核壳结构磁性高分子微球的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料是当前最热门的学科之一,特别是自碳纳米管被发现以后,对纳米材料结构的设计与调控一直是纳米材料科学领域研究的重点。核壳结构纳米材料通常能通过协同效应,将两种或者多种材料的性能结合,从而打破材料之间的界限,并有可能获得新的独特的性质。作为新型的功能材料,核壳结构磁性高分子微球因其巨大的应用潜力已引起了各国研究者的高度重视,在药物载体、磁性橡胶、导电橡胶等领域有重要应用。本论文主要研究了核壳结构Ni_(0.5)Zn_(0.5)Fe_2O_4/ PANI、核壳结构Ni/PANI以及中孔MnFe_2O_4/PANI核壳结构磁性高分子微球的制备及性能。主要研究内容如下:
     (1)以铁、镍、锌硝酸盐为金属盐,NaOH为沉淀剂,吐温80为表面活性剂,正戊醇为助表面活性剂组成的微乳液,通过微乳液法制备得到单分散性磁性Ni_(0.5)Zn_(0.5)Fe_2O_4纳米颗粒;再以苯胺盐酸盐为单体,通过微乳液聚合法,最终制得了Ni_(0.5)Zn_(0.5)Fe_2O_4/PANI核壳结构磁性高分子微球。SEM、TEM、FTIR以及TGA结果均表明,磁性Ni_(0.5_Zn_(0.5)Fe_2O_4纳米颗粒以及与PANI结合,并形成了一定厚度的包覆层,为典型的核壳结构。VSM结果显示,磁性Ni_(0.5)Zn_(0.5)Fe_2O_4纳米颗粒的的矫顽力、剩余磁化强度和饱和磁化强度分别为3.16Oe,2.48 emu/g,34.10emu/g,表现出良好的磁响应性。
     (2)通过水热法制备了单分散Ni微球,并且通过原位分散聚合技术制得了Ni/PANI磁性高分子微球。通过SEM和TEM表征,观察到Ni微球以及Ni/PANI复合微球均具有很好的单分散性,粒径分布较窄;此外,还观察到Ni/PANI微球具有明显的核壳结构;FTIR和TGA结果进一步表明,PANI在Ni微球上有很好的结合,附着的PANI质量比率约为22%。VSM结果表明,最终得到的Ni/PANI核壳结构磁性高分子微球具有很好的磁响应性,其矫顽力和饱和磁化强度分别为0Oe,20.04emu/g。最后,对Ni微球和Ni/PANI核壳结构的形成机理进行了较为细致深入的探讨。
     (3)通过溶胶-凝胶结合C微球模板法,制备了中孔结构MnFe_2O_4微球;并采用原位分散聚合技术,成功制得了中孔MnFe_2O_4/PANI核壳结构磁性高分子微球。FTIR和TGA结果表明,PANI与MnFe_2O_4有很好的结合,PANI的附着质量比率约为16%;SEM与TEM结果显示,MnFe_2O_4微球与MnFe_2O_4/PANI微球均具有很好的分散性,并且具有非常典型的中孔结构。VSM结果表明,最终得到的中孔MnFe_2O_4/PANI核壳结构磁性高分子微球具有很好的磁响应性,其矫顽力、剩余磁化强度和饱和磁化强度分别为0Oe,81.10emu/g,因而在药物载体领域可能有重要的潜在应用价值。
Nanomaterials have always been one of the hottest topics and the design and controlsynthesis of nanomaterials has always been of great importance since the discovery of carbonnanotubes in recent years. Core-shell structural nanomaterials, which combine the propertiesof two kinds or even more materials due to special effects, may show distinct properties andapplications, and over through the wall among different materials. As a novel and importantfunctional materials, core-shell structural magnetite polymetric composite microspheres haveshown apparent applications in the field of drug delivery, magnetic rubber and electronicrubber and have attracted significant attention all over the world. In this work, the fabricationand properties of core-shell structural magnetic polymetric composite microspheres, includingNi_(0.5)Zn_(0.5)Fe_2O_4/PANI, Ni/PANI and mesoporous MnFe_2O_4/PANI, have been carried out. Themain contest for the study can be described as follows:
     (1) Mono-dispersed Ni_(0.5)Zn_(0.5)Fe_2O_4magnetic nano-particles were obtained throughmicro-emulsion, which was made up of the water phase, oil phase, surfactant andco-surfactant, by using Fe, Ni, and Zn nitrogen salt as metal source and employing NaOH asprecipitant. Further, Ni_(0.5)Zn_(0.5)Fe_2O_4/PANI core-shell structural magnetic polymetriccomposite microspheres were also fabricated in a similar micro-emulsion. The SEM, TEM,FTIR and TGA result might show that PANI has been coated on the outer surface layer ofNi_(0.5)Zn_(0.5)Fe_2O_4particles and typical core-shell structures have been obtained. The VSMresults revealed that the Ni_(0.5)Zn_(0.5)Fe_2O_4particles are magnetic and the value of Hc, Mr, andMs was 3.16Oe, 2.48 emu/g and 34.10emu/g, respectively.
     (2) Mono-dispersed Ni microspheres and Ni/PANI magnetic composite microsphereswere also fabricated through a hydrothermal route and in-situ polymerization technique,respectively. The SEM and TEM results illustrated that both the obtained Ni microspheres andNi/PANI microspheres shown a narrow size distribution and mono-dispersion. Moreover, theTEM results directly confirmed the core-shell structure of Ni/PANI composite microspheres.In addition, it could be inferred from the FTIR and TGA results that the weight rate of coated PANI is ca. 22%. The VSM results suggested that the final products of Ni/PANI compositemicrospheres show good magnetic properties, and the value of Hc, and Ms of sample was 0Oe,and 20.04emu/g, respectively.
     (3) Mesoporous MnFe_2O_4magnetic microspheres and mesoporous MnFe_2O_4/PANIcore-shell structured composite microspheres were prepared through a sol-gel assisted carbonspheres template method and in-situ polymerization process, respectively. The FTIR and TGAresults confirmed the combination of PANI and MnFe_2O_4, which may reveal the core-shellstructure. The weight rate of absorbed PANI was ca. 16%. Further, the SEM and TEM resultsillustrated that the obtained MnFe_2O_4microspheres and MnFe_2O_4/PANI compositemicrospheres have a typical mesoporous structure and a well-dispersion. At last, the VSMresults confirmed the enhanced magnetic properties of MnFe_2O_4/PANI compositemicrospheres, whose Hc, and Ms value was 0Oe, and 81.10emu/g, respectively. The obtainedproducts might show significant potential applications in the field of drug delivery and so on.
引文
[1]张立德,牟其美.纳米材料和纳米结构[M].第1版,北京,科学出版社, 2001
    [2]施利毅.纳米材料[M].第1版,上海,华东理工大学出版社.2007
    [3] Zhao Y.; Jiang L. Hollow micro/nanomaterials with multilevel interior structures [J].Adv Mater., 2009, 21, 1-18
    [4] Lu S.; Ramos J.; Forcada J. Self-stabilized magnetic polymeric composite nanoparticlesby emulsifier-free miniemulsion polymerization [J]. Langmuir., 2007, 23, 12893-12900
    [5] Mathiowitz E.; Jacob J. S.; Jong Y. S.; et al. Biologically erodable microspheres aspotential oral drug delivery systems [J]. Nature, 1997, 386, 410-414
    [6] Bergbreiter D. E. Self-assembled, sub-micrometer diameter semipermeable capsules [J].Angew Chem Int Ed., 1999, 38, 2870-2872
    [7] Zhang L D.; Mou J. M. Nanomaterial and Nanosteucure[M]. BeiJing, Science Press,2001
    [8] Yu J.; Liu S.; Yu H. Microstructures and photoactivity of mesoporous anatase hollowmicrospheres fabricated by fluoride-mediated self-transformation [J]. Journal ofcatalysis., 2007, 249, 59-66
    [9] Zhang Y.W.; Rui S.; Liao C.S.; et al. Facile alcohothermal synthesis, size-dependentultraviolet absorption, and mhanced CO conversion activity of ceria nanocrystals [J]. JPhys Chem B., 2003, 107, 10159-10167
    [10] Rui S; Yan C.H.Self-organized monolayer of nanosized ceria colloids stabilized bypoly(vinylpyrrolidone) [J]. J Phys Chem B., 2006, l10, 5994-6000
    [11] Wei B; Zhang Q.X.; et a1. Large-scale synthesis of ZnO flower-like and brush pen likenanostructures by a hydrothermal decomposition route [J]. Mater Lett., 2007,61,3469-3472
    [12] Deng Y.H.; Wang C.C; Hu J.H.; Yang W.L.; Fu S.K. Investigation of formation ofsilica-coated magnetite nanoparticles via sol–gel approach [J]. Colloids and Surfaces A:Physicochem Eng Aspects., 2005, 262, 87–93
    [13] Wang H.; Yua M.; Lin C.K.; et al. Core–shell structured SiO2/YVO4:Dy3+-Sm3+phosphorparticles: Sol–gel preparation and characterization [J]. Journal of Colloid and InterfaceScience., 2006, 300, 176-182
    [14] Jong M. K.; Sang M. C.; S K.; et al. Design of SiO2/ZrO2core–shell particles using thesol–gel process [J]. Ceramics Inter., 2009, 35, 1243-1247
    [15] Han K.; Zhao Z.; Xiang Z.; et al. The sol–gel preparation of ZnO/silica core–shellcomposites and hollow silica structure [J]. Mater Lett., 2007, 61, 363-368
    [16] Chen D.; Liu S.; Li J.; et al. Nanometre Ni and core/shell Ni/Au nanoparticles withcontrollable dimensions synthesized in reverse microemulsion [J]. J Alloy Comp., 2009,475, 494-500
    [17] Qiu S.; Dong J., Chen G. Preparation of Cu nanoparticles from water-in-oilmicroemulsions [J]. J Coll Intere Sci., 1999, 216, 230-234
    [18] Eastoe J.; Hollamby M. J.; Hudson L. Recent advances in nanoparticle synthesis withreversed micelles [J]. Adv Coll Inter Sci., 2006, 128, 5-15
    [19] Yadav O. P.; Palmqvist A.; Cruise N.; et al. Synthesis of platinum nanoparticles inmicroemulsions and their catalytic activity for the oxidation of carbon monoxide [J].Colloids and Surfaces A: Physicochem. Eng. Aspects., 2003, 21, 131-134
    [20] Palanisamy P.; Raichur A. M. Synthesis of spherical NiO nanoparticles through a novelbiosurfactant mediated emulsion technique [J]. Materials Science and Engineering C.,2009, 29, 199-204
    [21] Lopez-Q M. A. Synthesis of nanomaterials in microemulsions: formation mechanismsand growth control [J]. Current Opinion in Colloid and Interface Science., 2003, 8,137-144
    [22] McNamara W.B.; Didenko Y.; Suslick K.S. Sonoluminescence temperatures duringmultibubble cavitation [J]. Nature., 1999, 401, 772–775
    [23] Zhu A.; Shi Z.; Cai A.; et al.Synthesis of core-shell PMMA-SiO2nanoparticles withsuspention-dispersion polymerition in an aqueous system and its effect on mechanicalproperties of PVC composites [J]. Polymer Testing., 2008, 27, 540-547
    [24]郭飞鸽,张秋禹,罗邵兵等.控制自由基聚合制备Fe3O4/SiO2/P(AA-MMA-St)磁性复合微球[J].高分子学报., 2008, 11, 1082-1087
    [25] Wang Y.; Li L.; Jiang J.; et al. Conductivity and magnetic properties ofZn0.6Cu0.4Cr0.5La0.04Fe1.46O4/PPy composites prepared by in situ inverse microemulsionpolymerization [J]. Reac Funct Polymers., 2008, 68, 2587-2593
    [26]张立新.氧化铕等空/实心微球的制备和表征[D].中国科学技术大学:博士学位论文, 2005
    [27] Zhang L.; Luo J.; Wu M.; et al. Synthesis of Eu2O3hollow submicrometer spheresthrough a sol–gel template approach [J]. Materials Letters., 2007, 61, 4452-4455
    [28] Qi G.; Liu Y.; Jia W.; et al. Template synthesis of -Ni(OH)2 hollow microspheresthrough a hydrothermal process [J]. Micro Nano Lett., 2010, 5, 278-281
    [29]施尔畏,陈之战,元如林,郑燕青.水热结晶学[M].北京,科学出版社, 2004
    [30] Strandwitz N. S.; Stucky G. D. Hollow microporous cerium oxide spheres templated bycolloidal silica [J]. Chem Mater., 2009, 21, 4577-4582
    [31]李瑞歌,李鼎,朱春山. -环糊精/丁二酸酐共聚高分子磁性微球的制备及其体外释药性能研究[J].辽宁化工., 2011, 40, 543-546
    [32]熊为华. PANI/铁氧体复合型微波吸收材料的制备及吸波性能研究[J].安徽大学:硕士学位论文. 2007
    [33]谭蕾. CS-Fe3O4磁性微球的制备及其处理造纸废水的研究.河北化工., 2011, 34,58-62
    [34]谭蕾.高分子磁性微球的制备及其在工业废水处理中的应用[J].云南化工., 2011,38, 62-65
    [35]洪爱真,魏艳芳,陈盛.磁性壳聚糖微球对酸性偶氮染料废水的脱色研究[J].福建轻纺., 2003, 2, 1-5
    [36]朱开梅,顾生玖.壳聚糖磁性微球的制备及处理造纸工业废水的应用[J].华夏医学.,2006, 19, 3-5
    [37] Stoppels D. Developments in soft magnetic power ferrite [J].J Magn Magn Mater., 1996,160, 323-332
    [38] Wu M.; Zhang H.; Yao X. Microwave characterization of Ferrite particles [J].Appl Phys,2001, 34, 889-893
    [39] Mazen S. A.; Metawe F.; Mansour S. F. IR absorption and dielectric properties of Li-Tiferrite [J]. Appl Phys., 1997, 30, 1799-1783
    [40] Yan A.; Liu X.; Yi R.; et al. Selective Synthesis and properties of monodisperse Zn ferritehollow nanospheres and nanosheets [J]. J Phys Chem C., 2008, 112, 8558-8563
    [41]于文广,魏雨,贾振斌.液相催化沸腾回流法制备纳米级Ni-Zn铁氧体研究[J].功能材料, 2004, 35, 541-544
    [42] Chen D.; Liu S.; Li J.; et al. Nanometre Ni and core/shell Ni/Au nanoparticles withcontrollable dimensions synthesized in reverse microemulsion [J]. J Alloy Comp., 2009,475, 494-500
    [43] Hendricks C. R.; Sullivan D. Synthesis of nanocrystalline nickel–zinc ferrites via amicroemulsion route [J]. Ceram Bull., 1991, 70, 817-818
    [44] Uskokovic V.; Drofenik M.; et al. The characterization of nanosized nickel-zinc ferritessynthesized within reverse micelles of CTAB/1–hexanol/water microemulsion [J]. JMagn Magn Mater., 2004, 284, 294-302
    [45] Uskokovic V.; Drofenik M. A mechanism for the formation of nanostructured NiZnferrites via a microemulsion-assisted method [J]. Colloids and surfaces A: PhysicalChem Eng. Aspects., 2005, 266, 168-174
    [46] Stejskal J.; Sapurina I.; Trchova M, et al. The genesis of polyaniline nanotubes[J]. Polymer., 2006, 47, 8253-8262
    [47] Konyushenko E.N.; Stejskal J.; Sedenkova I, et al. Polyaniline nanotubes: conditions offormation [J]. Polym Int., 2006, 55, 31-39
    [48] Jalaly M.; Enayati M. H.; Karimzadeh F, et al. Mechanosynthesis of nanostructuredmagnetic Ni–Zn ferrite [J]. Powder Technol., 2009, 193, 150-153
    [49] Kodama R. H.; Berkowitz A. E.; McNiff E. J, et al. Surface Spin Disorder in NiFe2O4Nanoparticles [J]. Phys Rev Lett., 1996, 77, 394-397
    [50] Gerbacia W.; Rosano H. Microemulsions: formation and stabilization [J]. J Coll and InterSci., 1973, 44, 242-247
    [51] Wang J.; Chong P. F., Ng S. C.; et al. Microemulsion processing of manganese zincferrites [J]. Mater Lett., 1997, 30, 217-221
    [52] Ni X. -M.; Su X. -B.; Yang Z. -P.; et al. The preparation of Nickel nanorods inwater-in-oil microemulsion [J]. J Cryst Growth., 2003, 252, 612-617
    [53] Makoveca K. A.; Drofenik M.; et al. In situ synthesis of magnetic MnZn-ferritenanoparticles using reverse microemulsions [J]. J Magn Magn Mater., 2004, 272-276,1542-1544
    [54] Jiang J.; Chen C.; Ai L-H.; et al. Synthesis and characterization of novel ferromagneticPpy-based nanocomposite [J]. Mater Lett., 2009, 63 560-562
    [55]米远祝,刘应亮,张静娴等.燃烧-还原法制备镍纳米微粒[J].化学与生物工程.,2004, 4, 23-24
    [56] Wang N.; Cao X.; Kong D.; et al. Nickel chains assembled by hollow microspheres andtheir magnetic properties. [J] J Phys Chem C., 2008, 112, 6613–6619
    [57] Zhang D. E.; Ni X. M.; Zheng H. G.; et al. Synthesis of needle-like nickel nanoparticlesin water-in-oil microemulsion [J]. Mater Lett., 2005, 59, 2011-2014
    [58]李鹏.纳米镍与镍/聚苯胺纳米复合材料的制备和性能研究[D].武汉理工大学:博士学位论文. 2005
    [59] Niu H.; Chen Q.; Ning M.; et al. Synthesis and one-dimensional self-assembly ofacicular Nickel nanocrystallites under magnetic field [J]. J Phys Chem B., 2004, 108,3996-3999
    [60] Zhang D.F.; Sun L.D.; Zhang J.; et al. Hierarchical construction of ZnO architecturespromoted by heterogeneous nucleation [J]. Cryst Grow Des., 2008, 8, 3609–3615
    [61] Peng X. G.; Manna L.; Yang W. D.; et al. Shape control of CdSe nanocrystals [J]. Nature.,2000, 404, 59–61
    [62] Chen Y.; Huang Q. Z.; Wang J.; et al. Synthesis of mnodispersed SnO2@C compositehollow spheres for lithium ion battery anode applications [J]. J Mate Chem, 2011, 21,17448-17453
    [63] Lou X. W.; Yuan C. L.; Archer L. A. Double-Walled SnO2Nano-Cocoons with movablemagnetic cores [J]. Adv Mater., 2007, 19, 3328-3332
    [64] Hu P.; Yu L.; Zuo A.; et al. Fabrication of monodisperse magnetite hollow spheres [J]. JPhys Chem C., 2009, 113, 900-906
    [65] Caruso R. A.; Susha A.; Caruso F. Multilayered titania, silica, and laponite nanoparticlecoating on polystyrene colloidal templates and resulting inorganic hollow spheres [J].Chem Mater., 2001, 13, 400-409
    [66] Gao R.; Zhou S.; Chen M.; et al. Facile synthesis of monodisperse meso-microporousTa3N5hollow spheres and their visible light-driven photocatalytic activity [J]. J MaterChem., 2011, 21, 17087-17090
    [67] Ming J.; Wu Y.; Wang L. Y.; et al. CO2-assisted template synthesis of porous hollowbi-phaseγ-/α-Fe2O3nanoparticles with high sensor property [J]. J Mater Chem., 2011, 21,17776-17782
    [68] Chen Y.; Qian Z.; Zhang Z. Interface-initiated emulsion polymerization: synthesis ofhollow spheres with a hole in the shell [J]. Chem Lett., 2007, 36, 944-945
    [69] Shcukin D. G.; Caruso R. A. Template synthesis and phtocatalytic properties of porousmetal oxide spheres formed by nanoparticle infiltration [J]. Chem Mater., 2004, 16,2287-2292
    [70] Sun X.; Li Y. Ga2O3and GaN semiconductor hollow spheres [J]. Angew Chem Inter Ed.,2004, 43, 3927-3831
    [71] Hu G.; Ma D.; Cheng M.; et al. Direct synthesis of uniform hollow carbon spheres by aself-assembly template approach [J]. Chem Comm., 2002, 1948-1949
    [72] Wang X.; Yu L.; Wu X.–L.; et al. Synthesis of single-crystalline Co3O4octahedral cageswith tunable surface aperture and their lithium storage properties [J]. J Phys Chem C.,2009, 113, 15553-15558
    [73] Wang X.; Xu L.; Hu P.; et al. Synthesis of single-crystalline hollow octahedral NiO [J].Cryst Grow Des., 2009, 7, 2415-2418
    [74] Yu J.; Yu X.; Huang B.; et al. Hydrothermal synthesis and visible-light photocatalyticactivity of novel cage-like ferric oxide hollow spheres [J]. Cryst Grow Des., 2009, 9,1474-1480
    [75] Zeng H. C. Ostwald ripening: a synthetic approach for hollow nanomaterials [J]. Currnanosci, 2007, 3, 177-181
    [76] Yang H. G.; Zeng H. C. Preparation of hollow anatase TiO2nanospheres via Ostwaldripening [J]. J Phys Chem B., 2004, 108, 3492-3495
    [77] Yu J. G.; Guo H.; Davis S. A.; et al. Fabrication of hollow inorganic microspheres bychemically induced self-transformation [J]. Adv Funct Mater., 2006, 16, 2035-2041
    [78] Lou X. W.; Wang Y.; Yuan C.; et al. Template-free synthesis of SnO2hollownanostructures with high lithium storage capacity [J]. Adv Mater., 2006, 18, 2325-2329
    [79] Agrawal M.; Gupta S.; Pich A.; et al. A facile approach of ZnO-TiO2hollow spheres [J].Chem Mater., 2009, 21, 5343-5348
    [80] Yu H.G.; Yu J.G.; Liu S.G.; et al. Template-free hydrothermal synthesis of CuO/CuO2composite hollow microspheres [J]. Chem Mater., 2007, 19, 4327-4334
    [81] Lai X.; Li J.; korgel B.; et al. General synthesis and gas-sensing properties ofmultiple-shell metal oxide hollow microspheres [J]. Angew Chem Int Ed., 2011, 50,2738-2741

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700