PANI/铁氧体复合型微波吸收材料的制备及吸波性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波吸波材料是军事、信息和环保科学领域的重要研究课题,目前国内外对新型导电高分子/铁氧体复合吸波材料研究十分关注。能够将介电损耗和磁损耗有机结合起来的导电聚苯胺/铁氧体纳米复合颗粒作为新型微波吸波材料具有广阔的应用前景。导电聚苯胺(PANI)作为一种典型的电阻型吸波材料因原料易得、结构多样、掺杂机制独特、具有较高的电导率,加之其加工可能性和环境稳定性,到目前为止己成为最受关注的导电高分子品种之一。
     本论文首次采用化学氧化物法制备了盐酸掺杂聚苯胺包覆锶铁氧体、锂锌铁氧体、钴锌铁氧体等系列样品,并采用羰基铁粉、碳纤维等对复合吸波剂进行掺杂。样品性能表征采用X射线衍射仪(XRD)、傅立叶红外衍射分析仪、透射电镜(TEM)、网络矢量分析仪等测试手段,系统而深入地研究了样品结构、表面形貌、吸波性能、掺杂及复合层厚度的因素对吸波性能的影响。得到以下主要结论:
     1、成功制备出具有核-壳结构的PANI/锶铁氧体纳米复合微粒。实验发现,复合微粒中的PANI与SrFe_(12)O_(19)和Li_(0.45)Zn_(0.1)Fe_(2.45)O_4之间存在着化学键合作用,其吸波性能与被包覆铁氧体含量有很大关系,当铁氧体质量百分含量15wt%时的吸波性能最佳。
     2、系统地比较了PANI包覆锶铁氧体、锂锌铁氧体和钴锌铁氧体等系列的吸波特性。实验发现,PANI/Li_(0.45)Zn_(0.1)Fe_(2.45)O_4复合微粒吸波性能最好,其-8dB带宽达5GHz,最大损耗为26.1dB,且最小面密度为0.28g·cm~(-2);我们还首次将PANI同时包覆两种铁氧体,实验结果发现,质量百分比为1:1时吸波性能较好,其吸波性能比包覆单一铁氧体的吸波性能更好,主峰峰位有向低频移动的趋势,并发现该类复合吸波材料的最佳匹配厚度为1.8mm,具有明显的实际应用价值。
     3、采用羰基铁进一步掺杂的系列复合吸波剂均有效的增加了样品的-8dB带宽,最宽达到8.8GHz,也具有明显的实际应用价值;采用碳纤维和石墨片掺杂PANI/铁氧体复合吸波剂,实验发现,含量为0.04%普通碳纤维以特殊的方式排布时有利于降低样品的密度。同时,可以通过碳纤维的排布方式调整吸收体的电磁参数,对吸收剂的阻抗匹配设计具有指导意义,也为开展碳纤维和石墨片掺杂PANI/铁氧体复合吸波剂的实验、应用和机理研究提供了有价值的实验数据和结论。
     我们所制备的新型导电聚苯胺/铁氧体纳米复合微波吸波剂具有优异的吸波性能,其最佳-8dB带宽达8.8GHz,匹配厚度为1.8mm,最小面密度为0.28g·cm~(-2)。通过进一步的掺杂,优化了吸波剂的吸收性能,在(2-18)GHz雷达波段,获得了吸收性能符合实际使用要求的高性能优质复合微波吸波剂。本课题的研究也为进一步开展PANI/铁氧体复合吸波剂的实验、应用和机理研究提供了有价值的实验数据和结论。
The study of microwave absorbing materials applying to military stealth information and environment protection is an important item. The conducting polyaniline/ferrite nano-composites possess both dielectric losses and magnetic losses, so they have good application prospect in radar absorbing material.Conducting polymers as a kind of typical resistance absorbing properties, have become the heat research in this order, because PANI is a sort of raw materials easily getting, diverse structure, special blending mechanism, and excellent conductivity rate, processing possibility and envioronment stability, so far it has became one of the host conducting polymers.
     In this thesis, PANI/Li_(0.45)Zn_(0.1)Fe_(0.45)O_4, PANI/Co_(0.7)Zn_(0.3)Fe_2O_4、PANI/SrFe_(12)O_(19) series composites are synthesized by Chemical Oxidation method for the very first time, and than adopt CIP,carbon fiber to blend it. The structures, microwave absorbing properties and one of PANI/ferrite composites have been studied by XRD FI-IR, TEM and Vector network analyzer. The main results are as follows:
     1. PANI/SrFe_(12)O_(19) nano-composites with core-shell structure have been successfully prepared by us. The results show that there are chemical bonds between PANI and SrFe_(12)O_(19)、Li_(0.45)Zn_(0.1)Fe_(2.45)O_4 nano-composites. The influence of wt% on microwave absorbing properties was studied. When the PANI has doped by 15wt% ferrite, the composite show the best microwave absorbing properties.
     2. We have analyzed PANI which is packed by different kinds of ferrites for the very first time. The results show that the PAIN/Li_(0.45)Zn_(0.1)Fe_(2.45)O_4 composites show the best microwave absorbing properties. It is founded that the max reflectivity of-26dB and 5GHz of 8dB bandwidth and density decrease to 0.28g·cm~(-2); At the same time, we have wrapped two kinds of ferrites in the PANI for the first time. The result show that quality percentage for 1:1 which is better microwave absorbing properties than that wrapping just one function ferrite, whose main crest moves toward the low frequency rate, we found the 1.8mm is the best thickness matching this compound microwave absorbing materials.
     3. When blending CIP and carben fiber with PANI/ferrites compound absorbers, It widens the bandwidth of the compound microwave absorbing materials-8dB, up to 8.8GHz and improved the applications of this type of compound microwave absorbing materials effectively. The density of this sample beCome lower.According to the design of impedance-matching principle and adjusting this type of compound microwave absorbing material's electromagnetism, which has instructive signification for experiment and provides worthy experiment data and conclusion for opening the exhibition carben fiber and blending graphite slice to PANI/Ferrite compound absorbing materials further.
     Above all, the new conductive PANI/ferrites nano-composites show good microwave absorbing in range of (2-18)GHz, whose best bandwidth-8dB is 8.8GHz; density decrease to 0.28g·cm~(-2). By further excellent blending, which can make high performance absorbing materials to meet practical requirements, and give further research of PANI compound microwave absorbing materials.
引文
[1]高技术新材料要览编委会编,高技术新材料要览.中国科学技术出版社,1993:225.
    [2]曹辉.结构吸波材料及其应用前景[J].宇航材料工艺,1993,(4):34-37.
    [3]刘烈,张明雪,胡连成等.薄、轻、宽吸波涂层的优化设计[J].宇航材料工艺,1996,(4):8-14.
    [4]Mingzhong Wu, Haijun Zhang, Xi Yao. Microwave characterization of ferriteparticles[J]. Appl Phys, 2001, 34: 889.
    [5]S A Mazen, F Metawe, S F Mansour. IR absorption and dielectric properties of Li-Yi ferrite[J]. Appl. Phys, 1997, 30: 1799.
    [6]S. L. KADAM, K. K. PATANKAR, V. L. MATHE. Dielectric Behavior and Magneto electric Effect Ni_(0.75)Co_(0.25)Fe_2O_4+Ba_(0.8)Pb_(0.2)TiO_3 ME Composites[J]. Journal of Electro ceramics, 2002, 9: 193-198.
    [7]黄婉霞,毛健,吴行.铁磁性MnZn,NiZn铁氧体与铁电性BaTiO_3复合材料吸收电磁波能力的研究[J].四川联合大学学报(工程科学版),1998,2(6):110-113.
    [8]郭文宇,岳振星,周济.Bi_2O_3对自燃烧法合成NiZnCu铁氧体的显微结构与性能的影响[J].压电与声光,2001,23(5):391.
    [9]Zhenxing Yue, Longtu Li, Ji Zhou. Preparation and characterization of NiCuZn ferrite nanocrystalline powders by auto-Combustion of nitratecitrate gels [J]. Materials Science and Engineering, 1999, B64: 68-72.
    [10]郭睿倩,李洪桂,孙培梅.轻稀土镧取代型钡铁氧体超微粉末的合成与表征[J].稀有金属,2001,25(2):86.
    [11]K. L. Ford, B. Chambers. Smart microwave absorber[J]. Electronics Letters, 2000, 36(1): 50.
    [12]Bregar VB. Advantages of ferromagnetic nanoparticle Composites in microwave Absorbers[J]. IEEE Transactions on Magnetics, 2004, 40(3): 1679.
    [13]Amano M, Kotsuka Y. A method of effective use of ferrite for microwave absorber[J]. IEEE Transactions on Microwave Theory and Techniques, 2003, 51(1): 238.
    [14]Bingle M, Davidson DB, Cloete JH. Scattering and absorption by thin metal wires inrectangular waveguide FD-TD simulation and physical experiments[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(6): 1621.
    [15]朱绪宝.隐身技术的发展状况与趋势[J].中国航天,1993,4:31—42.
    [16]COURRICS. Electromagnetic properties of blendsPolyderivatives[J]. Polymers for Advanced Techonlogies, 2000, 11(6): 273-27.
    [17]张立德.纳米材料学[M].沈阳:辽宁科学技术出版社,1994.
    [18]Bregar VB. Advantages of ferromagnetic nanoparticle Composites in microwave Absorbers[J]. IEEE Transactions on Magnetics, 2004, 40(3): 1679.
    [19]Deng LW, Jiang JJ, Fan SC, et al. GHz microwave permeability of CoFeZr amorphous materials synthesized by two-step mechanical alloying[J]. Journal of Magnetism and Magnetic Materials, 2003, 264(1): 50.
    [20]Song JM, Yoon HJ, Kim DI, et al. Dependence of electromagnetic wave absorption on ferrite particle size in sheet-type absorbers[J]. Journal of the Korean PhysicalSociety, 2003, 42(5): 671.
    [21]Yang FL, Zhang B, Wang JX, et al. The effect of grinding machine stiffness on surface integrity of siliCon nitride[J]. Journal of Manufacturing Science and Engineering-Transactions oftheAsme, 2001, 123(4): 591.
    [22]Bingle M, Davidson DB, Cloete JH. Scattering and absorption by thin metal wires in rectangular waveguide-FDTD Simulation and physical experiments[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(6): 16-21.
    [23]Yu D1, He J1, Tian YJ, et al. Role Of Alloying Elements P, Cu In Liquid-Phase Sintering of Short Cast-Iron Fiber[J]. Journal of Materials Science & Technology, 1995, 11(2): 122.
    [24]Wu MZ, Zhao ZS, He HH, et al. Preparation and microwave characteristics of Magnetic iron fibers[J]. Journal of Magnetism and Magnetic Materials, 2002, 17(1-3): 89.
    [25]Reinert J, Psilopoulos J, JaCob AF. On a Statistical assessment of realistic chiral Materials[J]. Electromagnetic, 2003, 23(8): 637.
    [26]Mariotte F, Sauviac B, Heliot Jp. Heterogeneous Chiral Materials Modeling (MtwcModel)-Theory, Comparison With Experimental Results And Applications[J]. Journal De Physique Ⅰⅱ, 1995, 5(10): 1537.
    [27]陶松垒,陶均炳.手机微波防护器的研究与测试[J].微波学报,2002,18(2):94-96.
    [28]张雄,习志臻.建筑吸波材料及其开发利用前景[J].建筑材料学报,2003,6(1):72-75.
    [29]葛副鼎,朱正.吸收剂颗粒形状对吸波材料性能的影响[J].宇航材料工艺,1996,(5):42-49.
    [30]REAGAN P.A new process for the low-Cost production of ceramic[J].Material Technology,1994,(3):32-38.
    [31]谢国华.红外隐身涂料与雷达吸波材料相容性[J].研究材料工程,1993,(5):5-7.
    [32]周敏,杨觉明.吸波材料研究进展[J].西安工业学院学报,2000,20(4):296-302.
    [33]刘俊能,刑立英.雷达吸波材料研究进展[J].航天制造工程,1996,(12):6-8.
    [34]崔东辉,朱绪宝.雷达吸波材料发展趋势[J].飞航导弹,2000,(11):54-57.
    [1]吴明忠.雷达吸波材料的现状和发展趋势[J].磁性材料及器件.1997,28(2):26-30.
    [2]方俊鑫,殷之文.电介质物理学[M].北京:科学出版社,1989:16-82.
    [3]宛德福,罗世华.磁性物理[M].北京:电子工业出社,1987:259-308.
    [4]J.Y. Shin, J.H. Oh. The microwave absorbing phenomenon of ferrite microwave absorbers[J]. IEEE Trans on Magnetics, 1993, 29(6): 37-39.
    [5]Fawwaz T Ulaby. Fundamentals of Applied Electromagnetics[J]. Pearsom Education. 2002.
    [6]Bhag Singh Gum著 周克定,张肃文,董天临,辜承林译 电磁场与电磁波[M].机械工业出版社,2000.
    [7]曹伟,徐立勤编著.电磁场与电磁波理论[M].北京:北京邮电大学出版社,1999.
    [8]秦柏,秦汝虎,金崇君.“广义匹配规律”的论证及在隐身材料中的应用[J].哈尔滨工业大学学报,1997,29(4):115-117.
    [9]Gao Maosheng, Qin Ruhu, Qiu Chengjun, Zhu Jing.Matchingdesign and mismatching analysis towards radar absorbing Coatings based on Conducting plate[J]. Material and Design, 2003, 24(5): 391-396.
    [10]Knott E F, Lunden C D. The two2sheet capacitive jaumann absorber[J].IEEE Transactions on Antennas and Propagation, 1995, 43(11): 1339-1343.
    [11]周馨我.功能材料学[M].北京:北京理工大学出版社,2002:240.
    [12]王俊山,杨建生,聂嘉阳,华宝家.树脂体系对吸波材料吸波性能的影响[J].宇航材料工艺,1989,19(45):52-58.
    [13]欧阳国忠,王小元.结构吸波材料的高性能树脂基体研制[J].国防科技大学学报,1991,13(4):74-78.
    [14]曾祥云,马铁军,李家俊.吸波材料(RAM)用损耗介质及RAM技术发展趋势[J].材料导报,1997,11(3):57-60.
    [15]甘永学.含谐振子的电磁波功能复合材料的研究[D].北京航空航天大学 博士论文,1992.
    [16]宫清,方正,张劲松.雷达波吸收材料的研究进展[J].材料导报,2002,16(11):45-47.
    [17]赵东林,沈曾民.碳纤维结构吸波材料及其结构设计[J].兵器材料科学与工程,2000,23(6):53-57.
    [18]曹婷.碳纤维(碳毡)/环氧吸波复合材料的制备及性能研究[D].天津大学硕士研究生论文,2002.
    [19]邵蔚.含不同吸波剂的树脂类复合材料的制备及吸波性能研究[D].天津大学硕士研究生论文,2003.
    [20]娄明连,阚涛.复合磁介质吸波材料[J].磁性材料及器件,2002,33(5):13—15.
    [21]王国强,刘祖黎,邹勇,廖海星.复合轻型吸波涂层电磁参数及吸波性能的研究[J].华中理工大学学报,2000,28(7):111—113.
    [22]Chambers B, Tennant A. Characteristics of a salisburyscreen radar absorber Covered by a dielectric skin[J]. ElectronicsLetters, 1994, 30(21): 1797-1798.
    [23]杨孚标,李永清,程海峰,车仁超,肖加余.SiC纤维的B4C涂层的研究[J].功能材料,2002,33(3):286-287.
    [24]张雄,习志臻.建筑吸波材料及其开发利用前景[J].建筑材料学报,2003,6(1):72-75.
    [25]B. Chambers. Symmetrical radar absorbing structures[J].Electronics Letters, 1995, 31(5): 404-405.
    [1]砖黄中,陈明光,黄河.不同类型的酸掺杂对聚苯胺结构和电导率的影响[J].华南理工大学学报:自然科学版,2003,31(5):21-24.
    [2]周震涛,刘芳.(NH_4)_2S_2O_8体系聚苯胺合成,结构与性能研究[J].华南理工大学学报:自然科学版,1995,23(2):47-52.
    [3]乔庆东,王胜等.新型共混十二烷基苯磺酸掺杂的聚苯胺导电胶的合成[J].精细化工.1999,16(21:35—38.
    [4]王利祥,王佛松.导电聚合物聚苯胺的研究进展1.合成、链结构和凝聚态结构[J].应用化学,1990,7(5):1-10.
    [5]焦树强,彭霞辉,周海晖等.脉冲电流法电解合成聚苯胺[J].高等学校化学学报,2003,24(6):1118-1121.
    [6]帅敏,张祖训.苯胺在高氯酸溶液中恒电流法电化学聚合研究[J].分析科学学报,1996,12(1):40-42.
    [7]Jing Li, Kun Fang, Hong Qiu, Shouping Li, Weimin Mao, Qiye Wu. Micro mophology and Conductive property of the pellets prepared by HCL-doped polyaniline nanofibers[J].Synthetic Metals, 2004, 145(2-3): 191-194.
    [8]S. TamilS elvan, A. Mani, K. A thinarayanasamy, K. L. N. Phani and S. Pitchumani. Synthesis of crystallinepolyaniline[J]. Materials Research Bulletin, 1995, 30(6): 699-705.
    [9]潘春跃,曾燕.乳液聚合条件对聚苯胺性能的影响[J].高分子材料科学与工程,2001,17(3):163—165.
    [10]阳范文,罗亦平,刘远立.有机磷酸掺杂聚苯胺的乳液聚合[J].胶体与聚合物,2000,18(4):12—14.
    [11]杨鹏飞,孟凡君,鲁成学.等磁性聚合物研究与应用现状[J].磁性材料及器件,2004,35(4):6-10.
    [12]Rupali Gangopadhyay, Amitabha Da. Polypyrrole-ferric oxide Conducting nanoComposites1: Synthesis and characterization[J]. European Polymer Journal, 1999, 35(11): 1985-1992.
    [13]邓建国,彭宇行,丁小斌等.磁性聚苯胺纳米微球的合成与表征[J].化 学物理学报,2002,15(2):149-152.
    [14]陈爱华,王海侨,赵彬等.Fe_3O_4/聚吡咯复合材料的制备及表征[J].复合材料学报,2004,21(2):157-160.
    [15]Feng Yan, Gi Xue, Jin Chen, Yun Lu. Preparation of a Conducting polymer/ferro-magnet Composite film by anodic-oxidation method [J]. Synthetic Metals, 2001, 122: 17-20.
    [16]H. S. Kim, B. H. Sohn, W. Lee, et al. Multifunctionallayer-by-layer self-assemblyof Conducting polymers and magnetic nano particles[J]. Thin Solid Films, 2002, 419: 173-177.
    [17]杨青林,宋延林,万梅香等.导电聚苯胺与Fe_3O_4磁性纳米颗粒复合物的合成与表征[J].高等学校化学学报,2002,23(6):1105—1109.
    [1]万梅香,周维侠.聚苯胺膜的磁学性能[J].物理学报,1992,(41):347-349.
    [2]Yoshizawa K. Ferromagnetic Interaction in Poly(maniline): Electron Spin Resonance and Magnetic Susceptibility[J]. J.Chem. Phys. 1992, (9):5516-5518.
    [3]Yoshizawa K. Magnetic Property of Soluble Poly (m2aniline)[J]. Solid State Communication, 1993, (87): 935-937.
    [4]任斌,黄河,刘少琼等.有机导电聚苯胺复合材料研究[J].材料科学与工程学报,2003,21(60):833-836.
    [5]万梅香,李素珍,李军朝等.导电高聚物的微波吸收机理的研究[J].宇航材料工艺,1989,(4—5):28.
    [6]M X. Wan. Studies on Absorption Mechanism of Microwave Absorbent of Conducting Polymer [J]. ACTA Physica Sinca, 1992, 1(12): 917-923.
    [7]廖绍彬,尹光俊,周丽年.微波吸收材料电磁参数的控制[J].宇航材料工艺,1989,(4—5):39-44.
    [8]王翠平.复合铁氧体微波吸收材料吸波性能研究[D].安徽大学硕士研究生论文,2005.
    [9]廖绍彬著.铁磁学(下册).北京:科学出版社,1998.
    [10]张永祥,耿香月等.六角结构磁铅石铁氧体吸波机制的设计与研究[J].天津大学学报,1999,32(5):611—615.
    [11]鲍元恺等.六角结构磁铅石铁氧体材料微波吸收剂性能的理论分析[J].宇航材料工艺,1989,(4—5):16.
    [1]P Chandrasekhar, K Naishadham. Broadband Microwave Absorption and Shielding Properties of Polyaniline[J]. Synthetic metals, 1999, (105): 115-120.
    [2]刘少琼,于黄中,黄河,等.TiO_2纳米微粒对聚苯胺性能的影响[J].高等学校化学学报,2002,23(1):161-163.
    [3]曾幸荣.导电性聚苯胺的化学法合成、结构、掺杂性能及锌——聚苯胺二次电池的研究[D].广州:华南理工大学,1989.
    [4]郭亚平,郭亚军等.[M].材料科学与工艺 2005,3:189-192.
    [5]M R Meshrama, Nawal K Agrawala, et al. Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber[J]. Journal of magnetism and magnetic materials, 2004, 271: 207-214.
    [6]王利祥,王佛松.导电聚合物—聚苯胺的研究与进展[J].应用化学,1990,7(6):1—8.
    [7]何显运,张兴华等.炭黑/掺杂聚苯胺复合材料的吸波特性[J].广东工业大学学报,2003,20(1):16—19.
    [8]廖绍彬著.铁磁学(下).北京:科学出版社,1998.
    [9]王俊山,杨建生,聂嘉阳,华宝家.树脂体系对吸波材料吸波性能的影响[J].宇航材料工艺,1989,19(45):52—58.
    [1]S. Tamil Selvan, A. Mani, K. A thinarayanasamy, K. L. N. Phani and S. Pitchumani. Synthesis of crystalline polyaniline[J].Materials Research Bulletin, 1995, 30(6): 699-705.
    [2]华宝家,肖高智.碳纤维在结构隐身材料中的应用研究[J].宇航材料工艺,1994,24(3):31—34.
    [3]赵九蓬,吴佩莲.新型吸波材料研究动态[J].材料科学与工艺,2002,10(2):220.
    [4]赵东林,沈曾民,迟伟东.碳纤维及其复合材料的吸波性能和吸波机理[J].新型碳材料,2001,16(2):66—72.
    [5]廖绍彬著.铁磁学(下).北京:科学出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700