钢铁高温(520-600℃)热浸镀锌的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一定含硅量的钢(通常在0.1%Si附近和0.25%Si以上)在440 ~ 460℃采用常规方法热浸镀锌时,铁锌反应剧烈,相过快生长,生成超厚、表面灰暗且粘附力差的镀层。这种现象在热镀锌行业称为Sandelin效应。高温热浸镀锌(520-600℃)可以消除相,是一种解决包括含硅量高于0.25%在内的所有含硅活性钢镀锌问题的可能途径之一。本文选取了四种典型含硅量的钢(0.02%Si, 0.11%Si, 0.20%Si和0.49%Si),利用光学金相显微镜、扫描电镜和电子探针等分析测试方法系统地研究了在不同锌液温度(440-600℃)下的镀层组织变化规律,探讨了高温热浸镀锌的可行性;利用自然对流条件下质量传输准数方程与溶解速率模型建立了固相Fe在520-600℃液相Zn中的溶解速率方程,并推算出了520-600℃下固相Fe在液相Zn中的扩散系数D。主要得出以下结论:
     亚Sandelin(0.02%Si)钢和Sebisty(0.20%Si)钢在440℃和480℃热浸镀锌时,镀层组织均致密而连续,从钢基体向外依次为Γ、δ、ζ,以及最外层的自由锌η相组成,镀层生长遵循抛物线规律,主要由扩散机制控制;Sandelin(0.11%Si)钢在440℃和480℃时,从钢基体向外依次为Γ、锯齿层状、块状,以及最外层的自由锌相组成,440℃时镀层生长呈抛物线规律,主要由扩散机制控制;但在480℃时,镀层生长呈直线规律,主要为界面反应机制控制。过Sandelin(0.49%Si)钢在440℃和480℃热浸镀锌时,镀层为薄而连续层和破碎的块状相组成,均未发现Γ相。镀层生长呈直线规律,主要由界面反应机制控制。
     在520℃热浸镀锌时,亚Sandelin钢、Sebisty钢、Sandelin钢和过Sandelin钢镀层组织均为极薄的Γ层,致密层k和疏松的p层组成,镀层生长均呈抛物线规律,主要由扩散机制控制。
     在560℃和600℃热浸镀锌时,镀层组织为Γ层和致密的相层,部分粒子弥散分布在层中,镀层生长伴随有显著的相的溶解过程。与常规温度(440-460℃)镀锌相比, 520-600℃热浸镀锌时,亚Sandelin钢、Sebisty钢、Sandelin钢和过Sandelin钢镀层组织均为较连续致密的层状组织,没有出现相,镀层厚度易于控制。特别是对过Sandelin钢镀锌层效果尤为明显。
     借助固相Fe在(520-600℃)液相Zn中的溶解速率方程分析了镀层生长控制步骤。固相Fe在520℃热浸镀锌时,镀层生长主要是由界面反应和Fe原子在合金相中的扩散控制的;而在560℃和600℃时,镀层的生长主要由Fe原子通过Fe/Zn界面处液相Zn中浓度边界层的扩散所决定。研究表明,固相Fe浸入520℃-600℃液相Zn中,随温度的升高Fe的扩散系数D变大,由520℃的7.79×10-10m~2·s~(-1)增加到560℃时的1.76×10-9m~2·s~(-1)和600℃时的2.01×10-9m~2·s~(-1)。锌液温度超过560℃后,镀层溶解速度加快,镀层过薄,镀层厚度难以达到标准要求,故推荐高温热浸镀锌温度为520-560℃。
The presence of silicon at certain levels (in the vicinity of 0.1% and above 0.25%) in steels, can result in the rapid growth of layer, producing a coating of excessive thickness, having gray appearance and poor adherence. This is known as Sandelin effect in galvanizing industy. High temperature hot-dip galvanizing (HT-HDG) is one of the potential approachs to solve Sandelin effects of the silicon containing reactive steel. In this paper, four typical types of silicon containing steels (0.02%, 0.11%, 0.20% and 0.49%Si) were selected and obtained hot dip galvanized coatings of those steels under different liquid zinc temperature (440-600℃). The law of coating structure changing and the feasibility of HT-HDG were studied by various testing methods such as optical metallographic microscope, SEM and EDS and so on. Based on the current theory of solidification and mass transfer, the dissolution rate equation of solid iron in liquid zinc at 520-560℃was established by using the natural convection condition mass transport equations and the dissolution rate model, and deduced the diffusion coefficient D of Fe in liquid Zn. The following main results were obtained.
     When hypo-Sandelin(0.02%Si) and Sebisty(0.20%Si) steel hot dip galvanized at 440℃and 480℃, the compact and continuous coating outward from the steel substrate areΓ, , and the outmost layer of freedom phase. The coating grow follow the parabolic law, mainly controlled by diffusion mechanism. At 440℃and 480℃, the Sandelin(0.11%Si) steel’s coating outward from the steel substrate areΓ, jagged , massive thick growth of and the outmost layer of . The coating grow follow the parabolic law and controlled by diffusion mechanism. But when Sandelin steel galvanized at 480℃, the growth of phase allow a linear law, this time the coating growth mechanism controlled by interface reaction. When hyper-Sandelin(0.49%Si) steel hot dip galvanized at 440℃and 480℃, the coating is composed of thin and continuous layer of and the broken block , no foundΓphase. phase grow too fast. The coating grow follow the linear rule and controlled by the interface reaction mechanism.
     When the hypo-sandelin, sandelin, sebisty and hyper-sandelin steel galvanized at 520℃, the coating consist of very thinΓlayer, dense layer k and loose p. The coating growth followed parabola regularity and controlled by diffusion mechanism.
     At 520℃and 560℃, the coating containΓlayer and the compact . Part of the particle dispersion distribute in layer and significantly associated with dissolution process.
     Compared with conventional temperature (440-460℃), when galvanized at 520-600℃, the coatings of hypo-sandelin, sandelin, sebisty and hyper-sandelin steel are compact and continuous, not appeared and the coating growth is easy to control. It is especially effective for hyper-sandelin steel.
     The control step of coating growth was analyzed using the dissolution rate equation of solid iron in liquid zinc at 520-560℃. When galvanized temperature is at 520℃, the coating growth process was governed by Fe diffuse in liquid and chemical reaction of the intermetallic compound layers. But at 560℃and 600℃, the coating growth was controlled by Fe across Fe/Zn interface diffuse in a concentration boundary layer in liquid zinc. Research shows that solid Fe immersed in 520-560℃liquid zinc, the diffusion coefficient D become large with the temperature increased, from 7.79×10-10m~2·s~(-1) at 520℃added to 2.01×10-9m~2·s~(-1) at 600℃. The temperature of liquid Zn higher than 560℃, the dissolution rate of Fe increase greatly, the coating is over thin and difficult to meet the standards. Therefore, it recommended the temperature of high temperature hot dip galvanizing is 520-560℃.
引文
[1]顾国成,吴文森.钢铁材料的防蚀涂层[M].北京:科学出版社,1987:10-25
    [2]李新华,李国喜,吴勇,等.钢铁制件热浸镀与渗镀[M].北京:化学工业出版社,2009:157-161
    [3]卢锦堂,许乔瑜,孔纲.热浸镀技术与应用[M].北京:机械工业出版社,2006:20-21
    [4]吴朝玲.铝和四川稀土在热镀锌中的应用[D].成都:四川大学,2000:20-25
    [5]潘晓笛.热镀锌[M].甘肃:甘肃人民出版社,1985:19-20
    [6]霍栓成,张海燕.浅谈热镀锌技术[J].电镀与精饰,1998,20(1):22-23
    [7]许乔瑜,卢锦堂,陈锦虹,等.国外活性钢热镀锌技术研究的进展[J].材料保护,2000,33(11):5-7
    [8] Massalski T B. Phase Diagrams[J]. ASM Metals Handbok, 1992, 3: 206
    [9] Jordan C E, Marder A R. Fe-Zn phase formation in interstitial-free steels hot-dip galvanized at 450℃. PartⅠ0.00 wt%Al-Zn baths[J]. Journal of Materials Science, 1997, 32(21): 5593-5602
    [10] Riecke E, Johnen B, Grabke H J. Influence of alloying elements on the corrosion and hydrogen uptake of iron in sulphuric acid[J]. Werkstoffund Korrosion, 1985, (36): 435
    [11]孔纲,卢锦堂,陈锦虹,等.热浸镀浴中少量铝对镀层性能的影响[J].材料保护,2002,35(7):17-19
    [12]孔纲,卢锦堂,陈锦虹,等.热浸Zn-Ni合金镀层技术的研究和应用[J].腐蚀科学与防护技术,2001,13(4):223-225
    [13] Sandelin R W. Galvanizing characteristics of different types of steels[J]. Wire and Wire Products, 1940, (15): 655-676
    [14] Schulz W D, Schubert P, Thiele M. An Alternative Approach to Explaining the Effect on the Galvanizing Reaction[A]. Proceedings of 20th International Galvanizing Conference[C]. Amsterdam: EGGA, 2003: 1-7
    [15]车淳山,卢锦堂,孔纲,等.热镀锌钢Sebisty现象的研究[J].材料保护,2005,(11): 28-30
    [16] Mackowiak J, short N R. Metallurgy of galvanized coatings[J]. International Metals Reviews, 1979, 24(1): 1-19
    [17] Foct J, Perrot P, Reumont G. Understanding of the sandelin phenomena and remedies based on thermodynamics and thermokinetics[A]. Proceedings of 17th International Galvanizing Conference[C]. Paris: 1994: 12-38
    [18] Jordan C E, Marder A R. The effect of iron oxide as an inhibition layer on iron-zinc reactions during hot-dip galvanizing[J]. Metallurgical and Materials Transactions B, 1998, 29(2): 479-484
    [19] Memmi M, Gardetti G. Use of 0.1%~0.2% addition of magnesium to zinc for hot dip galvanizing silicon-killed steel[A]. Proceedings of 13th International Galvanizing Conference[C]. London: 1982: 331-336
    [20] Discussion Group. Galvanizing of silicon Killed Steels[A]. Proceedings of 20th International Galvanizing Conference[C]. Munich: EGGA, 1985: 6/21-6/25
    [21] Horstmann D. Reaction between Iron and Melted Zinc[M]. London: Zinc Development Association, 1978: 21-25
    [22] Chn Z W, Kennon N F, See J B M, et al. Technigalva and Other Developments in Batch Hot-Dip Galvanizing[J]. JOM, 1992, 44(1): 22-26
    [23] Allen C J, Kolisnyk P S. Nickel zinc direct alloying technology[A]. Proceedings of 2nd Asian-Pacific General Galvanizing Conference[C]. Kobe: JGA, 1994: 269-277
    [24] Belfrage S, Ostrom P. Hot Dip Galvanizing in a Zinc Melt Containing 0.15% Nickel[A]. Proceedings of 15th International Galvanizing Conference[C]. Rome: EGGA, 1988, GE3/1-GE3/13
    [25] Disscussion S E. Zinc-Nickel Galvanizing[A]. Proceedings of 15th International Galvanizing Conference[C]. Rome: EGGA, 1988: CE/1-6
    [26] Bernal M, Tierra P. Reduction of Coating Thickness Improving Corrosion Resistance of Hot Dip Zn-Ni-V(Ecozinc) Versus Conventional Hot Dip Galvanizing Coatings[A]. The 7th Pacific General Galvanizing Conference[C]. Beijing: 2007: 58-63
    [27] Jin H M, Li Y. Study on the behavior of additives in steel hot-dip galvanizing by DFT calculations[J]. Chemistry of Materials, 2000, 12(7): 1879-1883
    [28]许乔瑜,桂艳,卢锦堂,等,热浸Zn-Ti合金镀层的显微组织与耐蚀性能[J].华南理工大学学报(自然科学版),2008, 36(7):82-86
    [29]车淳山,卢锦堂,许乔瑜,等.预电镀铁对活性钢热镀锌层的影响[J].华南理工大学学报(自然科学版),2006,34(10):62-66
    [30]卢锦堂,车淳山,孔纲,等.预镀镍对活性钢热镀锌的影响[J].材料工程,2006,(06):35-39
    [31] Chidambaram P R, Rangarajan V, Van Ooij W J. Characterization of High Temperature Hot Dip Galvanized Coatings[J]. Surface and Coatings Technology, 1991, 46(3): 245-253
    [32] Verma A R B, Van Ooij W J. High-temperature batch hot-dip galvanizing. Part 1.General description of coatings formed at 560℃[J]. Surface and Coatings Technology, 1997, 89(1-2): 132-142
    [33] Verma A R B, Van Ooij W J. High-temperature batch hot-dip galvanizing. Part 2. Comparison of coatings formed in the temperature range 520-555℃[J]. Surface and Coatings Technology, 1997, 89(1-2): 143-150
    [34]孙富,张振程.热镀锌锌液温度的选择[J].热处理,2001,4:47-48
    [35] Peng B C, Wang J H, Su X P, et al. Effects of zinc bath temperature on the coatings of hot-dip galvanizing[J]. Surface and Coatings Technology, 2008, 202(9): 1785-1788
    [36]李智,苏旭平,尹付成,等.钢基热浸镀锌的研究[J].材料导报,2003,17(12):12-14
    [37]黄家平.热浸镀锌温度控制的研究[J].长春大学学报,1999,9(1):17-18
    [38]刘铭,肖俊明,李志强,等.我国热镀锌锅的发展[J].金属制品,1999,25(1):9-11
    [39] Klassen R D, Roberge P R, Hyatt C V,A novel approach to characterizing localized corrosion within a crevice[J]. Electrochimica Acta, 2001, 46(24-25): 3705-3713
    [40] Vukasovich M S, Farr J P G. Molybdate in Corrosion Inhibition—A Review[J]. Polyhedron, 1986, 5(1-2): 551-559
    [41] Magalhaes A A O, Margarit I C P, Mattos O R. Molybdate conversion coatings on zinc surfaces[J]. Journal of Electroanalytical Chemistry, 2004, 572(2): 433~440
    [42]卢锦堂,孔纲,陈锦虹,等.热镀Zn层钼酸盐钝化工艺[J].腐蚀科学与防护技术,2001,13(1):46-50
    [43]韩克平,方景礼.用XPS和AES研究锌表面彩色防腐蚀膜[J].中国腐蚀与防护学报,1997,17(1):41-45
    [44]陈锦虹,卢锦堂,许乔瑜,等.镀锌层上有机物铬钝化涂层的耐蚀性[J].材料保护,2002,35(8):29-31
    [45] Dalbin S, Maurin G, Nogueira R P, et al. Silica-based coating for corrosion protection ofelectrogalvanized steel[J]. Surface and Coatings Technology, 2005, 194(2-3): 363-371
    [46]韩克平,叶向荣,方景礼.镀锌层表面硅酸盐防腐膜的研究[J].腐蚀科学与防护技术,1997,9(2):167-170
    [47] Hinton B R W, Wilson L. The Corrosion Inhibition of Zinc with Cerous Chloride[J]. Corrosion Science, 1989, 29(9): 967-985
    [48] Motte C, Maury N, Olivier M G, et al. Cerium treatments for temporary protection of electroplated steel[J]. Surface and Coatings Technology, 2005, 200(7): 2366-2375
    [49] Montemor M F, Simoes A M, Ferreira M G S. Composition and corrosion behaviour of galvanised steel treated with rare-earth salts: the effect of the cation[J]. Progress in Organic Coatings, 2002, 44(2): 111-120
    [50] Montemor M F, Simoes A M, Ferreira M G S. Composition and behavior of cerium films on galvanized steel[J]. Progress in Organic Coatings, 2001, 43(4): 274-281.
    [51] Aramaki K. Protection of zinc from corrosion by coverage with a hydrated cerium (III) oxide layer and ultrathin polymer films of a carboxylate self-assembled monolayer modified with alkyltriethoxysilanes[J]. Corrosion Science, 2007, 49(4): 1963
    [52] Montemor M F, Trabelsi W, Zheludevich M, et al. Modification of bis-silane solutions with rare-earth cations for improved corrosion protection of galvanized steel substrates[J]. Progress in Organic Coatings, 2006, 57(1): 67-77
    [53]杜康,梁燕萍,贺格平,等.不锈钢稀土铈转化膜的研究[J].表面技术,2007,36(2):32-34
    [54] Lu J T, Wu H J, Kong G, et al. Growth and corrosion behavior of rare earth film on hot-dip galvanized steel[J]. Transactions of Nonferrous Metals Society of China, 2006, 16(6):1397-1401
    [55] Brunelli K, Dabala M, Calliari I, et al. Effect of HCl pretreatment on corrosion resistance of cerium-based conversion coatings on magnesium and magnesium alloys[J]. Corrosion Science, 2005, 47(4): 989-1000
    [56]龙晋明,韩夏云,杨宁,等.锌和镀锌钢的稀土表面改性[J].稀土,2003,24(5):52-56
    [57]彭天兰,满瑞林,徐斌,等.镀锌钢表面耐腐蚀稀土镧盐转化膜的制备[J].涂料工业,2008,38(11):51-54
    [58]彭天兰,满瑞林.镧和铈钝化镀锌钢板的研究[J].中国稀土学报. 2008, 26(5):598-602
    [59]卢锦堂,钟正,孔纲.热镀锌层镧盐转化膜的结构及其耐蚀性能[J].材料保护,2009,42(4):7-9
    [60] Ajit K M, Balasubramaniam R. Corrosion inhibition of aluminum alloy AA 2014 by rare earth chlorides[J]. Corrosion Science, 2007, 49(3): 1027-1044
    [61]白丽群,钱建刚,舒康颖,等.镁合金稀土镧化学转化工艺研究[J].腐蚀与防护,2009,30(7):466-469
    [62]张蓉,赵志龙,刘汉武,等.初生硅在熔体中的溶解动力学[J].金属学报. 2002, 38(4): 397-399
    [63]李培杰,曾大本,贾均,等.铝硅合金中的结构遗传及其控制[J].铸造,1999,(6):10-14
    [64] Dybkov V I, Duchenko O V. Growth kinetics of compound layers at the nickel-bismuth interface[J]. Journal of Alloys and Compounds, 1996, 234(2): 295-300
    [65] Duchenko O V, Vereshchaka V M, Dybkov V I. Phase formation and reaction kinetics in Co-Zn diffusion couples[J]. Journal of Alloys and Compounds, 1998, 288(1-2): 164-169
    [66] Hurum F. Effect of silicon carbide in the Fe-FeSi-Fe3C system[J]. AFS Transactions, 1965, 73: 53-64
    [67]李文超.冶金与材料物理化学[M].北京:冶金工业出版社,2001:171-188
    [68]曾大新,苏俊义,陈勉已.固体金属在液态金属中的熔化和溶解[J].铸造技术,2000,(1):33-36
    [69] Turkdogan E T. Rate processes of extractive metallurgy[M]. Sohn H Y & Wadsworth M E. New York: Plenum press, 1979: 387-395
    [70] Dreulle N. Zinc Alloy and Galvanizing Process[P]. US Patent: 4238532, 1980-12-09
    [71] Lee H J, Kim J S. Effect of Ni addition in zinc bath on formation of inhibition layer during galvannealing of hot-dip galvanized sheet steels [J]. Journal of Materials Science Letters, 2001, 20(10): 955-957
    [72] Shibli S M A, Manu R, Dilimon V S. Effect of nickel-rich layer on improvement of hot-dip zinc coating[J]. Applied Surface Science, 2005, 245(1-4): 179-185
    [73] Diaz L B, Ramanauskas R, Bartolo P P. Mn oxide film as corrosion inhibition of Zn-Mn coatings[J]. Corrosion Reviews, 2000, 18(1): 41-51
    [74] Nishimura K, Shindo H, Nomura H, et al. Corrosion resistance of hot dip Zn-Mg galvanized steel sheet[J]. Journal of the Iron and Steel Institute of Japan, 2003, 89(1): 174-179
    [75] Wang J H, Tu H, Peng B C, et al. The effects of zinc bath temperature on the coating growth behavior of reactive steel[J]. Materials Characterization, 2009, 60(11): 1276-1279
    [76] Hong J H, Oh S J, Kwon S J. M?ssbauer analysis of the iron–zinc intermetallic phases[J]. Intermetallics, 2003, 11(3): 207-213
    [77]孔纲,卢锦堂,许乔瑜.固相Ni在液相Zn中的溶解机制[J].中国有色金属学报,2006, 16(2): 268-272
    [78] Giorgi M L, Durighello P, Nicolle R, et al. Dissolution kinetics of iron in liquid zinc[J]. J Materials Science, 2004, 39(18): 5803-5808
    [79] Sφrensen O B, Maahn E. The reaction between copper and liquid zinc[J]. Metal Science, 1976, 11: 23-26
    [80] Su X P, Tang N Y, Toguri J M. Thermodynamic evaluation of the Fe–Zn system[J]. Journal of Alloys and Compounds, 2001, 325: 129-136
    [81] Shiah S W, Yang B C, Cheung F B, et al. Natural convection mass transfer along a dissolution boundary layer in an isothermal binary metallic system[J]. International Journal of Heat and Mass Transfer, 1998, 41(23): 3759-3769
    [82] Kosaka M, Minowa S. On rate of dissolution of carbon into molten Fe-C alloy[J]. Iron Steel Inst Jpn, 1966, 52: 1748-1762
    [83] Crawley A F. Densities and viscosities of some liquid alloys of zinc and cadmium[J]. Metallurgical Transactions, 1972, 3(19): 72-75
    [84]沈颐身,李保卫,吴懋林.冶金传输原理基础[M].北京:冶金工业出版社,2000:286-298
    [85] Ishida T. Rate of dissolution of solid nickel in liquid Tin under static conditions[J]. Metallurgy Transactions B, 1986, 17B(2): 281-289
    [86] Kim Y U, Pehlke R D. Mass transfer during dissolution of a solid into liquid in the iron-carbon system[J]. Metallurgy Transactions, 1974, 5: 2527-2532
    [87] Kosaka M, Minowa S J. Iron Steel Inst. Jpn, 1967, 53: 983-997
    [88] Dell S O, Chales J, Vlot M, et al. Modelling of iron dissolution during hot dip galvanizingof strip steel[J]. Materials Science and Technology, 2004, 20(2): 251-256
    [89] Dybkov V I. Regularities of reactive diffusion and phase formation in the binary Ni-Bi, Ni-Zn, and Co-Zn binary systems[J]. Powder Metallurgy and Metal Ceramics, 2001, 40(7-8): 131-137
    [90] Su X P, Yin F C, Li Z, et al. Thermodynamic calculation of the Fe-Zn-Si system[J]. Journal of Alloys and Compounds, 2005, 396(1-2): 156-163
    [91] Habrakem L. Contribution to a scientific explanation of the metallurgical phenomena occurring in the iron–zinc reaction[A]. Proceedings of 12th International Galvanization Conference[C]. London: Zinc Development Association, 1979: 121-123

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700