Mg_(88.4)Y_(5.6)Zn_6合金的长周期结构与储氢特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁基储氢材料具有储氢量大、价格低廉等优点,但其氢化物热力学稳定性高、吸放氢温度高和动力学性能差等缺点,限制了它的实验应用。本文在对国内外镁基储氢材料的研究进行综述的基础上,研究了Mg_(88.4)Y_(5.6)Zn_6(at.%)合金的储氢性能以及吸放氢前后的相结构转变。采用感应熔炼方法制备Mg_(88.4)Y_(5.6)Zn_6(at.%)合金,利用X射线衍射(XRD)、扫描电子显微镜(SEM)、能谱(EDS)、透射电镜(TEM)等手段,研究了Mg_(88.4)Y_(5.6)Zn_6(at.%)合金微观组织形貌,吸氢过程与放氢过程的相转变;测定了合金的压力-组成-温度(PCI)曲线;获得了基本的热力学数据;并对吸放氢机理做了初步探讨。
     铸造Mg_(88.4)Y_(5.6)Zn_6(at.%)合金的铸态组织由镁固溶体、长周期结构X相(LPSO)以及粗大的共晶组织组成。长周期结构X相(LPSO)呈板条状,大量的LPSO结构连接成网格,其主要相为Mg_(12)YZn。镁固溶体呈现颗粒状,镶嵌于板条状结构中。非平衡的共晶组织由Mg、Mg_3Y_2Zn_3相组成。合金经450°C×48h退火处理后,相组成并未发生变化,依然由Mg固溶体、LPSO以及Mg_3Y_2Zn_3组成。非平衡的共晶组织溶解,由原来的粗大形态变得纤细和呈不连续状;LPSO长周期结构也有碎化的趋势,而且含量有所减少;Mg固溶体由原来的颗粒状变为不规则形状。球磨可以使合金的组织细化,球磨后的样品呈颗粒状,颗粒大小约为40μ~70μ。铸态合金中存在着堆垛方式为14H的长周期结构Mg_(12)YZn(X相),退火以后长周期结构的具体堆垛方式未发生变化,仍然为14H结构。
     退火球磨的Mg_(88.4)Y_(5.6)Zn_6(at.%)合金储氢性能优于铸态球磨的Mg_(88.4)Y_(5.6)Zn_6(at.%)合金。在330°C下,两种合金样品都能吸氢超过5wt.%,退火球磨的样品放氢量远远大于铸态球磨的样品。相对应的XRD结果与储氢性能相符合,退火球磨样品PCI后的XRD中不存在MgH2,而铸态球磨样品PCI后的XRD中存在着大量的MgH_2,说明,退火球磨样品在放氢过程中MgH2分解完全,而铸态球磨的样品在放氢过程MgH_2分解不完全。合金中的三个相都吸氢,吸氢后,生成MgH_2、YH_2、YH_3、MgZn相,Mg_(12)YZn(X相)和Mg_3Y_2Zn_3(W相)在吸氢过程中分解。由Mg_(88.4)Y_(5.6)Zn_6(at.%)合金的Van’t Hoff曲线可知,该合金吸氢时的标准摩尔焓变已经降低到-65KJ/mol H2,这比MgH2(-74KJ/mol H_2)的标准摩尔焓变已有所下降,但仍不足以从本质上改变其吸放氢困难的问题。该合金的最低放氢温度要高于320°C。吸氢与放氢后的产物中均存在Y的氢化物,说明Y吸氢,但是吸氢后形成的氢化物比较稳定,在放氢过程中难以分解,而在温度稍微高一些的情况下(大于360°C),MgH_2可以完全分解,因此Mg_(88.4)Y_(5.6)Zn_6(at.%)合金的吸放氢循环实质上是Mg与MgH_2之间的循环。
Mg-based hydrogen storage materials have relatively high theoretical hydrogen storagecapacity,low cost and abundant resource, however, demerits of high hydriding/dehydridingtemperature, high themodynamic stability and poor kinetic properties hinder their practicalapplication. In this paper, the research and development of Mg-based hydrogen storagematerials were reviewed firstly. On this basis,the hydrogen storage properties andMicrostructures of Mg_(88.4)Y_(5.6)Zn_6(at.%) alloy prepared by induction melting were investigatedby using X-ray diffraction(XRD), scanning electron microscopy(SEM), energy dispersiveX-ray spectroscopy(EDS), transmission electron microscopy(TEM),respectively.Finally, thephases transformation during hydrogenation/dehydrogenation process, the data of basicthermodynamics and hydriding/dehydriding mechanism were obtained.
     The microstructure of the as-cast alloy was composed of Mg solid solution grains withrather lower alloy elements,Long period stacking ordered (LPSO)phase and the equilibriumand nonequilibrium eutectic.The thick equilibrium and nonequilibrium eutectic microstructurewere Mg and Mg_3Y_2Zn_3 (W) phase.A large number of LPSO phase Mg_(12)YZn(X), which werelath-like, interconnected to be a net.After 450°C annealing treatment for 48h, themicrostructure became fragmentation without the compositon of phases changed.The thickequilibrium and nonequilibrium eutectic microstructure dissolved and became thin anddiscontinuous shape.LPSO structure also tended to be fragmentation and it’s content reduced.Magnesium solid solution became irregular shape from the origial granular.Ball milling isbenefit for refining the organization, milled samples show particle-like, it’s size is about40μ~70μ. The specific structure of LPSO phase Mg_(12)YZn(X phase) in the as-castMg_(88.4)Y_(5.6)Zn_6(at.%) alloy is 14H, there were no change for the structure of LPSO afterannealed.
     The hydrogen storage properties of ball milling alloy after annealing is better thanas-cast ball milling alloy.The hydrogen absorption capacity of as-cast ball milling alloy andannealed ball milling alloy both surpassed 5 wt.% in 330°C, but dehydrogenation content ofannealed ball milling alloy is more higher than as-cast ball milling alloy. There are a lot of MgH_2 in the as-cast ball milling alloy after PCI, on the contrary, there are no MgH_2 in theannealed ball milling alloy after PCI. This show that the MgH_2 in annealed ball milling alloydecomposed in the dehydrogenation process, but the MgH_2 in as-cast ball milling alloy woundnot.Mg, Mg_(12)YZn(X phase) and Mg_3Y_2Zn_3 in alloy all can absorption hydrogen, afterhydrogenation, there will be MgH_2, YH_2, YH_3, MgZn formation, Mg_(12)YZn(X phase) andMg_3Y_2Zn_3(W phase) decomposed. From the Van’t Hoff plot of the Mg_(88.4)Y_(5.6)Zn_6(at.%) alloywe know, the standard molar enthalpy of this alloy has been reduced to -65kJ/mol H_2, thisvalue is lower than the standard molar enthalpy of MgH_2 (-74 kJ/mol H_2). But this alloy isalso difficult to dehydrogenation, actually, below the temperature of 320°C it can not releasehydrogen.MgH_2 can decompose over 330°C but the hydride of Y is very steady and difficultto decompose.So the nature cycle of hydrogenation/dehydrogenation process forMg_(88.4)Y_(5.6)Zn_6(at.%) alloy is the shift between Mg and MgH_2.
引文
[1]毛宗强.氢能-21世纪的绿色能源[M].北京:化学工业出版社, 2005
    [2]胡子龙.贮氢材料[M].北京:化学工业出版社, 2002
    [3]钱存富,杜昊,王洪祥, LaNi5型储氢材料最大储氢量的讨论[J].稀有金属材料与工程, 2000,29:25-27
    [4]冯治库,杨宏秀,焦玉琏,等.稀土储氢材料研究的进展[J].稀有金属材料与工程,1990,1:59-71
    [5]大角泰章,金属氢化物的性质与应用[M].北京:化学工业出版社, 1990
    [6]杜宇雷,杨晓光,张庆安,等. Zr1-xTi(Ni0.6Mn0.3V0.1Cr0.05)2(x=0~0.5)Laves相储氢合金的电化学性能[J],材料科学与工程, 2000,18:11-14
    [7] Satmpfer J.F., Jr., Holley C.E., Jr., Suttle J.F.,TheMagesium-Hydrogensystem[J],J.Am.Chem.Soc. 1960,82:3504-3508
    [8] Reiser A., Bogdanovic B., Schlichte K., The application of Mg-based metal-Hydrides asheat energy storage systems[J], Int.J.Hydorgen Energy,2000,25:425-430
    [9] Vigeholm B., Kjoller J., Larsen B., Formation and decomposition of MagnesiumHydride[ J].Less-Common Met.1983,89:135-144.
    [10] Stander C.M., Kinetics of formation of Magnesium hydride from Magnesium andhydrogen[J], Z.Phys.Chem.N.F.1977,104:229-238.
    [11] Mintz M.H., Gavra Z., Hadari Z., Kinetics study of the reaction between Hydrogen andMagnesium catalyzed by addition of Indium[J].Inorg.Nucl.Chem. 1978,40:765-768.
    [12] Song M.Y., Manaud J.P., Darriet B., Dehydriding Kinetics of a mechanically alloyedmixture Mg-10wt.%Ni[J].J. Alloys Comp.1999,282:243-247
    [13] Martin M.,Gommel C., Borkhart C., Fromm E.,Absorption and desorption kinetics ofhydrogen storage alloys[J], J.Alloys Comp.1996,238:193-201
    [14] Zhang Y.S., Yang H.B., Yuan H.T., et al. Dehydriding properties of ternary Mg2Ni1-xZrxhydrides synthesized by ball-milling and annealing[J]. J Alloys Comp. 1998,269:278-283.
    [15] Tatsuoki T, Kohno M, et al. Effect of partial substitution on hydrogen storage Propertiesof Mg2Ni alloys[J]. Electrochem.Soc.,1997,144:2384-2388
    [16] Nohara S., Hamasaki K., Zhang S.G.., et al. Electrochenical characteristics of anAmorphous Mg0.9V0.1Ni alloy prepared by mechanical alloying[J]. J Alloys Comp,1998,280:104-106.
    [17]王秀丽,涂江平,张孝彬等.掺Cr纳米晶Mg2Ni合金的气态储氢性能[J].中国有色金属学报, 2002,12:907-911
    [18] Liang G, Hout J, et al. Catalytic effet of transition metals on hydrogen sorption innanocrystalline ball milled MgH2-Tm(Tm=Ti,V,Mn,Fe and Ni)system[J]. J Alloys Comp,1999,292:247-252.
    [19] Yoshihito Kawamura, et al. Rapidly solidified powder metallurgy Mg97Zn1Y2 Alloyswith excellent tensile yield strength above 600MPa[J]. Mater Trans,2001,42:1172
    [20] Inoue A., Matsushita M., Kawamura Y., et al. Novel Hexagonal structure of ultra-highstrength magnesium-based alloys[J]. Mater Trans, 2002,43:580.
    [21] Data A,et al.Crystal structure of a Mg-Zn-Y alloy:A first principle Study[J]. ComputMater Sci,2006,37:69.
    [22] Chino Y., Mabuchi M.,Shigehiro Hagiwara.Novel equilibrium Two phase Mg alloy withthe long-period ordered structure[J],Scr Mater,2004,51:711
    [23]姚素娟.储氢镁合金的研制[J].轻金属, 2003,6:40-42
    [24]袁华堂,玛艳等.镁基储氢合金改性的研究进展[J].北工进展,2003:22:454-458
    [25]王尔德,雷正龙,于振兴等.镁基储氢材料的研究进展[J].粉末冶金技术, 2003,21:31-37
    [26]迟洪忠,陈长聘,李洪波等.镁基储氢材料的研究进展[J].材料工程,2002,8:44-48
    [27] Abe E., Kawamura Y., Hayashi K., et al. Long-period ordered structure in ahigh-strength nanocrystalline Mg-1at.%Zn-2at.%Y alloy studied by atomic-resolutionZ-contrast STEM[J]. Acta Materialia, 2002, 50:3845-3857
    [28] Rao J., Zhou Y., Yoshimoto S., et al.HRTEM Study of Precipitates in Mg-Zn-Y Alloys asCast and after Extrusion[J].Advanced Engineering Materials, 2005,7:610-612.
    [29]曾小勤,王渠东,吕宜振等.镁合金应用新进展[J].铸造, 1998, 11:39-43
    [30]向群,屈伟平.镁合金的发展趋势[J].冶金丛刊, 2004, 153
    [31] Kainer K.U., Buch F. The Current State of Technology and Potential for Further Development ofMagnesiumApplication.In Kainer K U (ed). Kaiser F(tras.) Magnesium Alloys and Technology,Weinheim: WILRY-VCH Veerlag GmbH&Co.KGaA, 2003
    [32] Mordike B.L. Magnesium and Magnesium Alloys[J].轻金属, 2001, 51:2-13
    [33]崔崑.钢铁材料及有色金属材料[M].北京:机械工业出版社, 1981:385
    [34] Garces G., Maeso M., Todd I., et al. J Alloys Compd, 2007, 432:L10
    [35] Itoi T., Seimiya T., Kawamura Y.,et al. Long period stacking structures observed inMg97Zn1Y2 alloy[J]. Scripta Materialia, 2004, 51(2):107-111
    [36] Luo Z.P., Zhang S.Q. J Mater Sci Lett, 2000, 19:813
    [37] Maeng D.Y., Kim T.S. Microstructure and Strength of Rapidly Solidified and ExtrudedMg-Zn Alloys[J].Scripta materialia, 2000, 43(5):385-389
    [38] Avedesian M.M., Baker H.. ASM Specialty Handbook-Magnesium and MagnesiumAlloys[J].ASM international, 1999:19
    [39]关绍康,王迎新.汽车用高温镁合金的研究进展[J].汽车工艺与材料, 2003, 4:3-8
    [40]李亚国,段劲华,钇稀土在Mg-Zn-Zr镁合金中的强化作用[J].现代机械, 2003, 5:86-88
    [41]于文斌,刘志义等.稀土变形镁合金的研究和开发[J].材料导报, 2006, 20:65-68
    [42] Orimo S, Fujii H. Materials science of Mg-Ni-based new hydrides[J]. Appl PhysA.,2001,72:167
    [43] Nohara S, Fujita N, Zhang S.G. Electrochemical characteristics of a homogeneousamorphous alloy prepared by ball-milling Mg2Ni with Ni[J]. J. AlloysComp.,1998,267:76-78
    [44] Huot J, Liang G, Schulz R. Magnesium-based nanocomposites chemical hydrides[J].J.Alloys Comp., 2003,353:L12-L15
    [45] Jurczyk M, Smardz L, Okonska I, Jankowska E, Nowak M, Smardz K. NanoscaleMg-based materials for hydrogen storage[J]. J.Alloys Comp.,2008,33:374-380
    [46] Wang H.W, Chyou S.D, Wang S.H, Yang M.W, Hsu C.Y, Tien H.C, Huang N.N.Amorphous phase formation in intermetallic Mg2Ni alloy syntheized by ethanol wetmilling[J]. J.Alloys Comp.,2009,479:330-333
    [47] Gennari F.C, Esquivel M.R. Structural characterization and hydrogen sorption propertiesof nanocrystalline Mg2Ni[J]. J.Alloys Comp.,2008,459:425-432
    [48] Muthukumar P, Maiya M.P, Murthy S.S, Vijay R, Sundaresan R. Tests on mechanicallyalloyed Mg2Ni for hydrogen storage[J]. J.Alloys Comp.,2008,452:456-461
    [49] Fernández J.F,Leardini F,Bodega J,Sánchez C,Joubert J.M,Cuevas F,Leroy E,BariccoM,Feuerbacher M. Interaction of hydrogen with theβ-Al3Mg2 complex metallicalloy:Experimental reliability of theoretical predictions[J]. J.Alloys Comp., 2009,472:565-570
    [50] Jurczyk M,Okonska I,Iwasieczko W,Jankowska E,Drulis H.Thermodynamic andelectrochemical properties of nanocrystalline Mg2Cu-type hydrogen storage materials[J].J.Alloys Comp.,2007,429:316-320
    [51] Züttel A. Materials for hydrogen storage[J]. Materials today,2003,6:24-33
    [52] Bogdanovi B,Brand R A,Marjanovi A,Schwickardi M,Tolle J.Metal-doped sodiumaluminum hydrides as potential new hydrogen storage materials.[J].AlloysCompd.,2000,302:36-58.
    [53] L.Schlapbach, A. Zuttel, Hydrogen-storage materials for mobile application[J], Nature,2001, 414:353-358
    [54]黄亚继,张旭.氢能开发和利用的研究[J],能源工程, 2003,2:33-36
    [55]张羊换,董小平,王国清,等.镁基储氢合金的研究及进展[J].金属功能材料,2004,11(3):26-32.
    [56] Inoue A, Kawamura Y, Matsushita M, Hayashi K, Koike J.[J] Mater Res2001,16:1894.
    [57] Zhu YM, Morton AJ, Nie JF. Improvement in the age-hardening response of Mg-Y-Znalloys by Ag additions[J]. Scripta Mater. 2008;58:525-528.
    [58] Li R.G., Fang D.Q., An J., et al. Comparative studies on the microstructure evolutionand fracture behavior between hot-rolled and as-cast Mg96ZnY3 alloys[J]. MaterialsCharacterization. 2009,60:470-475.
    [59] Ping D.H., Hono K., Kawamura Y., Inoue A.Local chemistry of nanocrystalline highstrength Mg97Y2Zn1 alloy[J].Philos Mag Lett. 2002,82:543
    [60] Chino Y, Mabuchi M, Hagiwara S, Iwasaki H, Yamamoto A, Tsubakino H. Novelequilibrium two phase Mg alloy with the long-period ordered stucture[J]. Scripta Mater2004,51:711.
    [61] Nishida M, Kawamura Y, Yamamuro T. Formation process of unique microstructure inrapidly solidefied Mg97Zn1Y2 alloy[J]. Mater Sci Eng A .2004,375-377:1217.
    [62] Matsuda M, Ii S, Kawamura Y, Ikuhara Y, Nishida M. Variation of long-period stackingorder structures in rapidly solidified Mg97Zn1Y2 alloy[J]. Materials Sciense andEngineering. 2005,393:269.
    [63] Ono A., Abe E., Itoi T., et al. Microstructure Evolutions of Rapidly-Solidified andConventionally-Cast Mg97Zn1Y2 Alloys[J]. Materials Transactions.2008,49:990-994.
    [64] Luo ZP, Zhang SQ, Tang YL, ZhaoDS. J Alloys Compd 1994,209:275
    [65] Zhu YM, Wayland M, Morton AJ, Oh-ishi K, Hono K, Nie JF. The building block oflong-period structures in Mg-RE-Zn alloys[J]. Scripta Mater. 2009,60:980
    [66] Yoshimoto S, Yamasaki M, Kawamura Y. Mater Trans 2006,47:959
    [67] Lee J, Sato K, Konno TJ, Hiraga K. Mater Trans 2009,50:222
    [68] Zhu Y.M., Morton A.J., Nie J.F. Characterization of Intermetallic Phases and PlanarDefects in Mg-Y-Zn Alloys[J].Materials Science Forum. 2007,561-565:151-154.
    [69] Yamada K., Okubo Y., Shiono M., et al.Alloy Development of High ToughnessMg-Gd-Zn-Zr Alloys[J]. Materials Transactions. 2006;47:1066-1070.
    [70] Zhu Y.M., Morton A.J., Nie J.F. The 18R and 14H long-period stacking orderedstructures in Mg-Y-Zn alloys[J]. Acta Materialia,2010,58:2936-2947
    [71] Wu Y.J., Lin D.L., Zeng X.Q., et al.Formation of a lamellar 14H-type long periodstacking ordered structure in an as-cast Mg-Gd-Zn-Zr alloy[J]. Mater Sci,2009,44:1607-1612.
    [72] Matsuda M., Ii S., Kawamura Y., et al.Interaction between long period stacking orderphase and deformation twin in rapidly solidified Mg97Zn1Y2 alloy[J]. Materials Scienceand Engineering A .2004,386:447-452
    [73] Homma T., Kunito N., Kamado S. Fabrication of extraordinary high-strength magnesiumalloy by hot extrusion[J]. Scripta Maereialia.2009,61:644-647
    [74] Yamasaki M., Anan T., Yoshimoto S., Kawamura Y. Mechanical properties ofwarm-extruded Mg-Zn-Gd alloy with coherent 14H long periodic stacking orderedstructure precipitate[J].Scripta Mater.2005,53:799-803
    [75] Yamasaki M., Sasaki M., Nishijima M., et al.Formation of 14H long period stackingordered structure and prfuse stacking faults in Mg-Zn-Gd alloys during isothermal agingat high temperature[J].Acta Materialia.2007,55:6798-6805
    [76] Nie J.F., Oh-ishi K., Gao X., et al.Solute segregation and precipitation in acreep-resistant Mg-Gd-Zn alloy[J].Acta Materialia.2008;56:6061
    [77] Honma T., Ohkubo T., Kamado S., Hono K. Effect of Zn additions on the age-hardeningof Mg-2.0Gd-1.2Y-0.2Zr alloys[J].Acta Materialia.2007;55:4137
    [78] Kawamura Y., Kasahara T., Izumi S., Yamasaki M. Elevated temperature Mg97Y2Cu1alloy with long period ordered structure[J].Scripta Materialia.2006,55:453-456
    [79] Hui X., Dong W., Chen G.L., Yao K.F. Formation, microstructure and properties oflong-period order structure reinforced Mg-based bulk metallic glass cpmposites[J]. ActaMaterialia.2007;55:907.
    [80] Hagihara K., Yokotani N., Umakoshi Y. Plastic deformation behavior of Mg12YZn with18R long-period stacking ordered structure[J]. Intermetallics.2010,18:267-276.
    [81] Claudia Z., Martin S., Pietro M.,et al. Hydrogen sorption properties of a Mg-Y-Ti Alloy[J]. Journal of Alloys and Compounds,2010,489(2):375-378
    [82] Di C.M., Schiffini L., Enzo S., et al. Hydride phase formation in LaMg2Ni during H2absorption[J].Renewable Energy,2008,33:237-240
    [83] Delogu F., Mulas G. Hydrogen absorption processes in Mg2Ni-based systems:Thermaland mechanochemical kinetics[J]. Int J Hydrogen Energy,2009,34:3026-3031
    [84] Shang C.X., Guo Z.X. Structural and desorption characterisations of milled(MgH2+Y,Ce) powder mixtures for hydrogen storage[J]. International Journal ofHydrogen Energy. 2007,32:2920-2925.
    [85] Nick E., Tran S.G..,Lambrakos M.,Ashraf I.Analyses of hydrogen sorption kinetecs andtehrmodynamics of magnesium-misch metal alloys[J]. Journal of Alloys andCompounds.2006,407:240-248.
    [86] Li Z.N., Liu X.P.,Li J.J., et al.Characterization of Mg-20wt.%Ni-Y hydrogen storagecomposite prepared by reactive mechanical alloying[J].International Journal ofHydrogen Energy.2007,32:1869-1874.
    [87] Song M.Y., Kwon S.N., Bae J.S., et al.Hydrogen storage properties of Mg-23.5Ni-(0 and5)Cu prepared by melt spinning and crystallization heat treatment[J].InternationalJournal of Hydrogen Energy, 2008,33:1711-1718.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700