以及电镀Ni/电泳Fe2O3复合涂层在1000℃氧化时单位面积上的增重随时间增加,大体遵循抛物线规律,且电镀Ni/电泳Fe203复合涂层的单位面积上的增重大于镀Ni基体的。涂层的厚度与氧化增重随氧化温度的提高而增加。
     5)研究了Ni、氧化Ni基体、NiO/NiFe2O4涂层在960℃熔盐气氛中的腐蚀行为。结果表明,随着腐蚀时间的增加,Ni基体样品表面破裂、剥落,严重腐蚀;氧化Ni基体耐腐蚀性能要优于Ni基体的;NiO/NiFe2O4涂层对基体的保护性能较好,并解释了其对基体的保护机理。
Inert alloy anodes is faced with a lot of problems, such as low property of high-temperature oxidation resistance and low adhesive attraction of oxide film, easy to crack in connecting interface of anode. This thesis is aimed to obtain a kind of inert coating used as connecting bar which has stable structure and better corrosion resistance. It is funded by the National High Technology Research and Development Project (863 project) and the State Key Project of Fundamental Research (973 project), using electrodeposition, electrophoresis, pre-oxidation treatment to prepare NiO/NiFe2O4 coating. And analyzing the process design of electrodeposition-electrophoresis Ni/Fe2O3 composite coating; the formation mechanism of NiO/NiFe2O4 coatings prepared by electrophoresis and pre-oxidation treatment diffusion under high temperature oxidation process and the corrosion behaviour of the oxidised composite coating was investigated at 960℃in an atmosphere consisting of a mixture of Na3AlF6-AlF3-CaF2 molten salts and air.
     Above all main conclusions can be drawn as followed:
     1) Electrophoretic deposition (EPD) technique was employed for fabricating the ferric oxide (Fe2O3) thick films on the Ni substrate. The effect of electrophoresis variables including the pH was used to investigate the influence of the stability of Fe2O3 suspension, the deposition time were used to investigate the influence of electrophoretic deposition rate, sediment thickness and density. It also studied the Fe2O3 thick film sintering performance at different temperatures. Scanning electron microscopy (SEM), zeta potential and nanoparticle size analyzer were used to characterize the deposited films. It is found that when the pH is 3, the zeta potential of suspension is up to 67mV or more, and then well dispersed suspension was obtained. The thick Fe2O3 film prepared at 30V/cm for 120s without stirring has the best properties of uniform, rack-free, and the relative density is up to 56% thick film.
     2) Five different morphology and particle size iron oxide powders are used on the electrophoretic deposition. The results showed that when the powders electrophored on the same conditions and it is found that the deposition of nano powder layer density is higher than the sub-micron iron oxide powder and the density of spherical powder sedimentary layer is higher than the rod-shaped iron oxide powder. The influence of high temperature on the density of micron rod Fe2O3 films and the substrate binding properties are also studied. The thick films density, intensity and bond strength with the substrate can be increased in 1000℃and 1100℃, 4h sintering.
     3) DSC method is used to determine the electrophoresis-oxidation diffusion treatment temperature. The results showed that the temperature is range 750-1200℃. And the Ni/Fe2O3 diffusion couple samples is also used to demonstrate the oxidized diffusion treatment at 1000℃. The results showed that Fe, Ni, O and other elements has interdiffusion, and the rate of diffusion of Fe atoms is larger than Ni atoms.
     4) Electrodeposition-electrophoretic deposition (EPD) technique was employed for fabricating the ferric oxide (Fe2O3) thick films on the Ni-based superalloy, and then pre-oxidation processing method was used to obtain the NiO/NiFe2O4 composite coating. Using DSC, SEM, EDS and XRD analysis method to analyze the influence of pre-oxidation temperature on the coating structure, morphology, elemental distribution and composition of the phase, and forming reaction mechanism and kinetics of the coating was also discussed. The results showed that:By high temperature diffusion processes at 1000,1100 and 1200℃for 4h respectively, the oxided film was made up of NiO and NiFe2O4.When the oxidation temperature is 1000℃, there is a not reactived Fe2O3 layer in the surface of coating, but with the oxidation temperature increasing, Fe2O3 layer is disappeared. When the the temperature is increased to 1100 and 1200℃, the NiO, NiFe2O4 phase and the Ni plating reach the metallurgical combination, but there are also mixed with some nickel-iron spinel oxides through the diffusion of transition layer. The per unit area weight of Ni substrate and electrophoretic Ni/EPD Fe2O3 coating after 1000℃pre-oxidation diffusion treatment increased with time, which generally followed the parabolic law, and the per unit area weight of Ni/ EPD Fe2O3 increased faster than electroplated Ni. The thickness and weight of oxided coating obviously increase with the pre-oxidation temperature.
     5) The corrosion behaviour of the Ni, pre-oxidized Ni substrate and pre-oxidized NiO/NiFe2O4 composite coating and was investigated at 960℃in an atmosphere consisting of a mixture of Na3AlF6-AlF3-CaF2 molten salts and air. The results showed that with the increasing of corrosion time, the sample of Ni surface is rupture, spalling, severe corrosion; corrosion resistance of pre-oxidized Ni substrate is better than Ni; NiO/NiFe2O4 coating has better protective performance and the protective mechanism is also explained.
引文
[1]中铝网.2010年世界原铝产量报告http://market.cnal.com/statistics/2011/01-24 /1295857530212733.shtml.
    [2]中铝网.2001-2010年中国原铝产量统计http://market.cnal.com/statistics/2011/ 03-22/1300760230218780.shtml.
    [3]邱竹贤.21世纪伊始铝电解工业的新进展[J].中国工程科学,2003,5(4):41-46.
    [4]吴慧娅.我国铝电解工业的现状与竞争能力的分析[J].世界有色金属,2002,10:4-6.
    [5]Hall C. M.. Process of reducing aluminium by electrolysis. US Patent,400776,4, 1889.
    [6]Belyaev A. I., Studentsov A.E.. Electrolysis of Alumina with Non-Combustible (Metallic) Anodes. Legkic Metally,1937,6(3):17-22.
    [7]The Aluminium Association Inc. Aluminum Industry Technology Roadmap. May, 1997.
    [8]Robert A. R., Zhang Y. S.. Fate of Sofc-Type Inert Anode for Production of Primary Aluminum. In:W. Schneider, eds. Light Metals 2002. Warrendale PA, USA:TMS,2002.463-468.
    [9]王兆文,罗涛,高炳亮,等.大型铁酸镍基金属陶瓷惰性电极电解腐蚀研究[J].东北大学学报(自然科学版),2004,25(10):991-993.
    [10]Pawlek R. P.. Inert Anodes:an Update. In:A.T. Tabereaux, eds. Light metals 2004. Warreudale PA:TMS,2004.283-287.
    [11]张晓顺,邱竹贤.铝电解惰性阳极材料研究现状[J].材料与冶金学,2005,4(1):13-16.
    [12]Nora V. D.. How to Find an Inert Anode for Aluminum Cells. In:G.M. Haarberg and A. Solheim, eds. Eleventh International Aluminium Symposium. Norway, September 19-22,2001.155-160.
    [13]翟金坤.金属高温腐蚀[M].北京:北京航空航天大学出版社,1994:138-145.
    [14]Liu P. S., Liang K. M., Zhou H. Y.. High-temperatureprotective coatings on superalloys[J]. Tran. Nonferrous Met. Soc. China,2002,12(4):798-803.
    [15]李远士,牛焱.几种工程材料及纯金属在ZnCl2/KCl中的腐蚀[J].腐蚀科学与防护技术,2001,13:429-431.
    [16]李远士,牛焱,吴维弢.金属材料的高温氯化腐蚀[J].腐蚀科学与防护技术,2000,12(1):40-44.
    [17]李远士,牛焱,刘刚.金属材料在垃圾焚烧环境中的高温腐蚀[J].腐蚀科学与防护技术,2000,12(4):224-227.
    [18]Robert A. R.. Hot corrosion of materials:a fluxing mechanism?[J]. Corrosion Science,2002,44:209-221.
    [19]Zeng C.L., Li J.. Electrochemical impedance studies of molten (0.9Na,0.1K)2SO4 induced hot corrosion of the Ni-based superalloy M38G at 900℃ in air[J]. Electrochimica Acta,2005,50:5533-5538.
    [20]李铁藩.金属高温氧化和热腐蚀.北京:化学工业出版社,2003:101-150.
    [21]Vaidyanathan K., Sanjeev B., et al. simplistic model to study the influence of film coolingon low temperature hot corrosion rate in coal gas/syngas fired gas turbines[J]. International Journal of Heat and Mass Transfer,2008,51: 1049-1060.
    [22]陈国良.高温合金学[M].北京:冶金工业出版社,1988,5:29-52.
    [23]Neil B., Gerald H.,辛丽.金属高温氧化导论[M].北京:高等教育出版社,2010:179-200.
    [24]赵双群,谢锡善,Smith G. D新型Ni-Cr-Co基高温合金在模拟煤燃烧环境中的高温腐蚀[J].中国有色金属学报,2004,14(3):340-346.
    [25]Martin P. J., Bendavid A., Wielunski L. S., et al. Preferential sputtering effects in the deposition of TiAl films by filtered cathodic are deposition [J]. Unclear Instruments and Methods in Physics Research,1997,129B:207-209.
    [26]王飚.抗磨损抗腐蚀材料的新进展.材料科学与工程[J],2000,18(4):116-120.
    [27]丁彰雄,陈江涛,王群FeCrAl合金涂层抗高温氧化及热腐蚀性能研究[J].武汉理工大学学报(交通科学与工程版)[J],2003,27(4):513-516.
    [28]曾潮流,王文,吴维弢Fe-Cr合金在650℃熔盐(Li-K)2CO3中的腐蚀行为[J].金属学报,2000,36(6):651-654.
    [29]Aneta M., Zofia K.. Hot corrosion behaviour of Ni3Al inphate-chloride mixtures in the atmosphere [J]. Corrosion Science,2007,49:1869-1877.
    [30]Mohanty B. P., Shores D. A.. Role of chlorides in hot corrosion of a cast Fe-Cr-Ni alloy. Part I:Experimental studies[J]. Corrosion Science,2004,46: 2893-2907.
    [31]刘晓亮,马海涛,王来,等Fe-Cr合金预氧化后涂覆KCl盐膜的热腐蚀行为[J].材料保护,2009,42(9):12-15.
    [32]李倩,周科朝,周涛,李志友Ni-Cu-Fe-Al合金在850℃空气中的氧化行为[J].粉末冶金材料科学与工程,2009,(4):231-236.
    [33]李倩.镍铜铁基合金的高温抗氧化和耐腐蚀性能研究:[硕士学位论文].长沙:中南大学,2009.
    [34]徐磊CuNi基合金导杆材料的成分设计及其抗氧化和耐腐蚀性能研究:[硕士学位论文].长沙:中南大学,2009.
    [35]Chen L. C., Zhang C., Yang Z. G.. Effect of pre-oxidation on the hot corrosion of CoNiCrAlYRe alloy[J]. Corrosion Science,2011,53:374-380.
    [36]Liu E. Zheng Z., Guan X. R.. Influence of Pre-oxidation on the Hot Corrosion of DZ68 Superalloy in the Mixture of Na2SO4-NaCl[J]. J. Mater. Sci. Technol., 2010,26(10):895-899.
    [37]Liua G. M., Yub F., Tiana J. H., Maa J. H.. Influence of pre-oxidation on the hot corrosion of M38G superalloy in the mixture of Na2SO4-NaCl melts[J]. Materials Science and Engineering A,2008,496:40-44.
    [38]任鑫,王福会,汪信Al-Si涂层在900℃硫酸盐中的热腐蚀行为[J].腐蚀科学与防护技术,2006,16(4):187-191.
    [39]李学锋.镍基合金涂层抗热腐蚀性能和机理研究[J].材料保护,2003,36(7):19-22.
    [40]陈国锋,楼翰一.溅射Ni-8Cr-3.5Al纳米晶涂层的抗高温氧化行为[J].金属学报,2000,36(1):59-61.
    [41]耿树江,王福会,朱圣龙.溅射纳米晶IN738合金的恒温氧化行为[J].中国腐蚀与防护学报,2001,21(3):59-61.
    [42]傅广艳,管恒荣,牛焱,等.溅射Cu-Cr合金微晶涂层氧化[J].金属学报,2000,36(3):279-281.
    [43]李远士,牛焱,吴维弢.三元Cu-Ni-Fe合金在700-900℃空气中的氧化[J].金属学报,2000,36(7):749-752.
    [44]李远士,牛焱,王富岗,等.晶粒尺寸对Cu-10Ni合金高温氧化行为的影响[J].金属学报,1999,35(11):1171-1174.
    [45]耿树江,王福会,朱圣龙.K38G合金及其纳米晶涂层在900℃熔融硫酸盐中的热腐蚀行为[J].金属学报,2002,38(8):871-876.
    [46]Subhash K., Jayaganthan R., et al. Hot corrosion behavior of detonation gun sprayed Cr3C2-NiCr coatings on Ni and Fe-based superalloys in Na2SO4-60% V2O5 environment at 900℃[J]. Journal of Alloys and Compounds,2007:1-6.
    [47]Guo M. H., Wang Q. M., Ke P. L.. The preparation and hot corrosion resistance of gradient NiCoCrAlYSiB coatings[J]. Surface & Coatings Technology,2006, 200:3942-3949.
    [48]Sidhu T.S., Prakash S., Agrawal R. D.. Hot corrosion performance of a NiCr coated Ni-based alloy[J]. Scripta Materialia,2006,55:179-182.
    [49]陈学定,韩文政.表面涂层技术[M].北京:机械工业出版社,1993:40-94.
    [50]Toma D., Brandl W., et al. Wear and Corrosion Behavior of Thermally Sprayed Cermet Coatings. Surface and Coating Technology.2001,138:149-158.
    [51]赵文轮.超音速火焰喷涂工艺原理及特点[J].材料保护,1997,(12):19-21.
    [52]赵文轸.金属材料表面新技术[M].西安:西安交通大学出版社,1992:112.
    [53]邓世均.高性能陶瓷涂层[M].北京:化学工业出版社,2004:216.
    [54]Gosipathala S., Masroor M. D., Raja V. S.. Hot corrosion behaviour of plasma sprayed YSZ/Al2O3 dispersed NiCrAlY coatings on Inconel-718 superalloy[J]. Surface & Coatings Technology.2009,204:291-299.
    [55]Gosipathala S., Raja V. S.. Hot corrosion of YSZ/Al2O3 dispersed NiCrAlY plasma-sprayed coatings in Na2SO4-10 wt.% NaCl melt[J]. Corrosion Science. 2010,52:2592-2602.
    [56]Sidhu H. S., Sidhu B. S., Prakash S.. The role of HVOF coatings in improving hot corrosion resistance of ASTM-SA210 GrAl steel in the presence of Na2SO4-V2O5 salt deposits[J]. Surface & Coatings Technology,2006,200:5386-5394.
    [57]章小峰HVOF喷涂自润滑复合徐层的形成机理及特性研究[博士学位论文].武汉:华中科技大学,2008:12-14.
    [58]Mayoral M.C., Andres J.M., Bona M.T.. Aluminium depletion in NiCrAlY bond coatings by hot corrosion as a function of projection system[J]. Surface & Coatings Technology.2008,202:1816-1824.
    [59]Sidhu H. S., Sidhu B. S., Prakash S.. The role of HVOF coatings in improving hot corrosion resistance of ASTM-SA210 GrAl steel in the presence of Na2SO4-V205 salt deposits[J]. Surface & Coatings Technology,2006,200:5386-5394.
    [60]Sidhu T.S., Prakash S. R. D.. AgrawalHot corrosion studies of HVOF sprayed Cr3C2-NiCr and Ni-20Cr coatings on nickel-based superalloy at 900℃[J]. Surface & Coatings Technology,2006,201:792-800.
    [61]Sidhu T.S., Prakash S. R. D.. Agrawal. Hot corrosion behaviour of HVOF-sprayed NiCrBSi coatings on Ni-and Fe-based superalloys in Na2SO4-60% V2O5 environment at 900℃[J]. Acta Materialia.2006,54:773-784.
    [62]Mahesh R. A., Jayaganthan R., Prakash S.. Evaluation of hot corrosion behaviour of HVOF sprayed NiCrAl coating on superalloys at 900 ℃ [J]. Materials Chemistry and Physics,2008,111:524-533.
    [63]Zheng D. Y., Zhu S. L., Wang F. H.. Oxidation and hot corrosion behavior of a novel enamel-Al2O3 composite coating on K38G superalloy[J]. Surface & Coatings Technology,2006,200:5931-5936.
    [64]李金桂.材料的表面改性与涂覆技术的新进展[J].腐蚀与防护,1999,20(2):51-56.
    [66]Movchan B. A., Marinski G.S.. Gradient Protective Coatings of Different Application Produced by EB-PVD[J]. Surface and Coatings Technology.1998, 100-101:309-315.
    [67]Xua Z. H., Hea L. M., Mu R.. Hot corrosion behavior of La2Zr2O7 with the addition of Y2O3 thermal barrier coatings in contacts with vanadate-sulfate salts[J]. Journal of Alloys and Compounds,2010,504:382-385.
    [68]Xua Z. H., Hea L. M., Mu R.. Hot corrosion behavior of rare earth zirconates and yttria partially stabilized zirconia thermal barrier coatings[J]. Surface & Coatings Technology,2010,204:3652-3661.
    [69]Abbas A., Mohsen S., Akira K.. comparative study on hot corrosion resistance of three types of thermal barrier coatings:YSZ, YSZ+Al2O3 and YSZ/Al2O3[J]. Materials Science and Engineering A,2008,478:264-269.
    [70]Guo H. B., Li D. Q., Peng H.. High-temperature oxidation and hot-corrosion behavior of EB-PVD β-NiA1Dy coatings[J]. Corrosion Science,2011,53: 1050-1059.
    [71]李国英.材料及制品表面加工新技术[M].长沙:中南大学出版社,2002:56.
    [72]Mattox D. M.. Physical vapor deposition processes[J]. Prod. Finish.,2001,65(12): 72-82.
    [73]Ren X., Wang F. H.. High-temperature oxidation and hot-corrosion behavior of a sputtered NiCrAlY coating with and without aluminizing[J]. Surface & Coatings Technology,2006,201:30-37.
    [74]Wang F., Tian X., Li Q.. Oxidation and hot corrosion behavior of sputtered nanocrystalline coating of superalloy K52[J]. Thin Solid Films,2008,516:5740-5747.
    [75]Tang Z. L., Wang F. H., Wu W. T.. Effect of Al2O3 and enamel coatings on 900℃ oxidation and hot corrosion behaviors of gamma-TiAl[J]. Materials Science and Engineering A,2000,276:70-75.
    [76]Vyskocil J., Musil J.. Cathodic arc evaporation in thin film technology[J]. Journal of Vacuum Science & Technology,1992, A10 (4):1740-1748.
    [77]Zhang K., Liu M. M., Liu S.L.. Hot corrosion behaviour of a cobalt-base super-alloy K40S with and without NiCrAlYSi coating[J]. Corrosion Science, 2011,53:1990-1998.
    [78]Wang Q. M., Wu Y.N., Ke P.L., Cao H.T.. Hot corrosion behavior of AIP NiCoCrAlY(SiB) coatings on nickel base superalloys[J]. Surface & Coatings Technology,2004,186:389-397.
    [79]Jiang S. M., Peng X., et al. Preparation and hot corrosion behaviour of a MCrAlY+AlSiY composite coating[J]. Corrosion Science.2008,50:3213-3220.
    [80]Bao Z. B., Wang Q. M., Li W. Z., et al. Preparation and hot corrosion behaviour of an Al-gradient NiCoCrAlYSiB coating on a Ni-base superalloy[J]. Corrosion Science,2009,51:860-867.
    [81]Guo M. H., Wang Q. M., Gong J.. Oxidation and hot corrosion behavior of gradient NiCoCrAlYSiB coatings deposited by a combination of arc ion plating and magnetron sputtering techniques [J]. Corrosion Science,2006,48:2750-2764.
    [82]李玮.钢丝连续热浸镀铝的工艺、组织及性能:[博十学位论文].大连:大连理工大学,2002:3-13.
    [83]Asgari H., Toroghinejad M. R.. Efect of coating thickness on modifying the texture and corrosion performance of hot-dip galvanized coatings[J]. Current Applied Physics,2009,9:59-66.
    [84]Asgari H., Toroghinejad M. R., Golozar M. A.. Corrosion resistance and morphology of hot-dip galvanized zinc coatings[J]. Applied Surface Science, 2007,253:6769-6777.
    [85]Asgari H., Toroghinejada M. R., Golozar M. A.. Relationship between (00.2) and (20.1) texture components and corrosion resistance of hot-dip galvanized zinc coatings[J]. Journal of materials processing technology,2008,198:54-59.
    [86]Tachibana. K., Morinag Y.. Hot dip Wne Zn and Zn-Al alloy double coating for corrosion resistance at coastal area[J]. Corrosion Science,2007,49:149-157.
    [87]康妮.锆钛酸铅陶瓷厚膜电泳沉积技术研究:[硕士学位论文].北京:清华大学,2005:2-14.
    [88]Corni I., RyanM. P., Boccaccini A. R.. Electrophoretic deposition:from traditional ceramics to nanotechnology[J]. J. Eur. Ceram. Soc.,2008,28(7): 1353-1367.
    [89]Besra. L., Liu M.. A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci.,2007,52:1-61.
    [90]Derjaguin B.V., Landau L.D.. Acta. Physicochim. URSS 14 (1941):733.
    [91]Vervey E. J. W., Overbeek J. T. G.. Theory of the Stability of Lyophobic Colloids, Amsterdam, New York,1948.
    [92]Zbigniew A.. Particle adsorption and deposition:role of electrostatic interactions [J]. Advances in Colloid and Interface Science,2003,100-102:267-347.
    [93]赵建玲,王晓慧,郝俊杰,等.电泳沉积及其在新型陶瓷工艺上的应用[J].功能材料,2005,26(3):165-172.
    [94]高旅,孙静,刘阳桥.纳米粉体的分散及表面改性[M].北京:化学工业出版社,2003:45-50.
    [95]王萍,李璐璐,刘素文.分散剂对纳米Ti02悬浮液稳定性的影响[J].中国陶瓷,2008,44(12):20-22.
    [96]Kalakodimi R. P., Kazumichi K., Norio M.. Electrochemical Deposition of Nanostructured Indium Oxide:High-performance Electrode Material for Redox Supercapacitors [J]. Chemisty of Materials,2004,16(10):1845-1847.
    [97]Fukada Y., Nagarajan N., Mekky W.. J. Mater. Sci.2004,39:787.
    [98]Boccaccini A. R., Cho J., Roether J. A.. Electrophoretic deposition of carbon nanotubes[J]. Carbon,2006,44:3149-3160.
    [99]Boccaccini A. R., Roether J. A.. The electrophoretic deposition of inorganic nanoscaled materials[J]. J. Ceram. Soc. Jpn.,2006,114:1-14.
    [100]Doungdaw S., Uchikoshi T.. electrolytic deposition techniques in ceramics processing[J]. Curr. Opin. Solid State Mater. Sci.,2002,6:251-260.
    [101]Besra L., Liu M.. A review on fundamentals and applications of electrophoretic deposition (EPD) [J]. Prog. Mater. Sci.,2007,52:1-61.
    [102]Wang Z., Shemilt J. Xiao P.. Fabrication of ceramic composite coatings using electrophoretic deposition, reaction bonding and low temperature sintering[J]. J. Eur. Ceram. Soc.,2002,22:183-189.
    [103]Lu X. J., Xiao P.. Constrained sintering of YSZ/composite coatings on metal substrates produced from electrophoretic deposition[J]. J. Eur. Ceram. Soc.,2007, 27:2613-2621.
    [104]Hossein F., Taghibakhsh F.. Electrophoretically deposited zinc oxide thick film gas sensor[J]. Electron Lett,2000,36(21):1815-1816.
    [105]Chang Z., Ianp J., Shapiro P. X.. Fabrication of yttria-stabilized-zirconia coatings using electrophoretic deposition:Effects of agglomerate size distribution on particle packing[J]. J Eur Ceram Soc,2009,29(15):3167-3175.
    [106]Pang X., Zhitomirsky I.. Electrophoretic deposition of composite hydroxyapatit-chitosan coatings[J]. Mater. Character.,2007,58:339-348.
    [107]Kim D. W., Lee D. H., Kim B. K.. Direct assembly of BaTiO3-poly (methyl-methacrylate) nanocomposite films[J]. Macromol. Rapid Commun.,2006,27: 1821-1825.
    [108]张剑红,席锦会,刘宜汉,等.尖晶石基铝电解惰性阳极的研究进展[J].有色矿冶,2004,20(1):20-22.
    [109]赖延清,田忠良,秦庆伟,等.复合氧化物陶瓷在Na3AlF6-Al203熔体中的溶解性[J].中南工业大学学报(自然科学版),2003,34(3):245-248.
    [110]Augustin C.O., Sen U.. A Green Anode for Aluminium Production. Incal'98, International Conference on Aluminium[J]. New Delhi,1998,11:173-176.
    [111]Ma L., Zhou K. C., Li Z. Y.. Hot corrosion of a novel (Ni,Co)O/(Ni,Co)Fe2O4 composite coating thermally converted from an electrodeposited Ni-Co-Fe2O3 composite coating[J]. Corrosion Science,2011, Accepted Manuscript.
    [112]Chang Z., Ian P. J., Shapiro P. X.. Fabrication of yttria-stabilized-zirconia coatings using electrophoretic deposition:Effects of agglomerate size distribution on particle packing[J]. J Eur Ceram Soc,2009,29(15):3167-3175.
    [113]Chauhan P., Trikha S. K., et al. Humidity-sensing properties of nanocrystalline haematite thin films prepared by sol-gel processing[J]. Thin Solid Films,1999, 346(1-2):266-268.
    [124]Mansilla M. V., Zyslera. R., Fiorani. D., et al. Annealing effects on magnetic properties of acicular hematite nanoparticles[J]. Physica B,2002,320(6):206-209.
    [115]Chai C. C., Peng J., Yan B. P.. Characterization of-Fe2O3 thin films deposited by atmospheric pressure CVD onto alumina substrates [J]. Sens Actuators B,1996, 34(1-3):412-416.
    [116]Lee E. T., Jang. G. E., et al. Fabrication and gas sensing properties of α-Fe2O3 thin film prepared by plasma enhanced chemical vapor deposition (PECVD) [J]. Sens Actuators B,2001,77(1-2):221-227.
    [117]Yu B. L., Zhu C. S., Gan F. X.. Large nonlinear optical properties of Fe2O3 nanoparticles[J]. Physica E,2000,8(4):360-364.
    [118]Huo L. H., Li Q.. Sol-gel route to pseudocubic shaped-Fe2O3 alcohol sensor: preparation and characterization[J]. Sens Actuators B,2005,107(2):915-920.
    [119]Tong M. S., Dai G. R., Gao D. S.. Surface modification of oxide thin film and its gas-sensing properties[J]. Appl Surf Sci,2001,71(3-4):226-230.
    [120]Lan J. C., Xiao W. H.. Fabrication of yttria-stabilized-zirconia coatings using electrophoretic deposition:packing mechanism during desition[J]. J. Am. Ceram. Soc.,2008,91(4):1102-1110.
    [121]Ling L., Lushan W., Du X., et al. Adsolubilization of dihydroxybenzenes into CTAB layers on silica particles[J]. J. Colloid. Interface Sci.,2007,315(2): 671-677.
    [122]Xuchu M., Fen X., Liyong C.. Magnetic fluids for synthesis of the stable adduct γ-Fe2O3/CTAB/Clay[J]. J. Colloid Interface Sci,2005,280(1-2):118-125.
    [123]Zhong H. P., Somasundaran P.. Interactions of cationic dendrimers with hematite mineral[J]. Colloids and Surfaces A:Physicochem Eng Aspects,2004, 238(1-3):123-126.
    [124]Dericcardis M. F., Carbone D., Rizzo A.. A novel method for preparing and characterizing alcoholic EPD suspensions [J]. J Colloid Interface Sci,2007, 307(1):109-115.
    [125]沈钟,王果庭.胶体与表面化学[M].北京:化学工业出版社,1991:9-10.
    [126]卢立柱,胡湖生,谢慧琴,等.电泳沉积法制备固体电解质薄膜的沉积速率和沉积机理[J].化工冶金,1998,19(2):96-103.
    [127]Koura N., Tsukamoto T., Shoji H., et al. Preparation of various oxide films by an electrophoretic deposition method:a study of the mechanism [J]. Jpn. J. Appl Phys,1995,34:1643-1647.
    [128]Karel M., Hynek H.. Electrophoretic Deposition of Alumina and Zirconia I. Single-Component Systems[J]. Ceramics International,2004,30:843-852.
    [129]Hiemenz P. C., Rajagopalan R.. Principles of Colloidand Surface Chemistry[M]. New York: Marcel Dekker,1997:88-93.
    [130]Koelmans H., Overbeek J. T. G.. Stability and Electrophoretic Deposition of Suspensions in Non-aqueous Media, Discuss[J]. Faraday Society,1954,18:52-62.
    [131]Clark D. E., Dalzell W. J., Folz D. C.. Ceram. Eng, Sic. Proc.,1988,9:111.
    [132]Hill C. G.A., Lovering P. E.. Trans. FaradaySoc.,1947,43:407
    [133]刘引烽.涂层界面原理与应用[M].北京:化学工业出版社,2007:76-79.
    [134]Koura,N. T., Tsukamoto H., et al. Preparation of various oxide films by an electrophoretic deposition method:a study of the mechanism[J]. Jpn. J. Appl. Phys.1995,34:1643-1647.
    [135]Kang N., Gong W., Liu J., Li J. F.. Fabrication of PZT thick films on silicon wafer by powder electrophoretic deposition[J]. J. Ceram. Soc. Jpn.,2004,112(8): 506-509.
    [136]Lin T. H., Huang W. H., Jun I. K., et al. Electrophoretic co-deposition of biomimetic nanoplatelet-polyelectrolyte composites [J]. Electrochemistry Comm-unications.2009,11:1635-1638.
    [137]Maskra A., Smith D. M.. Agglomeration during the drying of fine silica powders, part Ⅱ:The role of particle solubility [J]. J. Am. Ceram. Soc.,1997,80(7): 1715-1722.
    [138]Ji C. Z., Shapiro I. P., Xiao P.. Fabrication of yttria-stabilized- zirconia coatings using electrophoretic deposition:Effects of agglomerate size distribution on particle packing[J]. Journal of the European Ceramic Society,2009,29:3167-3175.
    [139]De D., Nicholson P. S.. Role of ionic depletion in depositionduring electrophoretic deposition [J]. J. Am. Ceram. Soc.,1999,82(11):3031-3036.
    [140]Anne G., Neirinck B., Vanmeensel K.. Origin of the potential drop over the deposit during electrophoretic deposition[J]. J. Am. Ceram. Soc.,2006,89(3): 823-828
    [141]Hoggard J. D., Sides P. J., Prieve D. C.. Electrolyte-dependent multi particle-motion near electrodes in oscillating electric fields. Langmuir,2008,24(7): 2977-2982.
    [142]Iglesias J. E., Fincher C. R., et al. Aggregation and matrix effects on the infrared spectrum of microcrystalline powders [J]. Appl. Spectrosc,1990,44:418.
    [143]Sun H., Quan X., Chen S., et al. Preparation of well-adhered γ-Al2O3 washcoat on metallic wire mesh monoliths by electrophoretic deposition[J]. Appl. Surf. Sci.,2007,253(6):3303-3310.
    [144]Debanjan G., Babita B., Sunkara V.. A simple chemical synthesis of nanocrystalline AFe2O4 (A=Fe, Ni, Zn):An efficient catalyst for selective oxidation of styrene[J]. Journal of Molecular Catalysis A:Chemical,2005, 242(1):26-31.
    [145]Baruwati B., Madhusudan K., et al. Tailored conductivity behavior in nanocrystalline nickel ferrite[J]. Applied Physics Letters,2009,85,14:2833-2835.
    [146]Alcantara R., Jaraba M., Lavela P.. Changes in oxidation state and magnetic order of iron atoms during the electrochemical reaction of lithium with NiFe2O4 [J]. Electrochemistry Communications,2003,5:16-21.
    [147]Lavela P., Tirado J. L.. CoFe2O4 and NiFe2O4 synthesized by sol-gel procedures for their use as anode materials for Li ion batteries[J]. Journal of Power Sources, 2007,172:379-387.
    [148]George M., John A. M., Nair S. S.. Finite size effects on the structural and magnetic properties of sol-gel synthesized NiFe2O4 powders[J]. Magn Magn Mater,2006,302:190-195.
    [149]Belyaev A. I.. Electrolysis of Alumina Using Ferrite Anodes[J]. Legkic Metally, 1938,7(3):7-20.
    [150]De Y. D.. Solubilities of Oxides for Inert Anode in Cryolite-Based Melts. In: R.E. Miller, eds. Light Metals 1986. Warreudale PA:TMS,1986:299-236.
    [151]Gan X. P., Li Z. Y., Tan Z. Q., Zhou K. C.. Influence of Yb2O3 addition on microstructure and corrosion resistance of 10Cu/(10NiO-NiFe2O4) cermets[J]. Trans. Nonferrous Met. Soc. China,2009,19:1514-1519.
    [152]Liu B. G., Zhou K. C., Li Z. Y., Zhang D.. Microstructure and DC electrical conductivity of spinel nickel ferrite sintered in air and nitrogen atmospheres [J]. Materials Research Bulletin.2010,45 (11):1668-1671.
    [153]Ma L., Zhou K. C., Li Z. Y.. Electrodeposition of Ni-Co-Fe2O3 composite coatings[J]. J. Cent. South Univ. Technol,2010,17:708-714.
    [154]马莉,周科朝,李志友.电沉积金属Ni涂层的高温腐蚀性能[J].中国有色金属学报,2010,12:2377-2385.
    [155]Martin L. W., Chu Y. H., Ramesh R.. Advances in the growth and characterization of magnetic, ferroelectric and multiferroic oxide thin films[J]. Materials Science and Engineering R,2010,68:89-133.
    [156]Arshak K., Gaidan I.. NiO/Fe2O3 polymer thick films as room temperature gas sensors[J]. Thin Solid Films,2006,495:286-291.
    [157]Kim J. W., Sung K. L., Chang K. K.. Fabrication of metallic nanoparticle mono-layer made from selective reaction of Ni100-xFex thin films with polyamic acid during its imidization[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2006,284-285:350-354.
    [158]Deng C. Y., Zhang Y., Ma J.. Magnetoelectric effect in multiferroic hetero-epitaxial BaTiO3-NiFe2O4 composite thin films[J]. Acta Materialia,2008,56: 405-412.
    [159]Gao J. H., Cui Y. T., Yang Z.. The magnetic properties of NixZn1-xFe2O4 films fabricated by alternative sputtering technology [J]. Materials Science and Engineering B,2004,110:111-114.
    [160]Gunjakar J. L., More A. M., Shinde V. R.. Synthesis of nanocrystalline nickel ferrite (NiFe2O4) thin films using low temperature modified chemical method[J]. Journal of Alloys and Compounds,2008,465:468-473.
    [161]Nelcy D. S.. Luciana M.. Magnetic nanocomposite thin films of NiFe2O4/SiO2 prepared by sol-gel process[J]. Applied Surface Science,2003,214:143-150.
    [162]Xing Z. D., Datta P. K.. Deposition of silicon modified aluminide coatings on nickel base superalloys by pack cementation process[J]. Materials Science and Technology,2003,19(7):935-942.
    [163]Xing Z. D., Rose S. R., Gray J. S.. Co-deposition of aluminide and silicide coatings on y-TiAl by pack cementation process[J]. Journal of Materials Science, 2003,38(1):19-28.
    [164]乔彦强,郭喜平Ti-Nb-Si基超高温合金Si-Cr共渗抗氧化涂层的显微组织[J].中国有色金属学报,2009,19(11):1994-1999.
    [165]张雷.铝电解用NiFe2O4/M型金属陶瓷惰性阳极材料制备与性能研究[博士学位论文].长沙:中南大学,2006:74-77.
    [167]于先进,邱竹贤,赵敏寿等.高温烧结合成铁锌,铁镍尖晶石[J].黄金学报,1999,1(2):98-100.
    [168]Binnewies M., Milke E.. Thermochemical data of elements and compounds[M]. Germany:wiley-vch.
    [169]Ihsan B.. Thermochemical data of pure substances[M], America:Weinheim basel cambrige.
    [170]杨留芳.铁酸盐复合氧化物(MFe2O4)系列气每敏材料的制备及新型气化传感器的研究[博士学位论文].昆明:昆明理工大学,2005.
    [171]Dalvi A. D., Smeltzer W. W.. J. Electrochem. Soc.,1970,117(11):1431-1436.
    [172]Park J., Yamamoto J. W. S., Kikuchi S., Adachi M.. Oxid Met,93 Alstatter C J. Metall Trans,1987; 18A:43
    [173]李美栓.金属的高温腐蚀[M].北京:冶金工业出版社,2001:57-59.
    [174]李丽霞,贾茹.硅酸盐物理化学[M].天津:天津大学出版社,2010:201-209.
    [175]Atkinson A., Taylor R. I., Goode P. D.. Transport processes in the oxidation of Ni studied using tracers in growingNiO scales [J]. OxidMet,1979,13:519-543.
    [176]Atkonson H. V.. Evolution of grain structure in nickel oxide scales[J]. Oxid Met, 1987,28:353-389.
    [177]Gjostein N. A.. In:Burke T T, Reed N L, Weiss V, ed, suefaces and Catalysis. N Y:John Wiley & Sons, Inc.,1994.
    [178]曹立礼.材料表面科学[M].北京:清华大学出版社,2009:22.
    [179]Somorijai G. A.. Chemistry in Two Dimension-Surfaces. Ithaca: Cornell University Press,1981:25-28.
    [180]李荫远,李国栋.铁氧体物理学[M].北京:科学出版社,1978:77-81.
    [181]白新德.材料腐蚀与控制[M].北京:清华大学出版社,2005:159-160.
    [182]Schmalzried H.. Ctundsalzliche Uberlegungen zur Spinellbildung in Zunder-schichten und zun den Transportei genschaften der Spinelle[J]. Werkst Korros, 1971,22:371
    [183]潘金生,仝健民,田民波.材料科学基础[M].北京:清华大学出版社,1998,6:465-466.
    [184]Sadoway D. R.. Inert anodes for the hall-heroult cell:the ultimate materials challenge [J]. JOM,2001,53(5):34-35.
    [185]刘业翔.铝电解惰性阳极与可湿润性阴极的研究与开发进展[J].轻金属,2001,271(5):26-29.
    [186]Rowlands P. C., Manning M. I., Soo J. Interactions Between Corrosion and Metal Stresses at High Temperature [J]. Metals Society,1980:289.
    [187]Petric A., Ling H.. Electrical Conductivity and Thermal Expansion of Spinels at Elevated Temperatures[J]. J. Am. Ceram. Soc,2007,90:1515-1520.
    [188]Deadmore D.L., Lowell C.E. The effect of △T (oxidizing temperature minus cooling temperature) on oxide spallation[J]. Oxid. Met.1977,11:91-106.
    [189]Summerfelt S.R., Carter C.B.. Dissolution of NiFe2O4 particles in a NiO matrix[J]. Acta Metallurgica et Materialia,1992,40:2799-2804.
    [190]焦万丽,张磊,姚广春.Mn02添加剂对镍铁尖晶石基惰性阳极耐腐蚀性的影响[J].过程工程学报,2005,5(3):309-312.
    [191]Wood G. C., Wright I. G.. The Scaling of Nickel-Cobalt alloys in air[J]. Corros. Sci.1965,5:841-857.
    [192]He H. B.. Electrical Conductivity and Corrosion Bahavior of NiFe2O4-10NiO Based Ceramic Anode for Aluminum Electrolysis in:Doctor thesis, Central South University,2010.
    [193]Loremtsen O. A.. Behaviour of nicel, iron and copper by application of inert anodes in aluminium production[D]. Norwegian University of Science and Technology Department of Materials Technology and Electrochemistry:118.
    [194]Liu G., Li M., Zhou Y., Zhang Y.. Hot corrosion behavior of Ti3SiC2 in the mixture of Na2SO4-NaCl melts, J. Eur. Ceram. Soc.2005,25:1033-1039.
    [195]Diep Q. B., Dewing E. W., Sterten A.. The Solubility of Fe2O3 in Cryolite-Alumna Melts. Metallurgical and Materials Transactions B,2002,33B(1):140-142.
    [196]陆忠胜,张世荣,张广荣,等.铝电解槽侧壁碳结合碳化硅材料的研究[J].轻金属,1994(4):29-33.
    [197]Wang F. H., Young D. J.. Effect of Nanocrystallization on the corrosion resistance of K38G superalloy in CO+CO2 atmospheres [J]. Oxid. Met.,1997, 48(5/6):497.
    [198]Herchl R., Khoi N. N., Homma T., et al. Shot-circuit diffusion in the growth of nickel oxidation scale on nickel crystal faces[J]. Oxid. Met.,1972,4:35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700