三元复合驱采出液乳化和稳定机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来大庆油田开展了大规模三元复合驱矿场试验,取得了比水驱提高石油采收率20%以上的好效果,同时三元复合驱采出液中残留的碱、表面活性剂和聚合物也导致采出液油水乳化严重,使油水分离难度明显加大。
     本文系统地研究了大庆油田三元复合驱采出液中残留的碱、表面活性剂和聚合物对三元复合驱采出液乳化强度、油水分离特性、油相体相流变性、水相体相流变性及油水界面性质的影响规律,得出了大庆油田三元复合驱采出液的乳化和稳定机理。
     本文中得出的主要研究结论包括:
     (1)大庆油田三元复合驱采出液中残留的碱、表面活性剂和聚合物导致采出液油水乳化严重,油水乳状液稳定性增强,油水分离难度加大;
     (2)大庆油田O/W型三元复合驱采出液的乳化机理为:油珠在作用其上的粘性剪切应力的作用下发生破裂,其中采出液中残留的碱和表面活性剂使油水动态界面张力大幅度下降,使油珠抵抗变形的能力下降,容易发生变形和破裂;采出液中残留的聚合物使水相粘度增大,使作用在油珠表面上的粘性剪切应力增大,导致油珠破裂趋势增强;
     (3)大庆油田O/W型三元复合驱采出液稳定性随其中残留的碱、表面活性剂和聚合物含量增大而增强的主要原因是残留的碱、表面活性剂和聚合物造成三元复合驱采出液油珠粒径减小,乳化强度增大;
     (4)大庆油田O/W型三元复合驱采出液的稳定机理为:
     ①碱、表面活性剂和聚合物造成O/W型三元复合驱采出液乳化强度增大油珠粒径减小,使油珠上浮速度和聚结速率下降,同时也使油珠聚结过程中被束缚在油相中的水滴粒径减小,造成O/W型三元复合驱采出液破乳后上层W/O型乳化原油的稳定性增强;
     ②聚合物对三元复合驱采出液水相的增粘作用使油珠上浮和水膜排液速度降低;
     ③高碱含量下,碱对油水扩散双电层的压缩作用使油水界面上吸附的原油中的天然界面活性物质、碱与原油中天然物质反应生成的界面活性物质及
    
    哈尔滨l_程大学硕十学位论文
    表面活性剂偏向油相一侧,所产生的空间位阻使0/W型三元复合驱采出液破
    乳后所形成的W/0型乳化原油中的水滴聚结困难;
     (5)0/W型三元复合驱采出液的相分离过程可分为油珠上浮、油珠聚结和
    水滴沉降三个相互平行和互相衔接的子过程;
     (6)可采用稀释高浓度乳状液制备具有相同初始分散相液滴粒径分布的
    稀乳状液的方法研究乳状液中各种化学物质和外加物质对乳状液稳定性的影
    响规律;
     (7)大庆油田0/W型三元复合驱采出液中残留的阴离子型部分水解聚丙
    烯酞胺对油珠有显著的絮凝作用,这种作用随聚丙烯酞胺浓度增大而增强,
    表面活性剂及表面活性剂与碱的协同作用可显著降低聚丙烯酸胺对油珠的絮
    凝作用。
ASP flooding have been widely tested in Daqing Oilfield. While significant decrease of water-cut of produced liquid and increase of oil production have been achieved, residual alkaline, surfactants and polymer in produced liquid have resulted in stable crude oil emulsion, causing great troubles in surface oil-water separation processes.
    In this work, emulsification and stabilization of o/w ASP flooding produced liquid in Daqing Oilfield were systematically studied on artificial ASP flooding produced liquid and oily water. The influences of alkaline (NaOH), surfactant and polymer (partially hydrolyzed polyacrylamide PAM) on the stability of ASP flooding produced liquid and oily water were tested. Bulk phase rheology and interfacial properties such as interfacial tension, oil droplet Zeta potential and interfacial rheology were tested to reveal the mechanisms of the emulsification and stabilization of ASP flooding produced liquid.
    Emulsification of o/w ASP flooding produced liquid i.e. breakage of oil droplet is caused by the mechanical shearing force exerted on oil droplets by the surrounding liquid (water). The significant enhancement of the emulsification of chemical flooding produced liquid is mainly caused by the reduction of dynamic oil-water interfacial tension by residual alkaline and surfactant, and the increase of water phase viscosity by residual polymer. Decrease of interfacial tension results in less resistance to oil droplet deformation and thus decrease of energy consumption to break an oil droplet.
    The enhanced stability of ASP flooding produced crude oil emulsion results mainly from its intensified emulsification by the residual alkaline, surfactant and polymer in it.
    The stabilization of ASP flooding produced liquid by residual alkaline, surfactant and polymer lies in the enhanced emulsification of produced liquid in which smaller oil droplets are produced, the increase of water phase viscosity by polymer which decreases oil droplet rising velocity and the hindrance of alkaline and surfactant to oil droplet coalescence. Decrease of oil droplet size results in
    
    
    lower o/w ASP flooding produced crude oil emulsion creaming rate and smaller oil droplets in the condense oil droplet layer on top of o/w ASP flooding produced crude oil emulsion, leading to lower oil droplet coalescence rate and smaller water droplets held in oil layer after oil droplet coalescence (tight w/o crude oil emulsion). The increase of water phase viscosity results in slower emulsion creaming, slower draining rate of the water membrane between two approaching oil droplets and thus slower oil droplet coalescence rate in the condense oil droplet layer on top of the o/w crude oil emulsion. In case of high alkaline concentration, alkaline repels the surface-active components on oil-water interface such as indigenous surface-active components in crude oil, the products of chemical reaction between alkaline and indigenous components in crude oil, and the injected surfactant to the oil phase side, resulting in stronger steric hindrance to water droplet coalescence and thus tighter w/o crude oil emulsion
    on top of o/w chemical flooding produced crude oil emulsion after emulsion creaming and oil droplet coalescence.
    The phase separation process of o/w chemical flooding produced liquid constitutes of three parallel and successive subprocesses: oil droplet rising (creaming), oil droplet coalescence, and water droplet settling.
    The influences of indigenous components and injected chemicals on the stabilization of emulsion can be tested by diluting condense emulsion to form dilute emulsions of same droplet size distribution but with different composition.
    The residual polymer acts to flocculate the oil droplets in ASP flooding produced o/w crude oil emulsion. The flocculating effect of polymer on oil droplets increases with polymer content. The presence of alkaline and surfactant weakens the flocculating effect of polymer on oil droplets.
引文
[1] 杨承志等.化学驱提高石油采收率.北京:石油工业出版社,1995
    [2] 冈秦麟.化学驱油论文集,北京:石油工业出版社,1998
    [3] 杨普华等译.增效碱驱(复合驱)提高石油采收率译文集,北京:石油工业出版社,1993
    [4] 李群.层状砂岩大规模实施强化采油的经验.2000年国际石油学会亚太地区年会论文集,2000
    [5] 王德民,吴军政.强化采油.1999/2000中国科学技术前沿—中国工程院版,2000
    [6] 王玉普等.非均质多层砂岩油田分层开采技术.北京,石油工业出版社,2000
    [7] 王德民等.大庆油田堵水效果预测方法.中国石油学报.1983,第1期
    [8] 唐加礼等.大庆油田高含水期采油工艺技术.中美石油工程师学会会议论文集,1986
    [9] 赵福麟.采油用剂.山东东营:石油大学出版社,1997
    [10] 隋军.常规泡沫驱油技术.北京.中国版本图书馆.1999
    [11] 赵福麟.采油化学.山东东营:石油大学出版社,1989
    [12] 黄俊英.油气水处理工艺与化学.山东东营:石油大学出版社,1993
    [13] 程杰成.第一个超低界面张力泡沫复合驱油现场试验获得成功.2001年国际石油学会年会论文集,2001
    [14] 廖广志,王启民,王德民.化学复合驱原理及应用.北京:石油工业出版社,1999
    [15] 王德民,李群.大庆油田聚合物驱提高原油采收率工程技术.2000年中国国际石油天然气会议论文集,2000
    [16] 隋军.大庆油田聚合物驱油动态特征及驱油效果影响因素分析.大庆石油地质与开发.第5期,1999年
    [17] 王德民,张振华,程杰成.大庆油田三元复合驱试验.国际石油学会油藏工程,1997
    
    
    [18] 张宏方,王德民.驱油用黄胞胶的性能评价和优选.油田化学,第一期,2002
    [19] 张宏方.黄原胶溶液在多孔介质中的渗流规律及其对提高采收率的作用.石油勘探与开发,第三期,2001:7
    [20] 刘恒.大庆油田聚合物驱工业化推广应用效果及对几个问题的认识.第六次国际石油工程会议论文集.1998:29-30
    [21] 廖广志.大庆油田提高原油采收率技术综述.大庆石油地质与开发.第2期,2001
    [22] 朱步瑶,赵振国.界面化学基础.北京:化学工业出版社,1996
    [23] 李葵英.界面与胶体的物理化学.哈尔滨:哈尔滨工业大学出版社,1998
    [24] 顾惕人,朱步瑶,李外朗,马季铭,戴乐蓉,程虎民.表面化学.北京:科学出版社,1999
    [25] B.J. Briscoe, C.J. Lawrence, W.G.P. Mietus, A review of Immiscible Fluid Mixing. Advances in Colloid and Interface Science,81(1999) 1-17
    [26] P. Joos and M. Van Uffelen, Adsorption Kinetics with Surface Dilation Ⅰ Desorption of Slightly Soluble Monolayers at Constant Surface Pressure, Journal of Colloid and Interface Science 155,271-282(1993)
    [27] P. Joos, and M. Van Uffelen, Theory on the Growing Drop Technique for Measuring Dynamic Interfacial Tensions, Journal of Colloid and Interface Science 171,297-305(1995)
    [28] O Boen Ho, Electrokinetic Studies on Emulsion Stabilized by Ionic Surfactants: The Electroacoustophoretic Behavior and Estimation of Davies' HLB Increments, Journal of Colloid and Interface Science, 198, 249-260(1998)
    [29] Leonid K. Filippov and Nadezhda L. Filippova, Dynamic Surface Tension and Adsorption Kinetics in Finite systems, Journal of Colloid and Interface Science 187, 352-362(1997)
    
    
    [30] Young-Ho Kim, Kalman Koczo, and Darsh T. Wasan, Dynamic Film and Interfacial Tensions in Emulsion and Foam Systems, Journal of Colloid and Interface Science 187,29-44(1997)
    [31] Leonid K. Filippov, On the Theory of Dynamic Surface Tension of Ionic Surfactant Solutions Ⅰ. Diffusion-Convective Adsorption, Journal of Colloid and Interface Science 182,330-347(1996)
    [32] S.A.Zholob, V.B. Fainerman, and R. Miller, Dynamic Adsorption Behavior of Polyethylene Glycol Octylphenyl Ethers at the Water/Oil interface Studied by a Dynamic Drop Volume Technique, Journal of Colloid and Interface Science 186,149-159(1997)
    [33] Leonid K. Filippov and Nadezhda L. Filippova, Dynamic Surface Tension and Adsorption Kinetics from Micellar Solutions on Planar Surfaces, Journal of Colloid and Interface Science 187,304-312(1997)
    [34] R. Nagarajan, and D.T. Wasan, Measurement of Dynamic Interracial Tension by an Expanding Drop Tensiometer, Journal of Colloid and Interface Science 159,164-173(1993)
    [35] C.A. Macleod and C.J. Radke, A Growing Drop Technique for Measuring Dynamic Interacial Tension, Journal of Colloid and Interface Science 160,435-448(1993)
    [36] Libero Liggieri, Francesca Ravera, and Alberto Passerone, Dynamic Interacial Tension Measurements by a Capillary Pressure Method, Journal of Colloid and Interface Science 169,226-237(1994)
    [37] John R. Campanelli and Xiaohong Wang, Dynamic Interfacial Tension of Surfactant Mixtures at Liquid-Liquid Interfaces, Journal of Colloid and Interface Science, 213,340-351(1999)
    [38] Q. Jiang, J. E. Valentin, and Y.C. Chiew, Theoretical Models for Dynamic Dilational Surface Properties of Binary Surfactant Mixtures, Journal of Colloid and Interface Science 174,268-271(1997)
    [39] David Tambe and Mukul M. Sharma, Factors Controlling the Stability of Colloid-Stabilized Emulsions Ⅱ A Model for the
    
    Rheological Properties of Colloid-Laden Interfaces, Journal of Colloid and Interface Science 162,1-10(1994)
    [40] S. Kitcbing, G. D. Johnson, B. R. Midmore, and T.M. Herrington, Surface Rheological Data for A Polymeric Surfactant Using a Pulsed Drop Rheometer, Journal of Colloid and Interface Science 177,58-69(1996)
    [41] 王云峰,张春光,侯万国等.表面活性剂在油气田中的应用.北京:石油工业出版社,1995
    [42] H.A.巴勒斯,J.H.赫顿,K.瓦尔特斯:流变学导引.北京,中国石化出版社,1992
    [43] P.贝歇尔著.北京大学化学系胶体化学教研室译.乳状液理论与实践,北京,科学出版社,1978
    [44] H.G. M ü ller, New Contribution of Analytical Ultracentrifugation to the Investigation of Dispersions, Progr Colloid Polym Sci(1997) 107:180-188
    [45] D. Horn, J. Klingler, W. Schorf, K. Graf, Experimental Progress in the Characterization of Colloidal Systems, Progr Colloid Polym Sci(1998) 111:27-33
    [46] A.A. Collyer, and D.W. Clegg, Rheological Measurement, New York:Elsevier Applied Science, 1988
    [47] Rajinder Pal, Shear Viscosity Behavior of Emulsions of Two Immiscible Liquids, Journal of Colloid and Interface Science, 225,359-366(2000):14-15
    [48] Hyang Mok Lee, Jin Woo Lee, and O Ok Park, Rheology and Dynamics of Water-in-Oil Emulsions under Steady and Dynamic Shear Flow, Journal of Colloid and Interface Science 185,297-305(1995)
    [49] Gebhard Schramm, A Practical Approach to Rheology and Rheometry, Karlsruhe: Haake GmbH, 1994
    [50] Eric Dickinson and Christos Ritzoulis. Creaming and Rheology of Oil-in-Water Emulsion Containing Sodium Dodecyle Sulfate and Sodium
    
    Caseinate, Journal of Colloid and Interface Science, 224,148-154(2000)
    [51] Mikael Jansson, Maria Angeles Pés, Demulsification of Dilute O/W Water Emulsions with Organic Electrolytes, Journal of Colloid and Interface Science 163,512-514(1994)
    [52] T. Thieme, S. Abend, G. Lagaly, Aggregation in Picketing Emulsions, Colloid Polym Sci 277:257-260(1999)
    [53] S.A. Gundersen, J. Sj blom, High- and Low-Molecular-Weight Lignosulfonates and Kraft Ligins as Oil/Water-Emulsion Stabilizer Studied by Means of Electrical Conductivity, Colloid Polym Sci, 2777:462-468(1999)
    [54] 康万利.三元复合驱油乳化特性及破乳机理.2001年国际石油学会强化采油会议论文集,2001
    [55] Laurier L. Schramm, Emulsions: Fundamentals and Application in the Petroleum Industry, Washington, DC: American Chemical Society, 1992
    [56] 丁德磬,孙在春,杨国华,徐梅清.原油乳状液的稳定与破乳.油田化学,1998年第15卷第1期,82-86
    [57] C.M. Miller, J. Venkatesan, C.A. Silebi, E.D. Sudol, and M. S. El-Aasser, Characterization of Miniemulsion Droplet Size and Stability Using Capillary Hydrodynamic Fractionation, Journal of Colloid and Interface Science 162,11-18(1994)
    [58] K. Parbhakar J. Lewandowski, and L. H. Dao, Simulation Model for Ostwald Ripening Liquids, Journal of Colloid and Interface Science 174,142-1471995)
    [59] H.W. Yarranton and J.H.Masliyah, Numerical Simulation of Ostwald Ripening in Emulsions, Journal of Colloid and Interface Science 196,157-1691997)
    [60] 杨小莉,陆婉珍.有关原油乳状液稳定性的研究.油田化学,1998 年第15卷第1期,87-96
    [61] J. Lakatos- Szabó, and I. Lakatos, Effect of Alkaline Materials
    
    on interfacial Rheological Properties of Oil-Water Systems, Colloid Polym Sci, 277:41-47(1999)
    [62] Foyeke O. Opawale and Diane J. Burgess, Influence of Interfacial Properties of Lipophilic Surfactants on Water-in-Oil Emulsion Stability, Journal of Colloid and Interface Science,197,142-150(1998)
    [63] David Tambe, Janka Paulis, and Mukul M. Sharma, Factors Controlling the Stability of Colloid-Stabilized Emulsions Ⅳ Evaluating the Effectiveness of Demulsifiers, Journal of Colloid and Interface Science 171,463-469(1995)
    [64] 张宏方.不同类型聚合物溶液在多孔介质中的渗流规律研究.新疆石油地质,第4期,2001:23
    [65] K. Koczo, A. D. Nikolov, D.T. Wasan, R.P. Borwankar, and A. Gonsalves, Layering of Sodium Caseinate Submicelles in Thin Liquid Films- A New Stability Mechanism for Food Dispersions, Journal of Colloid and Interface Science 178,694-702(1997)
    [66] Nianxi Yah and Jacob H. Masliyah, Effect of PH on Adsorption and Desorption of Clay Particles at Oil-Water Interface, Journal of Colloid and Interface Science 181,20-27(1996)
    [67] David Tambe and Mukul M. Sharma, Factors Controlling the Stability of Colloid-Stabilized Emulsions Ⅲ Measurement of the Rheological Properties of Colloid-laden Interfaces, Journal of Colloid and interface Science 171,456-462(1995)
    [68] J. Thieme, S. Abend, G. Lagaly, Aggregation in Pickering Emulsions, Colloid Polym Sci 277:257-260(1999)
    [69] B.R. Midmore. Effect of Aqueous Composition on the Properties of a Silica-Stabilized W/OEmulsion. Journal of Colloid and Interface Science, 213(1999)352-359
    [70] Johan Sj blom, Emulsions and Emulsion Stability, New York: Marcel Dekker, Inc, 1996
    
    
    [71] Harvey W. Yarranton, Hisham Hussein, and Jacob H. Masliyah, Water-in-Hydrocarbon Emulsions Stabilized by Asphaltenes at Low Concentrations, Journal of Colloid and Interface Science,228, 52-63 (2000)
    [72] Brian W. Brooks and Howard N. Richmond, The Application of a Mixed Nonionc Surfactant Theory to Transitional Emulsion Phase Inversion 2. The Relationship Between Surfactant Partitioning and Transitional Inversion - a Thermodynamic Treatment, Journal of Colloid and Interface Science 162,67-74(1994)
    [73] Joseph D. Mclean and Peter R. Kilpatrick, Effects of Asphaltene Solvency on Stability of Water-in-Crude-Oil Emulsions, Journal of Colloid and Interface Science 189,242-253(1997)
    [74] Joseph D. Mclean and Peter K. Kilpatrick, Effects of Asphaltene Aggregation in Model Heptane-Toluene Mixtures on Stablility of Water-in-Oil Emulsions, Journal of Colloid and Interface Science 196, 23-34 (1997)
    [75] 康万力,单希林,王凤兰,龙安厚,李俊刚,三元复合驱乳状液的稳定性及其破乳机理研究,第五界国际表面活性剂/洗涤剂研讨会论文集,杭州,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700