高强耐磨Cu-17Ni-3Al-X合金腐蚀行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Cu-17Ni-3Al-X合金是一种新型高强耐磨铜合金,其突出的特点是在高温下具有优异的耐磨性能,目前该合金现已成功应用于一些需要高温耐磨的场合。为了进一步拓展Cu-17Ni-3Al-X合金的应用范围,比如将其应用于海洋等腐蚀性环境中,需要深入研究这种合金的腐蚀行为。本文以离心铸造的Cu-17Ni-3Al-X合金为对象,对比了该合金在不同组织状态下的耐腐蚀性能差异,重点研究了具有细等轴晶组织特征的合金在不同腐蚀环境下的腐蚀行为,并将其与三种铝青铜合金(KK1、QAl10-4-4和KK3)的腐蚀行为进行对比,主要结论如下:
     (1)离心铸造Cu-17Ni-3Al-X合金铸锭的宏观组织由细等轴晶区、粗等轴晶区和柱状晶区组成。电子探针分析表明,铸锭中不存在宏观偏析,但是存在晶内偏析。
     (2)通过电化学试验和实验室浸渍试验,对比研究了Cu-17Ni-3Al-X合金铸锭中三种不同组织的耐腐蚀性能。总体来说,合金的细等轴晶区、粗等轴晶区和柱状晶区在腐蚀形态上都主要表现为均匀的全面腐蚀;在中性和酸性NaCl溶液中,粗大柱状晶的耐腐蚀性能最好,粗等轴晶次之,细等轴晶相对较差。三种组织耐腐蚀性能的差异主要是由于它们的晶粒大小不同造成的,晶粒越细小,晶界数量越多,合金越容易发生电化学反应;在强碱性NaCl溶液中,三种组织耐腐蚀性能的差异减小。
     (3)采用实验室浸渍试验、中性盐雾试验和电化学试验,重点研究了具有细等轴晶组织特征的Cu-17Ni-3Al-X合金的腐蚀行为。结果表明,Cu-17Ni-3Al-X合金在NaCl介质中表面能生成致密的Cu_2O膜,随着腐蚀时间的延长,Cu_2O膜外层被氧化成Cu_2(OH)_3Cl。由于Cu_2O膜对腐蚀反应的阻碍作用,Cu-17Ni-3Al-X合金的平均腐蚀速率随着腐蚀时间的延长而降低。
     (4)通过静态浸泡腐蚀试验和电化学试验,采用扫描电镜、X射线衍射仪分别研究了pH值和Cl-浓度变化对合金耐腐蚀性能和腐蚀行为的影响。结果表明,在NaCl溶液中,随着溶液pH值的升高,合金腐蚀速率逐渐降低,在中性和碱性溶液中,合金具有优异的耐腐蚀性能。当溶液pH值为强酸性(pH=3)时,合金表面不易形成致密的保护膜。当溶液pH值为6,8,10时,合金表面产生富镍、铝的Cu_2(OH)_3Cl和Cu_2O腐蚀产物膜。在强碱性(pH=12)溶液中,合金容易形成致密的Cu_2O膜。合金在不同pH值溶液中腐蚀速率的差异主要是合金表面生成的腐蚀产物膜致密的程度不同以及合金在电化学反应过程中阴极反应的不同引起的。此外,在酸性溶液中,合金在第二相的附近出现了晶间腐蚀。随着溶液中Cl-浓度的升高,合金的腐蚀速率增大。Cl-浓度对合金耐蚀性的影响主要是由于Cl-对合金表面生成的Cu_2O膜有很大的破坏作用,导致Cu_2O膜对合金的保护作用降低。
     (5)对比研究了Cu-17Ni-3Al-X合金与三种铝青铜合金(KK1、QAl10-4-4和KK3)在弱碱性NaCl溶液和中性盐雾中的耐腐蚀性能,结果表明:Cu-17Ni-3Al-X合金具有最佳的耐腐蚀性能,QAl10-4-4和KK3次之,KK1合金的耐腐蚀性能最差。这是因为Cu-17Ni-3Al-X合金在腐蚀过程中生成的Cu_2O膜能保持致密完整,而三种铝青铜合金表面形成的Cu_2O膜都在腐蚀过程中发生破裂,导致合金表面发生不均匀的全面腐蚀或点蚀。四种铜合金在电化学腐蚀过程中均发生相的选择性腐蚀,Cu-17Ni-3Al-X合金腐蚀后沿枝晶边界分布的第二相仅是轻微的凸出试样表面,而整个晶粒表面是平整的,而其他三种铝青铜腐蚀后试样表面高低不平。
Cu-17Ni-3Al-X is a novel high-strength and wear-resisting copper alloy, the outstanding characteristic of which is the excellent wear resistance at elevated temperature. In order to expand the application of the alloy, for example in the marine environment, the corrosion behavior of the alloy must be investigated. In this dissertation, the comparison of corrosion behavior of the Cu-17Ni-3Al-X alloy with different macro structure was done first, then more tests were performed to study the corrosion behavior of alloy with complete fine equiaxed grains in different corrosion environments, at last the corrosion behavior of the alloy was compared with three kinds of aluminum bronzes (KK1, QAl10-4-4 and KK3). The main conclusions are summarized as follows.
     (1) The transverse section of the centrifugal casting Cu-17Ni-3Al-X ingot is composed of fine equiaxed grain, coarse equiaxed grain and columnar grain. The EPMA analysis indicates that there is no macro segregation among the ingot, however, micro segregation was found within the grains.
     (2) The corrosion behavior of the Cu-17Ni-3Al-X alloy with different macro structure was compared by electrochemical measurements and immersion tests. Generally, the specimens composed of fine equiaxed grain, coarse equiaxed grain and columnar grain all reveals the morphologies of uniform corrosion. In the neutral NaCl and highly acid solution, the corrosion rates decrease in the following order: columnar grain, coarse equiaxed grain and fine equiaxed grain. However, in the highly alkaline solution, the difference of corrosion resistance of the alloy with different microstructures is neglectable.
     (3) The focus of this research is the corrosion behavior of Cu-17Ni-3Al-X alloy with complete fine equiaxed grain. By the immersion tests, neutral salt spray and electrochemical measurements, the corrosion behavior of the alloy with complete fine equiaxed grain was investigated in different corrosion environments. The results show that with the increasing of immersion time, the compact and uniform Cu_2O film is generated on the surface of the specimen. Moreover, the Cu_2O film is further oxidized to from porous and loose Cu_2(OH)_3Cl film. Thanks to the protection of the compact Cu_2O film, the average corrosion rate of the specimen in the NaCl solution decreases with the increasing of immersion time.
     (4) The influence of pH values and Cl- concentration on the corrosion behavior of Cu-17Ni-3Al-X alloy were also investigated respectively. The results manifest that the corrosion rates of the specimen decrease with the increasing of the pH values, and the specimens exhibit excellent corrosion resistance in neutral and alkaline NaCl solution. It was found that the product film formed on the surface of the specimens differs as the increasing of the pH values of the immersion solution. There is no compact product film on the surface of the alloy when the pH value is 3. However, the Ni-rich and Al-rich Cu_2(OH)_3Cl and Cu_2O films could be found on the surface of the alloy when the pH values range from 6 to 10. The compact Cu_2O film is easily formed when the pH of the NaCl solution is 12. In addition, the difference of the cathodic reaction also results in the decrease of the corrosion rates. Furthermore, in the acid solution, the alloy suffers from intergranular corrosion around the second phases. It was also found that the corrosion rates of the specimen increase with the rise of the Cl- concentration, which can be attributed to the deterioration of the Cl- to the protection of the Cu_2O film.
     (5) A comparative investigation of corrosion resistance of Cu-17Ni-3Al-X alloy and three kinds of aluminum bronzes (KK1、QAl10-4-4 and KK3) was carried out in slightly alkaline NaCl solution and the neutral salt spray atmosphere. The results show that the corrosion resistance of the four kinds of copper alloys decrease in the following order: Cu-17Ni-3Al-X, QAl10-4-4, KK3 and KK1. The Cu_2O film generated on the surface of Cu-17Ni-3Al-X alloy is uniform, while the purple Cu_2O film formed on the aluminum bronze ruptures as the increase of exposure time and that induces the local corrosion. The specimen surface morphologies suggest that the galvanic cells are set up between two phases and phase attact occurres during the electrochemical corrosion of the four kinds of copper alloys, which roughes the surface of the specimens.
引文
[1]王祝堂,田荣璋.铜合金及其加工手册[M].长沙:中南大学出版社, 2002
    [2] Fu Y. B., Yan Z. M., Li T. J., et al. Study on plastic behaviours of CuNi10Fe1Mn alloy tubes under cast-roll process [J]. Materials and Design, 2009, 30: 4478-4482
    [3]潘奇汉.高弹性Cu-20Ni-20Mn合金[J].中国有色金属学报, 1996, 6(4): 91-95
    [4]万传琨.高强度耐海水腐蚀白铜(铜镍)合金综述[J].材料导报, 1992, 1:27-32
    [5] Powell C. A., Michels H. T. Copper-nickel alloys for seawater corrosion resistance and anti-Fouling - A state of the art review [A]. Corrosion 2000[C]. Florida Orlando: Corrosion, 2000, 26-31
    [6] Littlea B. J., Lee J. S., Ray R. I. The in?uence of marine bio?lms on corrosion: A concise review [J]. Electrochimica Acta, 2008, 54: 2-7
    [7]陈明奎,陈伟,赵祖康.白铜复合板的焊接工艺试验[J].焊接技术, 2001, 30(增刊): 43-44
    [8]王厚勤,曹健,张丽霞,等.铜合金与钢连接技术研究进展[J].焊接技术, 2009, 38(3): 1-5
    [9]王艳辉,汪明朴,洪斌. Cu-15Ni-8Sn导电弹性材料的研究现状与进展[J].材料导报, 2003, 17(3): 24-26
    [10]尹志民,张生龙.高强高导铜合金研究热点及发展趋势[J].矿冶工程, 2002, 22(2): 1-5
    [11]王振显. B82白铜眼镜架材料的研制[J].广东有色金属学报, 2006, 16(3): 180-183
    [12] Powell C. A. Copper-nickel sheathing and its use for ship hulls and offshore structures [J]. International Biodeterioration & Biodegradation, 1994, 34(3-4): 321-331
    [13] Glover T. J. Copper-nickel alloy for the construction of ship and boat hulls [J]. British Corrosion Journal, 1982, 17(4):155
    [14]张智强,郭泽亮,雷竹芳.铜合金在舰船上的应用[J].材料开发与应用, 2006, 21(5): 43-46
    [15]赵万花.海洋工程用铜合金材料的应用与研究进展[J].铜加工, 2010, 2:23-27
    [16]周敏.淡化工程中管道材料选用[J].腐蚀与防护, 2006, 27(10):536-539
    [17]郭泽亮,汤文新,张化龙,等.海水泵阀用新型铸造铜合金的研制[J].特种铸造及有色金属, 2005, 25(1): 62-64
    [18] Seo Y. I., Kim S.S., Kim K.W., et al. Effect of Zr addition on tensile and corrosionproperties of Cu-6Ni-2Mn-2Sn-2Al alloy [J]. Journal of the Korean Institute of Metals and Materials, 2001, 39(5): 521-527
    [19]王碧文.高强耐蚀铜合金的研究[J].铜加工, 1990, 1:11-27
    [20] Badawya W., Ismail K., Fathi A. Effect of Ni content on the corrosion behavior of Cu– Ni alloys in neutral chloride solutions [J]. Electrochimica Acta, 2005,50: 3603-3608
    [21] Drolenga L. J. P., Ijsseling F. P., Kolster B. H. The influence of alloy composition and microstructure on the corrosion behaviour of Cu-Ni alloys in seawater [J]. Werkstoffe und Korrosion, 1983, 34: 167-178
    [22]张杰,王清,王英敏,等.含Fe和Mn的Ni30Cu70固溶体团簇模型与耐蚀性研究[J].金属学报, 2009, 45(11): 1390-1395
    [23]谈荣生,孙连超.稀土在纯铜和铜合金中的应用和研究现状[J].中国稀土学报, 1995, 13(7): 445 - 449
    [24] Lin G. Y., Yang W., Wan Y. C., et al. Influence of rare earth elements on corrosion resistance of BFe10-1-1 alloys in flowing marine water [J]. Journal of Rare Earth, 2009, 27(2):259-263
    [25]邓楚平,黄伯云,苏玉长,等.稀土Ce对凝汽器白铜管耐蚀行为的影响[J].汽轮机技术,2006, 48(6): 469-472
    [26] Mao X. Y., Fang F., Jiang J. Q., et al. Effect of rare earths on corrosion resistance of Cu-30Ni alloys in simulated seawater [J]. Journal of rare earths, 2009, 27(6): 1037-1041
    [27]陈一胜,陈颢,李明茂.稀土在铜及其合金缓蚀剂中的研究[J].表面技术,2003, 32(2): 36-37
    [28]夏兰廷,黄桂桥,张三平,等.金属材料的海洋腐蚀与防护[M].北京,冶金工业出版社, 2003
    [29]王振尧,于国才,韩薇.我国自然环境大气腐蚀性调查[J].腐蚀与防护, 2003, 24(8): 323-326
    [30] Syed E. Atmospheric corrosion of metals [J]. Emirates Journal for Engineering Research, 2006, 11 (1): 1-24
    [31]王一建,黄本元,王余高,等.金属大气腐蚀与暂时性保护[M].北京:化学工业出版社, 2007
    [32]巫铭礼.自然界中的盐雾[J].环境技术, 1993,4: 3-8
    [33]孙立军,刘丽红,邱福来.西沙暴露与盐雾试验结果对比分析[J].装备环境工程,2010, 7(6): 58-61
    [34]曾菊尧.关于我国沿海地区地面大气中的盐雾及其分布[J].电机电器技术, 1982, 4: 15-20
    [35]陈琪,梁玉英,贾占强.一种可行的盐雾试验方法[J].四川兵工学报2009,30(1): 69-70
    [36]姜丽娜,隋永强,宋泓清. BFe30-1-1白铜管在海洋大气环境中的腐蚀行为[J].腐蚀与防护, 2009, 30(2): 81-83
    [37] Arroyave C., Lopez F. A., Morcillo M. The early atmospheric corrosion stages of carbon steel in acidic fogs [J]. Corrosion Science, 1995, 37(11): 1751-1761
    [38] Antonio R., Mendoza, Corvo F. Outdoor and indoor atmospheric corrosion of non-ferrous metals [J]. Corrosion Science, 2000,42: 1123-1147
    [39] Nunez L., Reguera E., Corvo F., et al. Corrosion of copper in seawater and its aerosols in a tropical island [J]. Corrosion Science, 2005, 47: 461-484
    [40] Taqi E. A. Corrosion of copper in Arabian Gulf atmosphere [J]. British Corrosion Journal, 1994, 29(1):75-77
    [41] Gilbert P. T. A review of recent work on corrosion behavior of copper alloys in sea water [J]. Material Performance, 1982, 21(2): 47-53
    [42] Kirk W. W., Pikul S. J. Seawater corrosivity around the world: Results from three years of testing [A]. ASTM STP 1086, 1990: 2-36
    [43] Mansfled F., Liu G., Xiao H., et al. The corrosion behavior of copper alloys, stainless steel and titanium in seawater [J]. Corrosion Science, 1994, 36(12): 2063-2095
    [44] Zhu X., Lei T. Seawater corrosion of 70Cu-30Ni alloy of incomplete recrystallization of intermittent and full immersion [J]. Materials and Corrosion, 2001,52, 368-371
    [45]夏兰廷,王录才,黄桂桥.我国金属材料的海水腐蚀研究现状[J].中国铸造装备与技术, 2002, 6:1-4
    [46]朱小龙,林乐耘,徐杰.铜合金在海水环境中的腐蚀规律及主要影响因素[J].中国有色金属学报, 1998, 8(suppl.1): 210-217
    [47]夏兰廷,黄桂桥,张三平,等.金属材料的海洋腐蚀与防护[M].北京,冶金工业出版社, 2003
    [48]李文军,刘大扬,魏开金.在南海海域铜合金8年腐蚀行为研究[J].腐蚀科学与防护技术, 1995, 7(3): 232-236
    [49] Zhao Y. H., Lin L. Y., Cui D. W. Localized corrosion of copper alloys in Chinaseawater for 16 years [J]. Transactions of Nonferrous Metals Society of China, 2006, 14(6): 1083-1090
    [50]赵月红,林乐耘,崔大为.铜镍合金在我国实海海域的局部腐蚀[J].中国有色金属学报,2005, 15(11): 1786-1794
    [51]黄桂桥.铜合金在海洋飞溅区的腐蚀[J].中国腐蚀与防护学报, 2005, 25(2): 65-69
    [52] Kear G., Barker B. D., Stokes K., et al. Electrochemical corrosion behaviour of 90–10 Cu–Ni alloy in chloride-based electrolytes [J]. Journal of Applied Electrochemistry, 2004, 34: 659-669
    [53]林乐耘,王晓华,严宇民.国产BFe30-1-1铜管实海浸泡发生晶间腐蚀的机理[J].稀有金属, 1993, 17(4): 276-278
    [54]林乐耘,刘少峰,朱小龙.海水腐蚀导致铜镍合金的沿晶析出[J].中国腐蚀与防护学报, 1997,17(1): 1-6
    [55]林乐耘,徐杰,赵月红.国产B10铜镍合金海水腐蚀行为研究[J].中国腐蚀与防护学报, 2000, 20(6): 361-367
    [56] Lin L. Y., Zhao Y. H. Intergranular precipitation of copper-nickel alloys induced by seawater corrosion [J]. Chinese Science Bulletin, 2009, 54: 3458-3463
    [57] Syrett B. C., Macdonald D. D. The validity of electrochemical methods for measuring corrosion rates of copper-nickel alloys in sea water [J]. Corrosion, 1979, 35 (11): 505- 509
    [58]张哲,姚禄安,甘复兴.铜镍合金B30在NaCl介质中的电化学行为[J].中国腐蚀与防护学报, 1986, 6(2): 103-112
    [59] Mansfeld F. The use of electrochemical techniques for the investigation and monitoring of microbiologically influenced corrosion and its inhibition– a review [J]. Materials and Corrosion, 2003, 54: 489-502
    [60] Lalvani S. B., Kang J. W., Mandich N. V. The corrosion of Cu-Ni alloy in a chloride solution subjected to periodic voltage modulation: part II [J]. Corrosion Science, 1998, 40(2/3): 201-214
    [61]陈海燕,朱有兰. B10铜镍合金在NaCl溶液中腐蚀行为的研究[J].腐蚀与防护, 27(8), 404-407
    [62]陈海燕,朱有兰,舒畅.铜镍合金BFe30-1-1在NaCl溶液中的腐蚀行为[J].表面技术, 2005, 34(4): 14-16
    [63]陈海燕.铜镍合金在NaCl溶液中点蚀行为的研究[J].材料保护, 2007, 40(6):17-19
    [64]杨帆,郑玉贵,姚治铭,等.铜镍合金BFe30-1-1在流动人工海水中的腐蚀行为[J].中国腐蚀与防护学报, 1999, 19(4): 207-213
    [65] Hodgkiess T., Mantzavinos D. Corrosion of copper-nickel alloys in pure water[J]. Desalination, 1999, 126: 129-137
    [66] Lalvani S. B., Kang J. W., Mandich N. V. The corrosion of Cu-Ni alloy in a chloride solution subjected to periodic voltage modulation: part I[J]. Corrosion Science, 1998, 40(1): 69-89
    [67]孙跃,胡津.金属腐蚀与控制[M].哈尔滨,哈尔滨工业大学,2003
    [68] Constantinides I., Adriaens A., Adams F. Surface characterization of artificial corrosion layers on copper alloy reference materials[J]. Applied surface science, 2002, 189: 90-101
    [69]朱小龙,林乐耘,徐杰,等. Cu- Ni合金海水腐蚀产物膜研究进展[J].材料科学与工艺, 1997, 5(2): 21-24
    [70]朱小龙,林乐耘,严宇民. Cu-Ni合金海水暴露腐蚀产物AES和XPS深度剖析[J].材料科学进展, 1992, 6(3): 218-222
    [71]朱小龙,林乐耘,雷廷权. 70Cu-30Ni合金海水腐蚀产物膜形成过程[J].金属学报, 1997, 33(12): 1256-1261
    [72] Zhu X. L., Lei T. Q.. Characteristics and formation of corrosion product films of 70Cu-30Ni alloy in sea water [J]. Corrosion Science, 2002, 44: 67-79
    [73]赵楠.添加少量Sn、Al的铜合金的耐蚀性能研究[D].长沙:中南大学, 2004
    [74]崔桂云.铜镍合金在海水中的腐蚀行为[J].材料开发与应用, 1987, 3:32-35
    [75] Folquer M. E., Ribotta S. B., Real S G. Study of copper dissolution and passivation processes by electrochemical impedance spectroscopy [J]. Corrosion, 2002, 58(3): 240-247
    [76] Efird K. D.The Synergistic Effect of Ni and Fe on the Sea Water Corrosion of Copper Alloys[J]. Corrosion, 1977, 33(10): 347-350
    [77]刘少峰,林乐耘. Cu-Ni-Fe-Mn合金表面形成富锰膜的研究[J].稀有金属, 1997, 21(4): 274-276
    [78]刘少峰,林乐耘. Cu-Ni合金表面膜在海水中的转化行为[J].材料研究学报, 1998, 12(1): 20-24
    [79]林乐耘,严宇民,黄桂桥.原始表面状态影响BFe30-1-1铜管耐海水腐蚀性能的电化学研究[J].腐蚀科学与防护技术, 1990, 2(2): 12-15
    [80]林乐耘,刘少峰,刘增才,等.铜镍合金海水腐蚀的表面与界面特征研究[J].腐蚀科学与防护技术, 1999, 11(1): 37-43
    [81] Zhu X., Lei T. Relationship of corrosion product films and recrystallization of 70Cu-30Ni alloy[J]. Materials and Corrosion, 2001, 52: 213-218
    [82]林乐耘,王晓华,赵月红,等.加工工艺及表面预处理对B10合金板材抗海生物污着性能的影响[J].材料开发与应用, 2001, 16(1): 27-29
    [83] Lin L. Y., Wang X. H., Zhao Y. H. Influence of microstructure and surface condition on antifouling property of 90Cu-10Ni alloy in seawater[J]. Transactions of Nonferrous Metals Society of China, 2001, 11(4): 563-566
    [84] Palit A., Pehkonenb S. O. Copper corrosion in distribution systems: evaluation of a homogeneous Cu_2O film and a natural corrosion scale as corrosion inhibitors [J]. Corrosion Science, 2000, 42: 1801-1822
    [85] Tang C. H., Cheng F. T., Man H. C. Improvement in cavitation erosion resistance of a copper-based propeller alloy by laser surface melting [J]. Surface and Coatings Technology, 2004, 182: 300-307
    [86]朱相荣,王相润.金属材料的海洋腐蚀与防护[J].北京:国防工业出版社, 1999
    [87] Pehkonen S. O., Palit A., Zhang X. Effect of specific water quality parameters on copper corrosion [J]. Corrosion, 2002, 58(2):156-165
    [88] Efird K. D, Lee T. S. Putrid sea water as a corrosive medium [J]. Corrosion, 1979, 35(2): 79-83
    [89] Duthil J. P., Mankowski G., Giustit A. The synergetic effect of chloride and sulphate on pitting corrosion of copper[J]. Corrosion Science, 1996, 38(10): 1839-1849,
    [90] Beccaria A. M., Poggi G., Traverso P., et al. A study of the de-alloying of 70Cu-30Ni commercial alloy in sulphide polluted and unpolluted sea water[J]. Corrosion Science, 1991, 22(11): 1263-1275
    [91] Eiselstein L. E., Syrett B. C. , Wing S. S., et al. The accelerated corrosion of Cu-Ni alloys in sulphide-polluted seawater: Mechanism No.2 [J]. Corrosion Science, 1983, 23(3): 223-239
    [92] Syrett B. C. The mechanism of accelerated corrosion of copper-nickel alloys in sulphide-polluted seawater [J]. Corrosion Science, 1981, 21(3): 187-209
    [93] Schrader M. E. Auger electron spectroscopic study of mechanism of sulfide- accelerated corrosion of copper-nickel alloy in seawater [J]. Applications of Surface Science, 1982, 10: 431-445
    [94]黄国胜,刘光洲,段东霞,等.硫酸盐还原菌对铜镍合金腐蚀的影响[J].腐蚀与防护, 2004, 25(4): 242-244
    [95]郑强,李进.硫酸盐还原菌生物膜下BFe30-1-1铜合金的腐蚀行为[J].材料保护, 2009, 42(2): 10-12
    [96] Wang Y. Z., Beccaria A. M., Poggi G. The effect of temperature on the corrosion behavior of a 70/30 Cu-Ni commercial alloy in sea water [J]. Corrosion Science, 1994, 36(8): 1277-1288
    [97]孙婷婷,李宁,薛建军,等.环境因素对B10铜镍合金耐蚀性的影响[J].装备环境工程, 2010, 7(4): 25-28
    [98]迟长云,李宁,薛建军,等.温度对B30铜镍合金在海水中电化学行为的影响[J].腐蚀与防护, 2009, 30(11): 772-777
    [99] Francis R,段椒娥译.温度对70/30铜镍合金在海水中腐蚀的影响[J].材料开发与应用, 1984,9:19-25
    [100]朱小龙,林乐耘,雷廷权. Cu-Ni合金海水腐蚀行为研究进展[J].腐蚀科学与防护技术, 1997, 9(1): 48-55
    [101] Efird K. D. Effect of fluid dynamics on the corrosion of copper-base alloys in sea water[J]. Corrosion, 1977, 33(1): 3-8
    [102]金威贤,谢荫寒,靳裕康,等.海水中泥沙对铜及铜合金腐蚀的影响[J].材料保护, 2001, 34(1): 22-23
    [103] Ranjbar K. Effect of ?ow induced corrosion and erosion on failure of a tubular heat exchanger[J]. Materials and Design, 2010, 31: 613–619
    [104]洛阳铜加工厂中心实验室金相组.铜及铜合金金相图谱[M].北京:冶金工业出版社, 1983
    [105] Zhang W. W., Xia W., Wen L. P., et al. Mechanical properties and tribological behavior of a cast heat-resisting copper based alloy [J]. Journal of Central South University of Technology, 2002, 9(4): 235-240
    [106] Fu H. G., Xiao Q., Xing J. D. A study of segregation mechanism in centrifugal cast high speed steel rolls [J]. Materials Science and Engineering A, 2008, 479: 253-260
    [107] Halvaee A., Talebi A. Effect of process variables on microstructure and segregation in centrifugal casting of C92200 alloy [J]. Journal of Materials Processing Technology, 2001, 118: 123-127
    [108]陈继亮,罗宗强,张卫文,等. Ni对耐热铸造Cu-Ni-Al合金组织和性能的影响[J].特种铸造及有色金属, 2009, 29(5): 483-485
    [109] Luo Z. Q.,Zhang W. W., Xin B. L., et al. Control of equiaxed grains in a complicated Cu-Ni based alloy prepared by centrifugal casting [J]. China Foundry, 2011, 8(1): 141-144
    [110]戴维斯G. J.编著.凝固与铸造[M].陈邦迪,舒震译.北京:机械工业出版社,1981
    [111]胡汉起.金属凝固原理[M].北京:机械工业出版社,2000
    [112]崔忠圻.金属学与热处理[M].北京:机械工业出版社, 2006
    [113] Barbucci A., Farne G., Matteazzi P., et al. Corrosion behaviour of nanocrystalline Cu90Ni10 alloy in neutral solution containing chlorides [J]. Corrosion Science, 1999, 41: 463-475
    [114]曹中秋,刘伟华,郑志国,等.不同晶粒尺寸的Cu-40Ni合金在酸性介质中的耐蚀性能[J].中国有色金属学报, 2006, 16(1): 171-175
    [115]王艳,曹中秋,付雅君,等.不同晶粒尺寸Cu-50Cr合金在酸性介质中的腐蚀电化学行为研究[J].腐蚀科学与防护技术, 2009, 21(2): 164-166
    [116]吴刚.材料结构表征及应用[M].北京:化学工业出版社, 2005:375-378
    [117] Alfantazi A. M., Ahmed T. M., Tromans D. Corrosion behavior of copper alloys in chloride media [J]. Materials and Design, 2009, 30:2425-2430
    [118]迟长云. B30铜镍合金在海水中的腐蚀电化学性能研究[D].南京:南京航空航天大学, 2009
    [119]王凤平,康万力,敬和民.腐蚀电化学原理、方法及应用[M].北京:化学工业出版社, 2008: 102-103
    [120] Hasan F., Jahanafrooz A., Lorimer G. W., et al. The morphology, crystallography, and chemistry of phases in as-cast nickel-aluminum bronze [J]. Metallurgical Transactions A, 1982, 13: 1337-1345
    [121]郭文渊.亚稳β型Ti-Nb-Ta-Zr-O合金的显微组织与性能[D].上海:上海交通大学, 2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700