层状双羟基金属复合氧化物的微粒乳化作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以无机多功能材料层状双羟基金属复合氧化物-氢氧化镁铝(MAH)为微粒乳化剂,研究其单独使用及辅以其他物质时,对液体石蜡、苯及松香苯溶液的乳化与稳定作用规律。
     MAH微粒能够将液体石蜡/水体系乳化成O/W型乳状液,且随着初始油相体积分数和MAH用量的增大,乳状液稳定性提高,粘度也随之增加,但分散液滴分别表现为增大和减小趋势。柠檬酸钠对MAH的凝聚作用能够促进其在油水界面上的聚集,形成的高粘度松散聚集体有助于提高石蜡乳状液稳定性,乳状液的粘度也随之提高。但柠檬酸钠用量过大而引起MAH的失水凝聚时,不利于乳状液的稳定,液滴直径也急剧增大。钠化膨润土对MAH的异凝聚作用也能够促进其在油水界面的吸附,少量的钠化膨润土即可显著提高石蜡乳状液的稳定性,但乳状液粘度和液滴也随之增大。
     MAH微粒能够将苯/水体系完全乳化成O/W型乳状液,但苯乳液稳定性相当差,加入较高量的MAH也不能有效改善苯乳液的稳定性。松香溶于苯后,可以形成具有一定极性的松香苯溶液,导致MAH微粒在油水界面上由“亲水型”转变为“亲油型”,且松香浓度越大,溶液极性越强,MAH三相接触角也越大。结果,苯溶松香溶液均被MAH微粒乳化成W/O型乳状液,且具有较高的稳定性。乳状液稳定性随着油相极性的增强和初始水相体积分数的增大而提高,粘度和分散液滴也随之增大,仅需微量的MAH微粒便可获得稳定的苯溶松香乳状液。
     MAH用于乳化50wt%的极性松香苯溶液时,形成W/O型乳状液。在较低的初始油水体积比例下,少量的MAH更有利于制备稳定的苯溶松香乳状液。MAH用量过大时,乳状液稳定性反而降低。随着MAH用量的增加,乳状液粘度先增大后减小,分散液滴则一直减小。乳化过程中分散强度的提高可在一定程度上提高乳状液的稳定性,并使分散液滴尺寸减小。无机盐NaCl的存在有利于促进MAH粒子间的凝聚,但这不利于苯溶松香乳状液的稳定,凝聚作用越强,乳状液稳定性越差,粘度却随之变大,液滴变小。
     水溶性聚合物电解质非离子聚丙烯酰胺和羟乙基纤维素及非离子和弱阳离子有机微粒均可以将苯溶松香溶液/水体系乳化成O/W型乳状液。MAH分别与聚合物电解质和有机微粒联合使用乳化松香苯溶液时,在初始油水体积比为1:2的情况下,调整MAH与复配物的相对用量,可以获得两种类型的乳状液,且在合适的用量下,二者的共同作用能够提高乳状液的稳定性,但W/O型乳状液稳定性较好。
The emulsifying and stablilizing effects of layered double hydroxides——magnesium aluminum hydroxides (MAH) on liquid paraffin, benzene and rosin solutions as a microparticle emulsifier either alone or together with other adjuvants were investigated systematically.
     Liquid paraffin/water can be emulsified into o/w emulsion by MAH when initial oil and water volume fraction was less than 3:1. The stability of paraffin emulsion was improved by increasing paraffin volume fraction and MAH addition level, accompanied by the increase of emulsion viscosity. However, the droplet size increased with increasing paraffin volume fraction while decreased with increasing MAH addition level. Sodium citrate can induce the aggregation of MAH particles and improve the adsorption of MAH on the paraffin/water interface. The formed open aggregates with high viscosity may improve the stability of the MAH stabilized paraffin/water emulsion. However, the emulsion viscosity was also increased. When the addition level of sodium citrate was too large, denser MAH aggregates were formed and the stability of paraffin-in-water emulsion was lowered while the emulsion droplet size was rapidly increased. Sodium-activated bentonite can induce the coagulation of MAH and improve the adsorption of MAH on the paraffin/water interface. Small amount of bentonite can improve the stability of paraffin/water emulsion prominently; meanwhile, the viscosity and droplet size were also increased.
     Benzene/water can be emulsified into o/w emulsion by MAH, but the stability of benzene emulsion was poor even at large addition levels of MAH. However, when rosin was dissolved in benzene, the polarity of oil phase and three-phase contact angle of MAH were enhanced. As result, the hydrophilic MAH displayed a hydrophobic nature at the oil/water interface, and w/o emulsions with excellent stability were formed. The emulsion stability was improved by increasing the rosin concentration of oil phase and the initial water volume fraction, accompanied by the increase of emulsion viscosity and droplet size. Meanwhile, the stable water-in- rosin solution could be obtained by adding a small amount of MAH particles.
     Rosin solution, which was prepared by dissolving rosin in benzene at mass ratio of 1:1, could be emulsified into a stable w/o emulsion by MAH. The emulsion stability could be further improved with increasing the initial water volume fraction and addition level of MAH while the emulsion viscosity was increased and the droplet size was decreased. However, the too large dosage of MAH was harmful to the stability of emulsion. During the emulsifying process, the higher mechanical force led to more stable emulsion with smaller droplets. The aggregation of MAH particles caused by NaCl was adverse to the stability of emulsion. Increasing salt concentration lowered the emulsion stability, increased the emulsion viscosity and decreased the emulsion droplet size.
     The water-soluble polymer (WSP) and organic microparticles (OMP) favored to stabilize w/o emulsions when 50wt% rosin solution was used as oil phase. When the MAH and WSP or OMP were used together, different types of rosin emulsion could be obtained by adjusting the relative amount of MAH and WSP or OMP at the initial oil-water volume fraction of 1:2. The emulsion stability was also enhanced by the co-emulsifying effect of MAH and WSP or OMP at suitable addition levels. Generally speaking, the rosin solution-in-water emulsion was more stable.
引文
[1] Wu Chih-yuan, Tarimala Sowmitri, Dai Lenore L. Dynamics of charged microparticles at oil-water interfaces[J]. Langmuir, 2006, 22(5): 2112-2116
    [2] Golemanov K, Tcholakova S, Kralchevsky P. A et al. Latex-particle-stabilized emulsions of anti-bancroft type[J]. Langmuir, 2006, 22: 4968-4977
    [3] Suzuki Daisuke, Tsuji Sakiko, Kawaguchi Haruma. Janus microgels prepared by surfactant-free pickering emulsion-based modification and their self-assembly[J]. J. Am. Chem. Soc., 2007, 129: 8088-8089
    [4] Bon Stefan A. F, Chen Tao. Pickering stabilization as a tool in the fabrication of complex nanopatterned silica microcapsules[J]. Langmuir, 2007, 23(19): 9527-9530
    [5] Sztukowski Danuta M., Yarranton Harvey W. Oilfield solids and water-in-oil emulsion stability [J]. Journal of Colloid and Interface Science, 2005, 285: 821-833
    [6] K. Morana,b,A.Yeunga, J. Masliyaha. The viscoplastic properties of crude oil–water interfaces[J]. Chemical Engineering Science, 2006, 61: 6016-6028
    [7] Peutherer Peter, Waring Ian Mark, Collett Lesley. Sizing of paper [P]. US: 6284099, 2001-09-04
    [8] Sebillotte-Arnaud Laurence. Water-in-oil emulsion containing fused silica and a polysaccharide alkyl ether [P]. US: 6 228 377, 2001-05-08
    [9] Mercier Michel F, Thau Paul, Chase John A. Mattifying oil-in-water emulsion [P]. US: 7 192 599, 2007-03-20
    [10] Hodge S.M, Rousseau D. Continuous-phase fat crystals strongly influence water-in-oil emulsion stability [J]. JAOCS, 2005, 82 (3):159-164
    [11] Garti N, Binyamin H, Aserin A. Stabilization of water-in-oil emulsions by submicrocrystalline α-form fat particles[J]. JAOCS, 1998, 75 (12): 1825-1831
    [12] Aveyard Robert, Binks Bernard P, Clint John H. Emulsions stabilised solely by colloidal particles[J]. Advances in Colloid and Interface Science, 2003, 100 –102: 503-546
    [13] Cavani F, Trifiro, Vaccari A. Hydrotalcite-type anionic clays: Preparation, properties and applications [J].Catalysts Today, 1991, 11(2):173-301
    [14] 俞卫华,倪哲明,郭志强等. LDHs 材料制备技术研究进展[J].浙江工业大学学报, 2004,32(3):306-310
    [15] 杜以波, D.G.Evans, 孙鹏等.阴离子型层柱材料研究进展[J].化学通报,2000,5: 20-24
    [16] 安霞,谢鲜梅,王志忠. 水滑石类化合物的性质及其催化应用[J].太原理工大学学报,2002,33(5):498-451
    [17] 黄子植,周春晖, 李杰等.水滑石制备及应用于催化氧化反应的新进展[J].化工生产与技术,2006,13(4):44-48
    [18] 刘洁翔,候忠德,谢鲜梅.类水滑石化合物的合成及催化应用[J]. 太原理工大学 学报,2000,31(6):628-632
    [19] 谢 鲜 梅 . 层 状 化 合 物 镍 铝 水 滑 石 的 制 备 和 表 征 [J]. 无 机 化 学 学 报2000,16(1):43-46
    [20] Dumitriu E,Guimon C,Cordoneanu A, et al. Heterogeneous sulfoxidation of thioethres by hydrogen peroxide over layered double hydroxides as catalysts[J].Catal Today,2001,66(2-4):529-534
    [21] 上官荣昌.以铬酸盐阴离子柱撑镁铝水滑石为前体的脱氢催化剂研究[J].石油与天然化工,2005,2:84-86
    [22] 林 宁 , 赵 谨 , 秦 立 娟 . 磷 酸 根 插 层 水 滑 石 阻 燃 剂 的 研 制 [J]. 无 机 盐 工业,2005,37(9):35-37
    [23] 刘鑫,舒万艮,桂客等.十二烷基苯磺酸柱撑类水滑石的热稳定性研究[J].中国塑料,2004,18(10):70-72
    [24] 孙幼松,矫庆泽,赵芸等.对苯二甲酸柱撑水滑石的组装及其结构特征[J].应用化学,2001,18(10):781-784
    [25] 韩小伟,王 英.水滑石及类水滑石材料的合成及应用新进展[J]. 江苏化工,2003,31(2):26-30
    [26] 景晓燕,郑崇辉,王慧颖等.水滑石类化合物的研究现状及进展[J].应用科技,2004,31,(10):41-42
    [27] 谢晖;矫庆泽;段雪.镁铝型水滑石水热合成[J].应用化学,2001,18(1):70-72
    [28] 杨飘萍,吴通好.水滑石的结构性质、合成及催化应用[J].石化技术与应用,2005,23(1):61-66
    [29] Emil Dumitriu, Vasile Hulea, Carmen Chelaru.Influence of the acid-base properties of solid catalysts derived from hydrotal-cite-like compounds on the condensation of formal dehyde and acetaldehyde[J].Applied Catalysis A:General,1999, 178: 145 -157
    [30] 吕亮,吾国强,段雪等.水滑石的制备、表征及其在酯交换中的应用[J].精细石油化工,2001(1):9-12.
    [31] Jyothi T M, Raja T, Rao B S. Catalytic transfer reduction(CTR) of alkyl, alkyl aryl, cyclic and unsaturated ketones over calcined Mg-Al hydrotalcites[J].Molecular Catalysis A:Chemical,2001,168:187-191
    [32] JuiI-Yu, ShinYi-Shiau, Annan-Ko.Cross aldolization between benzaldehyde andn-heptaldehyde to A-peutylin namaldehyde over calcined Mg-Al hydrotalcites [J].React Kinet Catal Lett, 2001, 172(2):365-372
    [33] Davis R J, Derouane E G. Aromatization of n-hexane by Pt clusters supported on high surface area MgO[J].Catal 1991, 132:269-274
    [34] Padmasri A H, Venugopal A, Krishnamurthy J, et al. Novel calcined Mg-Cr hydrotalcite supported Pd catalysts for the hydrogenolysis of CCl2F2[J].Molecular Catal A: Chemical,2002,181,73-80
    [35] Narayanan S, Krishna K. Hydrotalcite-supported palladium catalysts Part: Preparation, characterization of hydrotalcites and palladium on uncalcined hydrotalcites for CO chemi sorption and phenol hydrogenation[J].Applied Catalysis A:General,1998,174:221-229
    [36] Amin S, Jayson G G.. Humic substance uptake by hydrotacites and PILCs[J]. Water Res, 1996, 30(2):299-306
    [37] Zhao HI,Vance GF, Molecular inclusion properties of hydrophobic organic compounds by a modified beta 一 cyclodextrin intercalated within a layered double hydroxide (J). J. Iinclus. Phenom. Mol.,1998, 31 (4):305-317
    [38] 夏盛杰,倪哲明,潘国祥,王力耕.Co/Mg/Al 类水滑石对废水中 Cr(VI)的吸附性能研究[J].浙江工业大学学报. 2006, 34(5):517-520
    [39] 任志峰 , 何静 , 张春起等 . 焙烧水滑石去除氯离子性能研究 [J]. 精细化工,2002,19(6):339-342
    [40] 范杰,许昭怡,郑寿荣等.Mg-Al 型水滑石对水溶液中 F-的吸附[J].环境化 学,2006.25(4):425-428
    [41] 姚铭,杜莉珍,王凯雄等.合成水滑石治理水体阴离子染料污染研究[J].环境科学学报, 2005,25(8):1034-1040
    [42] 申震,唐先进,刘超等.焙烧态镁铝水滑石处理阴离子染料废水研究[J].环境科学与技术,2006,29(3):89-94
    [43] Guo Y, Li D, Hu C, et al. Photocatalytic degradation of aqueous organocholorine pesticide on the layered double hydroxide pillared by Paratungstate A ion[J]. Appl. Catal. B Environ. 2001 .30: 337-349
    [44] Cervilla A, Corma A, Fornes V, et al. Intercalation of [Mo (VI)O2(O2CC(S)Ph2)2]2- in a Zn-Al layered double hydroxide host: A strategy for the heterogeneous catalysis of the air oxidation of thiols [J].J Am Chem Soc, 1994, 116:1595-1596
    [45] Chibwe M, Pinnavaia T J. Stabilization of a Cobalt phthalocyanine oxidation catalyst by intercalation in a layered double hydroxide [J].J Chem Soc Chem Commun, 1993, 278-280
    [46] Gabriela C, Gerard D. Mesoporous mixed oxides derived from pillared oxovanadates layered double hydroxides as new catalysts for the selective catalytic reduction of NO by NH3. Appl Catal B: Environ, 2004, 47(1):59-66
    [47] 刘钰,杨向光,王学中等.以水滑石为前驱体的 Co-M-Al 复合氧化物对催化消除NOx 活性的研究[J].化学学报,1999,57(7):782-789
    [48] Junko O i, Obuchi A, Ogata A,et al. Zn, Al, Rh-mixed oxides derived from hydrotalcite-like compound and their catalytic properties for N2O decomposition[J].Appl Catal B,1997,13:197-203
    [49] 陈银飞,葛忠华,吕德伟.不同制备方法对MgFe氧化物催化吸附SO2性能的影响[J].化工学报,2001,52(5):430-435
    [50] 陈银飞,葛忠华,吕德伟. MgAlFe 复合氧化物吸收 SO2 后的再生[J].燃料化学学报,2000,28(6):560-563
    [51] 陈银飞,葛忠华,吕德伟. MgAlFe 复合氧化物吸附 SO2 的性质[J].环境科学学报,2001,21(3):307-311
    [52] 王永新.水滑石焙烧产物脱除低浓度 SO2 的研究[J]. 硅酸盐学报,2005, 33(2): 206-208.
    [53] 温斌,何鸣元,宋家庆,等.流化催化裂化中 DeSOx 催化剂的研究[J].环境化学,2000,19(3):197-203
    [54] Wen B, He M Y.Study of the Cu-Ce synergism for NO reduction with CO in the presence of O2, H2O and SO2 in FCC operation[J].Appl Catal B,2002,37:75-82
    [55] Wen B, He M Y, Sethanetal J. NO reduction and CO oxidation over Cu/Ce/Mg/Al mixed oxide catalyst in FCC operation [J].Mol Catal A: Chem, 2002, 180:187-192
    [56] Palomares A E, Lpez-Nieto J M, Lzaro F J, et al.Reactivity in the removal of SO2 and NOx on Co/Mg/Al mixed oxides derived from hydrotalcites [J].Applied Catalysis B: Environmental1999, 20,257-266.
    [57] L ucjan C, Piotri K, Alicja R L, et al. Catalytic activity of Co-Mg-Al, Cu-Mg-Al and Cu-Co-Mg-Al mixed oxides derived from hydrotalcites in SCR of NO with ammonia[J]. Appl Catal B, 2002, 35:195-216
    [58] 郭志强,倪哲明,方彩萍等.铜钴作为二价金属的类水滑石对 NOx 吸附性能研究[J].浙江工业大学学报 2005,33(1):100-102
    [59] 陈英红,薛锦珍,侯瑞玲,等.水滑石复合氧化物在 CO+NO 反应中的应用[J].分子催化,2000,14(4):270-274.
    [60] Javier P R, Joost O , Freek K, et al. Structural promotion and stabilizing effect of Mg in the catalytic decomposition of nitrous oxide over calcined hydrotalcite-like compounds[J].Appl Catal B,1999,23:59-72
    [61] 王永新,陈大茴.类水滑石衍生的铁镁铝复合氧化物的制备及与 SO2 的反应性[J].硅酸盐学报,2005,33(2): 191-196
    [62] Miyata S, Noriko I, Tadashi M. Purifying agent and method for cooling water used in nuclear reactions [P].EP:152010, 1985.
    [63] Tsutomu N,Wataru H,Sawa Y. Ultraviolet protective calcined hydrotalcites for resins or cosmetics[P].EP:0737711 A1,1996
    [64] Tsutomu N,Wataru H,Sawa Y.Ultraviolet protective calcined hydrotalcites for resins or cosmetics[P].EP:0737711 A1,1996
    [65] 欧育湘.阻燃剂-制造、性能及应用[M].北京:兵器工业出版社,1997,182-191.
    [66] 任庆利,罗强,吴洪才.镁铝摩尔比对水滑石电缆阻燃剂热性能的影响[J].绝缘材料,2001,6:22-25.
    [67] 任庆利,刘斌,陈维等.镁铝水滑石阻燃料的研究[J].绝缘材料,2003,(5):17-19
    [68] Overden C, Xiao H. Flocculation behavior and mechanisms of cationic inorganic microparticle/polymer systems [J]. Colloids and Surfaces A,2002, 197: 2254
    [69] 王松林,刘温霞.不同阴离子型氢氧化镁铝正电胶体的合成和造纸助留试验[J].造纸化学品, 2004,3: 10-13
    [70] 王松林,刘温霞.氢氧化镁铝胶体微粒与纤维和阴离子聚丙烯酞胺的吸附[J].中国造纸学报,2004,19(1):89-94
    [71] 王松林,刘温霞.阳离子微粒氢氧化镁铝的合成及其微粒助留作用[J].中国造纸学报, 2004,19(1):66-69
    [72] Binks B. P. and Lumsdon S. O. Influence of particle wettability on the type and stability of surfactant-free emulsions[J]. Langmuir, 2000, 16: 8622-8631
    [73] Binks B. P. and Lumsdon S. O. Catastrophic phase inversion of water-in-oil emulsions stabilized by hydrophobic silica[J]. Langmuir, 2000, 16:2539
    [74] Bend A, Bonnke N, Gutschner U et al. Stabilization of emulsions by hetero- coagulation of clay minerals and layered double hydroxides [J]. J Colloid Polym Sci, 1998, 276(8): 730-737.
    [75] P.M. Kruglyakov, A.V.Nushtayeva. Investigation of the influence of capillary pressure on stability of a thin layer emulsion stabilized by solid particles[J]. Colloids and Surfaces. A:Physicochem. Eng.Aspects, 2005, 263:330-335.
    [76] 刘温霞,邱化玉. 造纸湿部化学[M]. 北京:化学工业出版社.2006:55-56
    [77] Yuhua Yan, Jacob H. Masliyah. Solids-stabilized oil-in-water emulsions: scavenging of emulsion droplets by fresh oil addition[J]. Colloids and Surface A: Physicochemical and Engineering Aspects, 1993, 75:123-132
    [78] Binks, Bernard P. Particles as surfactants—similarities and differences[J]. Current Opinion in Colloid & Interface Science, 2002, 7: 21-41
    [79] Nianxi Yan, Jacob H.Masliyah. Demulsification of solids-stabilized oil-in-water emulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 117:15-25
    [80] 粱文平.乳状液科学与技术基础.北京:科学出版社.2001,67-68
    [81] Masayoshi Saito, Li-Jun Yin, Isao Kobayashi Nakajima. Preparation characteristics of monodispersed oil-in-water emulsions with large particles stabilized by proteins in straight-through microchannel emulsification[J]. Food Hydrocolloids, 2005, 19: 745-751
    [82] Binks B. P., Lumsdon S. O., Influence of particle wettability on the type and stability of surfactant-free emulsions[J]. Langmuir, 2000, 16:8622-8631
    [83] Binks BP, Lumsdon SO. Stability of oil-in-water emulsions stabilized by silica particles[J]. Phys. Chem., 1999, 1:3007-3016
    [84] Lucassen-Reynders EH, van den Tempel M.Stabilization of emulsions by solid particles[J]. Phys. Chem., 1963, 67:731-734
    [85] Binks B. P. and Rodrigues J. A. Types of phase inversion of silica particle stabilized emulsions containing triglyceride oil [J]. Langmuir, 2003, 19: 4905
    [86] Binks BP, Lumsdon SO.Effects of oil type and aqueous phase composition on oil-water mixtures containing particles of intermedite hydrophobicity[J]. Phys. Chem., 2000, 2; 2959-2967
    [87] V.B. Menon and D.T. Wasan. Particle-Fluid interactions with application to solid-stabilized emulsions[J]. Colloids and Surfaces, 1986, 19:89-105
    [88] V.B. Menon and D.T. Wasan. Particle-Fluid interactions with application to solid-stabilized emulsions[J]. Colloids and Surfaces,1987, 23:353-362
    [89] 宋世谟,王正烈,李文斌.物理化学[M].北京:高等教育出版社.1993,429
    [90] 任俊,沈健,卢寿慈.颗粒分散科学与技术[M].北京:化学工业出版社.2005,250
    [91] Yongjun He. Interfacial synthesis and characterization of polyaniline nano- fibers.Materials Science and Engineering B, 2005, 122:76-79
    [92] Yongjun He.Preparation and modification of ZnO microspheres using a Pickering emulsion as tenplate. Materials Letters, 2005, 59:114-117
    [93] Fei Yang, Shang-ying Liu, De-jun Sun et al. Pickering emulsions stabilized solely by layered double hydroxides particles: The effect of salt on emulsion formation and stability [J]. Colloid Interface Sci., 2006, 302:159-169
    [94] Fei Yang, Quan Niu, Qiang Lan and Dejun Sun. Effect of dispersion pH on theformation and stability of Pickering emulsions stabilized by layered double hydroxides particles [J]. Colloid Interface Sci., 2007, 306: 285-295
    [95] Lagaly G, Reese M, Abend S. Smectites as colloidal stabilizers of emulsions. I. Preparation and properties of emulsions with smectites and nonionic surfactants[J]. Applied Clay Science, 1999, 14: 83-103
    [96] Bend A, Bonnke N, Gutschner U et al. Stabilization of emulsions by heterocoagulation of clay minerals and layered double hydroxides[J]. J. Colloid Polym Sci, 1998, 276 (8): 730-737
    [97] 张克庆,刘温霞,陈子成. 阳离子水滑石微粒的合成及表征[J]. 造纸化学品,2006,18(2):9-12
    [98] 董元锋,刘温霞.膨润土改性及其对二次纤维的微粒助留作用[J].中国造纸, 2006, 25 (l2):19-22
    [99] Krogerus B. Impact of retention polymer on flocculation, retention, drainage and sheet formation. A laboratory study[A]. In: TAPPI 1994 Papermakers Conference Proceedings[C]. Atlanta: TAPPI Press, 1994, 445

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700