高精度、低功耗流水线型模数转换器的研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流水线型模数转换器被广泛地应用于图像处理、通信基站、数字视频和快速以太网等领域。而对于应用越来越广泛的手持移动终端而言,低功耗对于产品电池的使用寿命起着至关重要的作用。同时随着人们对音质、画质等感官体验的要求越来越高,以及更为细致的数据信息量要求,高精度也成了模数转换器系统设计中一个极为重要的方面。通常实现低功耗的方法往往会产生各种误差从而导致精度降低,同样实现高精度又往往需要以增加功耗为代价,因此如何同时实现高精度和低功耗成为了研究的热点和难点。
     论文主要研究了应用于数字视频领域的流水线型模数转换器的低功耗及高精度实现方法。从采用级间运放共享技术来降低功耗为切入点,首先分析了传统运放共享结构中影响电路精度的因素。其次为了消除这些因素的影响,提出了新的电路结构和设计技术,从而达到了同时实现高精度和低功耗的目的。搭建了流水线模数转换器Matlab模型,引入了各种非理想因素参与行为级仿真,建立了系统级的设计框架。最后完成了整个流水线模数转换器的电路设计、版图布局和芯片测试等全部流程。
     主要研究成果和工作有以下几个方面:
     1)从降低运放功耗入手,选择功耗最低的单级套筒式运放,同时采用级间运放共享和逐级缩减等技术,实现低功耗设计。
     2)详细分析了传统级间运放共享结构中存在的记忆效应、级间信号串扰以及共享开关引入的电荷注入和时钟馈通等各种影响电路精度的因素。为了消除这些因素的影响,提出了一种新的双输入开关内置运放共享结构的MDAC电路。
     3)提出采用两组输入差分对管的结构,共享运放的两流水级各使用一组,每组差分对管在保持时段交替参与运放工作,而在采样时段则交替的连接到共模输入电压进行复位,从而完全消除记忆效应,并且不需要额外的复位时间。
     4)提出将运放共享开关嵌入在运放内部,有效消除了级间信号串扰通路;因此,开关产生的电荷注入和时钟馈通效应也不会对信号建立精度造成影响;同时消除了传统结构中采用外置开关所引入的寄生电阻对运放失调的影响。内置的共享开关仅消耗约30mV的电压裕度,不会影响运放的输出摆幅。
     5)提出采用双相交叠时钟来控制运放共享开关,解决了采用传统非交叠时钟导致的大信号建立恶化的问题。通过采用与被偏置电路一致的结构,改进了宽摆幅运放偏置电路,与系统中各运放都能获得更好的匹配。
     6)从传递函数的角度建立了流水线型模数转换器的Matlab系统级模型,并引入了诸如电容失配、噪声、运放单位增益带宽、运放压摆率、时钟抖动以及比较器失调等非理想因素影响,从而指导电路设计。模型仿真结果与流片结果契合。
     7)在SMIC 0.18-μm、1.8V电源电压、单层多晶硅六层金属的标准CMOS工艺下完成了一款10 bit 80 MSps的流水线型模数转换器的电路设计、版图布局、仿真验证以及芯片测试等工作。
     采用这种新型双输入开关内置运放共享的MDAC结构可以在不增加额外时钟、功耗、面积的条件下,消除多种制约MDAC精度的误差来源,从而有效提高系统精度。
     此外,基于双输入开关内置运放的良好隔离特性,对电路进行进一步的优化和改进,令采样保持电路与第一级MDAC共享运放,从而完全避免运放功耗的额外消耗,继续显著降低系统功耗。
     流片测试结果显示,本论文设计的10-bit 80 MSps模数转换器有效位(ENOB)可以达到9.69 bit,无杂散动态范围(SFDR)可以达到76 dB,并且在整个奈奎斯特带宽内都保持着9.62bit以上的ENOB。当输入信号超过奈奎斯特频率,甚至接近采样频率时,ENOB仍可以达到超过9.47 bit的精度。此外,当采样频率提高到100MSps时,仍可以达到超过9.1 bit的有效位。芯片核心功耗为28mW,性能系数(FOM)为0.42pJ/step。其中ENOB和SFDR两项指标优于近几年收录在JSSC、ISSCC和CICC等国际项级期刊会议上相同分辨率流水线模数转换器的研究成果,FOM达到了这些研究成果中的较高水平,能够实现低功耗高精度的数字视频及SOC嵌入式应用。
Pipelined analog-to-digital converter (ADC) is widely used in the systems of image signal processing, base stations and digital video, fast Ethernet, ect. For hand-held mobile terminals, low power devices play a vital role for the life of the battery. At the same time, as people demanding of sensory experiences such as sound, picture quality have become increasingly and the requirement of more detailed information, design has become a very important aspect.Low power consump-tion usually tends to reduce the accuracy while high accuracy is often needed to increase the cost of power. Thus, how to achieve high accuracy and low power consumption simultaneously has become a hot research spot.
     This work focuses on the high accuracy and low-power pipelined ADC for digital video system. The opamp-sharing technology is used to achieve low power consumption at the cost of the resolution reduction, since the conventional opamp-sharing ADC has some serious problems. To get rid of these problems, an new architechture of MDAC was proposed to improve the system accuracy. A Matlab model of pipelined ADC which guide the actual circuit design is structured, variety of non-ideal factors are involved in the behavioral simulation. By using this MDAC, this work presents the transistor level of pipelined ADC. Finally, layout and chip testing are described.
     The specific research contributions of this work include:
     1) Starting from reducing the power consumption of the opamp telescopic opamp was selected for its lowest power consumption. More methods such as opamp-sharing between successive stage and stage-scaling-down were adopted to achieve low-power design.
     2) To get rid of the problems of memory effect, successive stage crosstalk, charge injection and clock feedthrough, a switch-embedded MDAC with dual NMOS differential input pairs current-reuse OTA is proposed.
     3) The dual NMOS differential input pairs was proposed to eliminate the memory effect. Since both input pairs are reset to a common-mode input voltage alternately, the memory effect is completely eliminated without any additional clock phase.
     4) By embedding the opamp-sharing switches into OTA, the effect of the inter-stage crosstalk path, charge injection, clock feedthrough and the offset introduced by parasitic resistance of opamp-sharing switches ware eliminated and does not affect the signal settling accuracy. The embedded switches only consumed about 30mV of votage margin, so not affect the opamp's output swing.
     5) The two-phase non-overlapping clock is always used in a pipelined ADC but is not suitable for controlling the opamp-sharing switches in the proposed OTA. To achieving a well matching, a optimized stable high-swing bias circuit is employed for the OTA.
     6) Based on the signal transfer function, A Matlab model of pipelined ADC is structured to guide the circuit design. By involved the effect of many non-ideal factors such as mismatch, noise, GBW, slew rate, jitter and offset, this model is reasonable according the silicon results.
     7) In the SMIC 0.18-μm,1.8V supply voltage, single-poly six-metal standard CMOS process, the circuit and layout design, simulation and chip testing of a 10 bit 80MSps pipelined ADC are completed.
     By using the proposed switch-embedded opamp-sharing MDAC based on a dual NMOS input pairs current-reuse opamp, an improved accuracy is achieved without any additional power and area consumption and clock phase.
     Further more, built on the good isolation characteristic of the dual-input switch-emmbeded opamp, a new circuit structure of opamp-sharing between S/H circuit and the first MDAC stage was proposed to significantly reduce power consumption by avoiding the extra power consumption of opamp.
     The ADC achieves a peak ENOB of 9.69 bit and a peak SFDR of 76 dB, while maintaining more than 9.6 ENOB for the full Nyquist input bandwidth. When input frequency is close to sample rate, the ADC still maintains 9.47 ENOB. When sample rate rises to 100MHz, there is still 9.1 ENOB. The chip consumes 28mW an FOM achieves 0.42 pJ/step. The measured SNDR and SFDR are better than other recently published works of 10-bit pipelined ADCs on JSSC, ISSCC and CICC, and FOM has achieved a higher level. This work can be used in low power consumption and high accuracy digital video system an embedded in applications of SOC.
引文
[1]J. Arias, V. Boccuzzi, L. Quintanilla, L.Enrfquez, D. Bisbal, M. Banu, and J. Barbolla.Low-Power Pipeline ADC for Wireless LANs [J]. IEEE J. Solid-State Circuits, vol.39,pp.1338-1340, Aug.2004.
    [2]K. Nagaraj, H. S. Fetterman, J. Anidjar, S. H. Lewis, and R. G. Renninger.A250-mW, 8-b,52-Msamples/s parallel-pipelined A/D converterwith reduced number of amplifiers [J]. IEEE J. Solid-State Circuits, vol.32, pp.312-320, Mar.1997.
    [3]Y. Chiu, P. R. Gray, B. Nikolic.A 14-b 12-MSs CMOS pipeline ADC with over 100-dB SFDR [J]. IEEF J SoliH-Rtate Circuits vol 39 pp 2139-2151 Dec 2004
    [4]D. Miyazaki, S. Kawahito and M. Furuta.A 10-b 30-MSs low-power pipelined CMOS AD converter using a pseudodifferential architecture [J]. IEEE J. Solid-State Circuits, vol.38, pp.369-373, Feb.2003.
    [5]A. Matsuzawa, M. Kagawa, M. Kanoh, K. Tatehara, T. Yamaoka, and K. Shimizu.A 10 b 30 MHz two-step parallel BiCMOS ADC with internal S/H. in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb.1990, pp.162-163.
    [6]P. Vorenkamp and J. P. M. Verdaaskonk.A 10-b 50 Ms/s pipelined ADC. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb.1992, pp.32-33.
    [7]T. Miki, H. Kouno, T. Kumamoto, Y. Kinoshita, T. Igarashi, and K. Okada. A 10-b 50 MS/s 500-mW A/D converter using a differential voltage subconverter. IEEE J. Solid-State Circuits, vol.29, pp.516-528, Apr.1994.
    [8]M. P. Flynn and D. J. Allstot. CMOS folding ADC's with currentmode interpolation [C], IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb.1995, pp.274-275.
    [9]B. Nauta and A. G. W. Venes.A 70-MS/s 110-mW 8-b CMOS folding and interpolating A/D converter [J]. IEEE J. Solid-State Circuits, vol.30, pp.1302-1308, Dec.1995.
    [10]A. G. W. Venes and R. J. van de Plassche. An 80 MHz 80 mW 8 b CMOS folding A/D converter with distributed T/H preprocessing [C]. IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers, Feb.1996, pp.318-319.
    [11]T.-H. Shu, K. Bacrania, and R. Gokhale.A 10-b 40-Msamples/s BiCMOS A/D converter [J]. IEEE J. Solid-State Circuits, vol.31, pp.1507-1510, Oct.1996.
    [12]M. Yotsuyanagi, T. Etoh, and K. Hirata.A 10-b 50-MHz pipelined CMOS A/D converter with S/H [J]. IEEE J. Solid-State Circuits, vol.28, pp.292-300, Mar.1993.
    [13]C. S. G. Conroy, D. W. Cline, and P. R. Gray.An 8-b 85 MS/s parallel pipeline A/D converter in 1μm CMOS [J]. IEEE J. Solid-State Circuits, vol.28, pp.447-454, Apr. 1993.
    [14]K. Nakamura, M. Hotta, L. R. Carley, and D. J. Allstot. An 85 mW,10 b,40 Msample/s CMOS parallel-pipelined ADC [J]. IEEE J. Solid-State Circuits, vol.30, pp. 173-183, Mar.1995.
    [15]T. B. Cho and P. R. Gray. A 10-b,20-Msample/s,35 mW pipeline A/D converter [J]. IEEE J. Solid-State Circuits, vol.30, pp.166-172, Mar.1995.
    [16]T. C. Choi and R. W. Brodersen.Considerations for high-frequency switched-capacitor filters [J]. IEEE Trans. Circuits Syst, vol. CAS-27, pp.545-552, June 1980.
    [17]T.Cho, P.R. Gray. A lOb,20Msample/s,35mW Pipelined AID Converter [J]. IEEE J. Solid-State Circuits,1995,30(3):166-172
    [18]P.T.F. Kwok, H.C. Luong. Power optimization for pipeline analog-to-digital converters [J]. IEEE Trans. Circuits Syst. II:Analog and Digital Signal Processing,1999,46 (5): 549-553
    [19]E.G. Soenen, L.G. Randall. An architecture and an algorithm for fully digital con ection of monolithic pipeline ADCs [J]. IEEE Trans. Circuits Syst. Ⅱ:Analog and Digital Signal Processing,1995,42 (3):143-153
    [20]T.N. Andersen, B. Hernes, A. Briskemyr, et al. A cost-efficient high-speed 12-bit pipeline ADC in 0.18-μm digital CMOS [J]. IEEE J. Solid-state Circuits,2005,40(7): 1506-1513
    [21]J. Bjornsen, T. Ytterdal. Behavioral Modeling and Simulation of Mixed-Signal System-on-a-Chip using System [C]. IEEE International Symp. Circuits and Systems. Bangkok, Thailand:IEEE Circuits and Systems Society,2003,25-38
    [22]Y. Chiu, P.R. Gray, B. Nikolic. A 14-b 12-MS/s CMOS Pipeline ADC With Over 100dB SFDR [J]. IEEE J. Solid-state Circuits,2004,39(12):2139-2151
    [23]J. Goes, J. Vital, J. Franca. Systematic design for optimization of high-speed self-calibrated pipelined A/D converters [J]. IEEE Trans. Circuits Syst. Ⅱ:Analog and Digital Signal Processing,1998,45(12):1513-1526
    [24]M. Hershenson. Design of pipeline analog-to-digital converters via geometric programining. IEEE ICCAD. San Jose:the Association for Computing Machinery, 2002,317-324
    [25]R. Lotfi, M.T. Sani, M.Y. Azizi, et al. Systematic Design for Power Minimization of Pipelined Analog-to-Digital Converters [C]. IEEE ICCAD. San Jose, California, USA: the Association for Computing Machinery,2003,371-374
    [26]R. Loth, S.M. Taherzadeh. A 1-V MOSFET-only fully-differential dynamic comparator for use in low-voltage pipelined A/D converters [C]. IEEE ISSCS. lasi, Romania: IEEE Circuits and Systems Society,2003,377-380
    [27]L. Sumanen, M. Waltari, V. Hakkarainen. CMOS dynamic comparators for pipeline A/D converters [C]. IEEE International Symp. Circuits and Systems. Phoenix, Arizona: IEEE Circuits and Systems Society,2002,157-160
    [28]P.M. Figueiredo, J.C. Vital. Low kickback noise techniques for CMOS latched comparators [C]. IEEE ISCAS. Vancouver, Canada:IEEE Circuits and Systems Society,2004,537-406
    [29]U. Koen, S.J.S. Michiel. A 1.8-V 6-Bit 1.3-GHz Flash ADC in 0.25pm CMOS [J]. IEEE J. Solid-State Circuits,2003,38(7):1115-1122
    [30]P. Uthaichana, E Leelarasmee. Low power CMOS dynamic latch comparators [C]. Conf.Convergent Technologies for Asia-Pacific Region. Bangalore, India:IEEE Circuits andSystems Society,2003,605-608
    [31]D.Y. Chang, S.H. Lee. Design techniques for a low-power low-cost CMOS A/D converter [J].IEEE J. Solid-State Circuits,1998,33(8):1244-1248
    [32]F. Maloberti, F. Francesconi, P. Malcovati, et al. Design Considerations on Low-Voltage Low-Power Data Converters [J]. IEEE Trans. Circuits Syst. I,1995, 42(11):853-863
    [33]M. Steyaert, J. Crols, S. Gogaert. Switched opamp, a technique for realizing full CMOS switched-capacitor filters at very low voltages [C]. ESSCIRC. Sevilla, Spain: IEEE Solid-State Circuits Society,1993,178-181
    [34]M. Bracey, W.R. White, J. Richardson, et al. A full Nyquist 15 MS/s 8-b differential switched-current A/D converter [J]. IEEE J. Solid-State Circuits,1996,31(7):945-951
    [35]H.O. Hsin, D.L. Bin. A 1-V 9-bit,2.5-Msample/s pipelined ADC with merged switched-opamp and opamp-sharing techniques [C]. IEEE International Symp. Circuits and Systems. Kobe, Japan:IEEE Circuits and Systems Society,2005, 1972-1975
    [36]M.M. Byung, P. Kim, F.W. Bowman, et al. A 69-mW 10-bit 80-MSample/s Pipelined CMOS ADC [J]. IEEE J. Solid-State Circuits,2003,38(12):2031-2039
    [37]B. Ginetti and P. G. A. Jespers.A 1.5 Ms/s 8-bit pipeline RSD A/D converter [C]. ESSCIRC Dig. Tech. Papers, Sept.1990, pp.137-140.
    [38]J. Li and U.K. Moon. A 1.8-V 67-mW 10-bit 100-MSs pipelined ADC using time-shifted CDS technique [J]. IEEE J. Solid-State Circuits, vol.39,pp.1476-1468, Sept.2004.
    [39]S. H. Lewis, H. S. Fetterman, G. F. Gross Jr., R. Ramachandran, and T. R. Viswanathan.A 10-b 20-Msample/s analog-to-digital converter [J].IEEE J. Solid-State Circuits, vol.27, pp.351-358, Mar.1992.
    [40]M. Abo and P. R. Gray.A 1.5-V,10-bit,14.3-MS/s CMOS pipeline analog-to-digital converter [J]. IEEE J. Solid-State Circuits, vol.34, pp.599-606, May 1999.
    [41]T. Brooks et al.A cascaded sigma-delta pipeline A/D converter with 1.25 MHz signal bandwidth and 89 dB SNR [J]. IEEE J. Solid-State Circuits, vol.32, no.12, pp. 1896-1906, Dec.1997.
    [42]H.Pan, M.Segami, M.Choi, et al. A 3.3-V 12-b 50-MS/s A/D converter in 0.6um CMOS with over 80-dB SFDR [J]. IEEE J. Solid-State Circuits,2000,35(12): 1769-1780
    [43]M.Choi, A.Asad. A 6-b 1.3-Gsps AD Converter in 0.35}.m CMOS [J]. IEEE J. Solid-State Circuits,2001,36(12):1847-1858
    [44]S.C. Heo, Y.C. Jang, S.H. Park, et al. An 8-bit 200 MSps CMOS folding interpolating ADC with a reduced number of preamplifiers using an averaging technique [C]. IEEE ASIC/SOC Conference. Washington DC:IEEE Solid-State Circuits Society,2002, 80-83
    [45]Y.M. Lin, B. Kim, P.R. Gray. A 13-b 2.5-MHz self-calibrated pipelined A/D converter in 3-μm CMOS. IEEE J. Solid-State Circuits,1991,26(4):628-636
    [46]D.A. Mercer. A 12b 750ns Subranging A/D Converter with Self-Correcting S/H. IEEE J.Solid-State Circuits,1991,26(12):1790-1799
    [47]Y.B.H. Leung, B.H. Lin. A mismatch-independent DNL pipelined analog-to-digital converter [J]. IEEE Trans Circuits Syst. II:Analog Digital Signal Processing,1999, 46(S):517-526
    [48]Li, J., Zeng, X., Xie, L., Chen, J., Zhang, J., Guo, Y. A 1.8-V 22-mW 10-bit 30-MS/s Pipelined CMOS ADC for Low-Power Subsampling Applications [J]. IEEE J. Solid-State Circuits,2008,43, (2), pp.321-329
    [49]S. Ryu, B. Song, K. Bacrania. A 10-bit 50-MS/s Pipelined ADC with Opamp Current Reuse [C]. IEEE J. Solid State Circuits, pp.475-485, vol.42, No.3, March 2007.
    [50]K. Chandrashekar and B. Bakkaloglu. A 10b 50MS/s Opamp-Sharing Pipeline A/D With Current-Reuse OTAs [C]. IEEE CICC, Sep.2009, pp.263-266
    [51]Mikael Gustavsson, J. Jacob Wiker, Nianxiong Tan. CMOS data converters for communications [M]. Kluwer Academic Publishers,2000.
    [52]Rudy van de Plassche. CMOS integrated analog-to-digital and digital-to-analog converters [M],2nd Edition, Kluwer Academic publishers,2003.
    [53]Paul R. Gray, Paul J. Hurst, S. H. Lewis, etc. Analysis and design of analog integrated circuits [M],4th Edition, John Wiley & Sons, Inc,2000.
    [54]Behzad Razvi. Principles of data conversion system design [M], The institute of Electrical and Electronics Engineers, Inc,1995.
    [55]Stephen H. Lewis and Paul R. Gray. A Pipelined 5-Msample/s 9-bit Analog-to-Digital Converter [J]. IEEE J. Solid-State Circuits,1987, SC-22(6):954-961.
    [56]Stephen H Lewis. Optimizing the stage resolution in pipelined, multistage, analog-to-digital converters for video-rate applications [J]. IEEE Trans. Circuits and Systems II:Analog and digital signal processing,1992,39(8):516-523.
    [57]K. Dyer, D. Fu, S. Lewis, and P. Hurst. Analog background calibration of a 10b 40Msample/s parallel pipelined ADC[C], IEEE International Solid-State Circuits Conference, February 1998, XLI:142-143.
    [58]Won-Chul Song, Hae-Wook Choi, Sung-Ung Kwak, and Bang-Sup Song. A 10-b 20-Msample/s low-power CMOS ADC [J]. IEEE Journal of Solid-State Circuits, May 1995,30:514-521.
    [59]Katsufumi Nakamura, Masao Hotta, L. Richard Carley, and David J. Allstot. An 85 mW,10b,40 Msample/s CMOS parallel-pipelined ADC [J]. IEEE Journal of Solid-State Circuits, March 1995,30:173-183.
    [60]David William Cline. Noise, Speed, and Power Trade-offs in Pipelined Analog to Digital Converters[D]. Ph.D thesis, UC, Berkeley 1995.
    [61]Paul C. Yu and Hae-Seung Lee. A 2.5V 12b 5Msample/s pipelined CMOS ADC [J]. IEEE International Solid-State Circuits Conference, February 1996, XXXIX:314-315.
    [62]Hui Pan, Masahiro Segami, Michael Choi, Jing Cao, Fumitoshi Hatori, and Asad Abidi. A 3.3V,12b,50Msample/s A/D converter in 0.6μm CMOS with over 80dB SFDR [J]. IEEE International Solid-State Circuits Conference, February 2000, XLIII: 40-41.
    [63]Klaas Bult and Aaron Buchwald. An embedded 240-mW 10-b 50-MS/s CMOS ADC in 1-mm2 [J]. IEEE Journal of Solid-State Circuits, December 1997,32:1887-1895.
    [64]Andrew M. Abo and Paul R. Gray. A 1.5-V,10-bit,14.3-MS/s CMOS pipeline analog-to-digital converter [J]. IEEE Journal of Solid-State Circuits, May 1999,34: 599-606.
    [65]Lauri Sumanen, Mikko Waltari, and Kari A. I. Halonen. A 10-bit 200-MS/s CMOS parallel pipeline A/D converter [J]. IEEE Journal of Solid-State Circuits, July 2001,36: 1048-1055.
    [66]Jong-Bum Park, Sang-Min Yoo, Se-Won Kim, Young-Jae Cho, Seung-Hoon. A 10-b 150-MSample/s 1.8-V 123-mW CMOS A/D converter with 400-MHz input bandwidth [J]. IEEE Journal of Solid-State Circuits, Aug.2004,39:1335-1337.
    [67]Jipeng Li, Un-Ku Moon. A 1.8-V 67-mW 10-bit 100-MS/s pipelined ADC using time-shifted CDS technique [J]. IEEE Journal of Solid-State Circuits, Sept.2004,39: 1468-1476.
    [68]Xiaoyue Wang, Hurst, P.J., Lewis, S.H.. A 12-bit 20-Msample/s pipelined analog-to-digital converter with nested digital background calibration [J]. IEEE Journal of Solid-State Circuits, Oct.2004,39:1799-1808.
    [1]B. Razavi, Principles of Data Conversion System Design. Hoboken, NJ:Wiley-IEEE Press,1994, p.233.
    [2]Joey Doemberg, HAE-SEUNG LEE, David A. Hodges. Full-speed testing of A/D converters [J]. IEEE J. of Solid-state circuits, Dec.1984,19 (6):820-827.
    [3]Methods and draft standards for the DYNamic characterisation and testing of Analogue to Digital converters, European project DYNAD-SMT4-CT98-2214 Programme Standards, measurements, and Testing.
    [4]Shinagawa,M.,Akazawa,Y.,and Wakimoto,T.Jitter analysis of high-speed sampling systems [J]. IEEE J. Solid-State Circuits,1990,25(1):220-224.
    [5]Abramowitz, M. and Stegun, I.. Handbook of mathematical functions [M]. Dover publications, INC., New York,1970.
    [6]M.Choi, A.Asad. A 6-b 1.3-Gsps AD Converter in 0.35μm CMOS [J]. IEEE J. Solid-State Circuits,2001,36(12):1847-1858
    [7]Y. Yoshii, K. Asano, M. Nakamura, et al. An 8b 100MS/s Flash ADC [C]. ISSCC Dig. Tech.Papers, San Francisco, CA:IEEE Solid-State Circuits Society,1984,58-59
    [8]K.J. McCall, M.J. Demler, M.W. Plante. A 6-bit 125MHz CMOS A/D Converter [J]. IEEE Custom Integrated Circuit Conference. Boston:IEEE Solid-State Circuits Society,1992 1681-1684
    [9]D. Dalton, G. Spalding, H. Reyhani, et al. A 200-MSPS 6-Bit Flash ADC in 0.6-μm CMOS [J].IEEE Trans. Circuits Syst.,1998,45(11):1433-1444
    [10]M. luri, D. Declan. A 500-Msample/s 6-bit nyquist-rate ADC for disk-drive read channel applications [J]. IEEE J. Solid-State Circuits,1999,34(7):912-920
    [11]S. Tsukamoto, W.G. Schofield, T. Endo. A CMOS 6-b 400-MSamplels ADC with error correction [J]. IEEE J. Solid-State Circuits,1998,33(12):1939-1947
    [12]R. Van-de-Plassche, B. Peter. An 8-bit 100-MHz Full-Nyquist Analog-to-Digital Converter [J]. IEEE J. Solid-State Circuits,1988,23(6):1334-1344
    [13]R.E.J. Grift. An 8-bit video ADC incorporating folding and interpolating techniques [J]. IEEE J. Solid-State Circuits,1987,2(22):944-953
    [14]X. Jiang, Y. Wang, A.N.J. Willson. A 200MHz 6-b Folding and Interpolating ADC in 0.5-um CMOS [C]. IEEE ISCAS. Monterey, CA:IEEE Circuits and Systems Society, 1998, S-8
    [15]K. Bult, A. Buchwald. An embedded 240-mW 10-b SO-MS/s CMOS ADC in 1-mm2 [J]. IEEE J. Solid-State Circuits,1997,32(12):1887-1895
    [16]G. Hoogzaad, R. Roovers. A 65mW IOb 40MSamle/s BiCMOS Nyquist ADC in 0.8mm2 [C]. ISSCC Dig. Tech. Papers. San Francisco CA:IEEE Solid-State Circuits Society,1999,320-321
    [17]P. Vorenkamp, R. Roovers. A 12-b,60-MSample/s cascaded folding and interpolating ADC [J]. IEEE J. Solid-State Circuits,1997,32(12):1876-1886
    [18]F. Michael, S. Ben. A 400-Msample 6-b CMOS folding and interpolating ADC [J]. IEEE J. Solid-State Circuits,1998,33(12):1932-1938
    [19]J. Bussche, K. Uyttenhove, E. Lauwers, et al. An 8-bit 200MSPS interpolating averaging CMOS AD converter [C]. IEEE Custom Integrated Circuits Conference. Orlando, Florida:IEEE Solid-State Circuits Society,2002,1-4
    [20]S.C. Heo, Y.C. Jang, S.H. Park, et al. An 8-bit 200 MSps CMOS folding interpolating ADC with a reduced number of preamplifiers using an averaging technique [C]. IEEE ASIC/SOC Conference. Washington DC:IEEE Solid-State Circuits Society,2002, 80-83
    [21]S. Mukheerjee, C. Srinivasan, V. Pawar, et al. A 2.5V 10 bit SAR ADC [C]. International Conference on VLSI Design. Hyderabad, India:IEEE Computer Society, 1997,525-526
    [22]Y.N. Sheiing, J. Bahar, P. Zhang, et al. A low-voltage CMOS 5-bit 600MHz 30mW SAR ADC for UWB wireless receivers [C]. Midwest Symp. Circuits Syst.. Cincinnati, Ohio:IEEE Circuits and Systems Society,2005,187-190
    [23]B.P. Ginsburg, A.P. Chandrakasan. Dual scalable SOOMSIs, Sb time-interleaved SAR ADCs for UWB applications [C]. IEEE Custom Integrated Circuits Conference. San Jose:IEEE Solid-State Circuits Society,2005,403-06
    [24]Stephen H. Lewis and Paul R. Gray. A Pipelined 5-Msample/s 9-bit Analog-to-Digital Converter [J]. IEEE J. Solid-State Circuits,1987, SC-22(6):954-961.
    [25]Stephen H Lewis. Optimizing the stage resolution in pipelined, multistage, analog-to-digital converters for video-rate applications [J]. IEEE Trans. Circuits and Systems II:Analog and digital signal processing,1992,39(8):516-523.
    [26]K. Dyer, D. Fu, S. Lewis, and P. Hurst. Analog background calibration of a 10b 40Msample/s parallel pipelined ADC [C], IEEE International Solid-State Circuits Conference, February 1998, XLI:142-143.
    [27]Won-Chul Song, Hae-Wook Choi, Sung-Ung Kwak, and Bang-Sup Song. A 10-b 20-Msample/s low-power CMOS ADC [J]. IEEE Journal of Solid-State Circuits, May 1995,30:514-521.
    [28]Katsufumi Nakamura, Masao Hotta, L. Richard Carley, and David J. Allstot. An 85 mW,10b,40 Msample/s CMOS parallel-pipelined ADC [J]. IEEE Journal of Solid-State Circuits, March 1995,30:173-183.
    [29]B.E. Boser, B.A. Wooley. The design of sigma-delta modulation analog-to-digital converters [J]. IEEE J. Solid-State Circuits,1989,23(6):1298-1308
    [30]B.P. Signore, D.A. Kerth, N.S. Sooch, et al. A monolithic 20-bit delta-sigma A/D converter [J]. IEEE J. Solid-State Circuits,1990,25(6):1311-1316
    [31]B.E. Boser, B.A. Wooley. A 50-MHz multibit sigma-delta modulator for 12-b 2-MHz A/D conversion [J]. IEEE J. Solid-State Circuits,1991,26(12):1746-1755
    [32]S. Rabii, B.A. Wooley. A 1.8-V digital-audio sigma-delta modulator in 0.8pm CMOS [J]. IEEE J. Solid-State Circuits,1997,32(6):783-796
    [33]M. Dessouky, A. Kaiser. Very low-voltage digital audio Δ-Σ modulator with 88-dB dynamic range using local switch bootstrapping [J]. IEEE J. Solid-State Circuits, 2001,36(3):349-355
    [34]T. Shu, B. Song, K. Bacrania. A 13-b 10-Msample/s ADC digitally calibrated with oversampling delta-sigma converter [J]. IEEE J. Solid-State Circuits,1995,30(4): 443-452
    [1]S. H. Lewis, H. S. Fetterman, G. F. Gross Jr., R. Ramachandran, and T. R. Viswanathan. A 10-b 20-Msample/s analog-to-digital converter [J].IEEE J. Solid-State Circuits, vol.27, pp.351-358, Mar.1992.
    [2]K. Nagaraj, H. S. Fetterman, J. Anidjar, S. H. Lewis, and R. G. Renninger.A 250-mW, 8-b,52-Msamples/s parallel-pipelined A/D converterwith reduced number of amplifiers [J]. IEEE J. Solid-State Circuits, vol.32, pp.312-320, Mar.1997.
    [3]J. Li and U.K. Moon. A 1.8-V 67-mW 10-bit 100-MSs pipelined ADC using time-shifted CDS technique [J]. IEEE J. Solid-State Circuits, vol.39,pp.1476-1468, Sept.2004.
    [4]J. Arias, V. Boccuzzi, L. Quintanilla, L. Enriquez, D. Bisbal, M. Banu, and J. Barbolla.Low-Power Pipeline ADC for Wireless LANs [J]. IEEE J. Solid-State Circuits, vol.39.pp.1338-1340. Aug.2004.
    [5]M. Abo and P. R. Gray. A 1.5-V,10-bit,14.3-MS/s CMOS pipeline analog-to-digital converter [J]. IEEE J. Solid-State Circuits, vol.34, pp.599-606, May 1999.
    [6]T. Brooks et al.A cascaded sigma-delta pipeline A/D converter with 1.25 MHz signal bandwidth and 89 dB SNR [J]. IEEE J. Solid-State Circuits, vol.32, no.12, pp. 1896-1906, Dec.1997.
    [7]U.Moon et al. Switched-Capacitor Circuit Techniques in Submicron Low-Voltage CMOS [C]. IEEE Int. Conf. On VLSI and CAD, ICVC99, pp.349-358,1999.
    [8]D. Miyazaki, S. Kawahito and M. Furuta.A 10-b 30-MSs low-power pipelined CMOS AD converter using a pseudodifferential architecture [J]. IEEE J. Solid-State Circuits, vol.38,pp.369-373, Feb.2003.
    [9]Y. Kim, N. Kusayanagi and A. A. Abidi. A 10-b,100-MS/s CMOS A/D Converter. IEEE J. Solid-State Circuits [J], vol.32, no.6, pp.302-11, Dec.1997.
    [10]P. W. Li, M. J. Chin, P. R. Gray, R. Castello.A ratio-independent algorithmic analog-to-digital conversion technique [J]. IEEE Journal of Solid-State Circuits, vol. SC-19, no.6, pp.828-836, Dec.1984.
    [11]H. Onodera, T. Tateishi, and K. Tamaru.A cyclic A/D converter that does not require ratio-matched components [J]. IEEE Journal of Solid-State Circuits, vol.23, pp. 152-158, Feb.1988.
    [12]S.-Y. Chin, C.-Y. Wu.A CMOS ratio-independent and gain-insensitive algorithmic analog-to-digital converter [J]. IEEE Journal of Solid-State Circuits, vol.31, no.8, pp. 1201-1207, Aug.1996.
    [13]B.-S. Song, M. F. Tompsett, K. R. Lakshmikumar.A 12-bit 1-Msample/s capacitor error-averaging pipelined A/D converter [J]. IEEE Journal of Solid-State Circuits, vol. 23, no.6, pp.1324-1333, Dec.1988.
    [14]Y. Chiu.Inherently linear capacitor error-averaging techniques for pipelined A/D conversion [J]. IEEE Transactions on Circuits and Systems II:Analog and Digital Signal Processing, vol.47, no.3, pp.229-232, Mar.2000.
    [15]H.-S. Chen, B.-S. Song and K. Bacrania.A 14-b 20-Msamples/s CMOS pipelined ADC [J]. IEEE Journal of Solid-State Circuits, vol.36, pp.997-1001, Jun.2001.
    [16]J. Wu, B. Leung, and S. Sutarja.A mismatch independent DNL pipelined analog to digital converter [C], IEEE International Symposium on Circuits and Systems, vol.5, pp.461-464,1994.
    [17]P. C. Yu, H.-S. Lee, A 2.5-V,12-b,5-MSample/s pipelined CMOS ADC [J], IEEE Journal of Solid-State Circuits, vol.31, no.12, pp.1854-61, Dec.1996.
    [18]Y. Ren, B. H. Leung, and Y.-M. Lin.A mismatch-independent DNL pipelined analog-to-digital converter [J]. IEEE Transactions on Circuits and Systems II:Analog and Digital Signal Processing, vol.46, pp.517-526, May 1999.
    [19]李建.低功耗低电压CMOS流水线模数转换器的结构研究与实现[D].复旦大学.2008pp.34
    [20]Shinagawa, Y. Akazawa and T. Wakimoto. Jitter Analysis of High-Speed Sampling Systems [J]. IEEE J. of Solid-Sate Circuits, vol.25, no.1, pp.220-4, Feb.1990.
    [1]K. Nagaraj, H. S. Fetterman, J. Anidjar, S. H. Lewis, and R. G. Renninger.A250-mW, 8-b,52-Msamples/s parallel-pipelined A/D converterwith reduced number of amplifiers [J]. IEEE J. Solid-State Circuits, vol.32, pp.312-320, Mar.1997.
    [2]M.M. Byung, P. Kim, F.W. Bowman, et al. A69-mW 10-bit 80-MSample/s Pipelined CMOS ADC [J]. IEEE J. Solid-State Circuits,2003,38(12):2031-2039
    [3]Beom-Soo Park, Seung-Hak Ji, Min-Ho Choi, ect. A 10b 100MS/S 25.2mW 0.18μm CMOS ADC With Various Circuit Sharing Techniques [C]. Int. SoC Design Conference, Nov.2009, Busan. pp 329-332
    [4]John P. Keane, Paul J. Hurst, Stephen H. Lewis. Digital Background Calibration for Memory Effects in Pipelined Analog-to-Digital Converters [J].IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I:REGULAR PAPERS, VOL.53(3), MARCH 2006, pp.511-525
    [5]Li, J., Zeng, X., Xie, L., Chen, J., Zhang, J., Guo, Y. A 1.8-V 22-mW 10-bit 30-MS/s Pipelined CMOS ADC for Low-Power Subsampling Applications [J]. IEEE J. Solid-State Circuits,2008,43, (2), pp.321-329
    [6]Y. Kim, N. Kusayanagi and A. A. Abidi. A 10-b,100-MS/s CMOS A/D Converter[J] IEEE J. Solid-State Circuits, vol.32, no.6, pp.302-11, Dec.1997.
    [7]Y.-M. Lin, B. Kim, and P. R. Gray.13 b,2.5 MHz self-calibrated pipelined A/D converter in 3-micron CMOS [J].IEEE J. Solid-State Circuits, vol.26, no.4, pp. 628-636,1991.
    [8]S. Ryu, B. Song, K. Bacrania.A 10-bit 50-MS/s Pipelined ADC with Opamp Current Reuse[J]. IEEE J. Solid State Circuits, pp.475-485, vol.42, No.3, March 2007.
    [9]K. Chandrashekar and B. Bakkaloglu.A 10b 50MS/S Opamp-Sharing Pipeline A/D With Current-Reuse OTAs [C]. IEEE CICC, Sep.2009, pp.263-266
    [10]Yin R.,Wen X.,Liao Y,Zhang W.,Tang Z. Switch-embedded opamp-sharing MDAC with dual-input OTA in pipelined ADC[J]. Electronics Letters,2010,Vol.46 (12), 831-832
    [11]J. Li, J. Zhang, B. Shen, X. Zeng, Y. Guo and T. Tang. A 10BIT 30MSPS CMOS A/D Converter For High Performance Video Applications [C].Proc. Eur. Solid-State Circuits Conf. (ESSCIRC),2005, pp.523-526.
    [12]Paul J. Hurst, Stephen H. Lewis. Determination of Stability Using Rerurn Ratios in Balanced Fully Differential Feedback Circuits [J]. IEEE Transactions on Circuits and Systems II:Analog and Digital Signal Processing. Vol.42(12),1995.pp.805-817
    [1]J. Arias, V. Boccuzzi, L. Quintanilla, L. Enriquez, D. Bisbal, M. Banu, and J. Barbolla.Low-Power Pipeline ADC for Wireless LANs [J]. IEEE J. Solid-State Circuits, vol.39,pp.1338-1340, Aug.2004.
    [2]Y. Chiu, P. R. Gray, B. Nikolic.A 14-b 12-MSs CMOS pipeline ADC with over 100-dB SFDR [J]. IEEE J. Solid-State Circuits, vol.39,pp.2139-2151, Dec.2004.
    [3]H.O. Hsin, D.L. Bin. A 1-V 9-bit,2.5-Msample/s pipelined ADC with merged switched-opamp and opamp-sharing techniques [C]. IEEE International Symp. Circuits and Systems. Kobe, Japan:IEEE Circuits and Systems Society,2005, 1972-1975
    [4]B. Ginetti and P. G. A. Jespers.A 1.5 Ms/s 8-bit pipeline RSD A/D converter [C]. ESSCIRC Dig. Tech. Papers, Sept.1990, pp.137-140.
    [5]J. Li and U.K. Moon. A 1.8-V 67-mW 10-bit 100-MSs pipelined ADC using time-shifted CDS technique [J].IEEE J. Solid-State Circuits, vol.39,pp.1476-1468, Sept.2004.
    [6]S. H. Lewis, H. S. Fetterman, G. F. Gross Jr., R. Ramachandran, and T. R. Viswanathan.A 10-b 20-Msample/s analog-to-digital converter [J].IEEE J. Solid-State Circuits, vol.27, pp.351-358, Mar.1992.
    [7]M. Abo and P. R. Gray.A 1.5-V,10-bit,14.3-MS/s CMOS pipeline analog-to-digital converter [J]. IEEE J. Solid-State Circuits, vol.34, pp.599-606, May 1999.
    [8]T. Brooks et al.A cascaded sigma-delta pipeline A/D converter with 1.25 MHz signal bandwidth and 89 dB SNR [J]. IEEE J. Solid-State Circuits, vol.32, no.12, pp. 1896-1906, Dec.1997.
    [9]H.Pan, M.Segami, M.Choi, et al. A 3.3-V 12-b 50-MS/s A/D converter in 0.6um CMOS with over 80-dB SFDR [J]. IEEE J. Solid-State Circuits,2000,35(12): 1769-1780
    [10]M.Choi, A.Asad. A 6-b 1.3-Gsps AD Converter in 0.35}.m CMOS [J]. IEEE J. Solid-State Circuits,2001,36(12):1847-1858
    [11]李建.低功耗低电压CMOS流水线模数转换器的结构研究与实现[D].复旦大学.2008pp.34
    [12]Y.M. Lin, B. Kim, P.R. Gray. A 13-b 2.5-MHz self-calibrated pipelined A/D converter in 3-μm CMOS. IEEE J. Solid-State Circuits,1991,26(4):628-636
    [13]D.A. Mercer. A 12b 750ns Subranging A/D Converter with Self-Correcting S/H. IEEE J.Solid-State Circuits,1991,26(12):1790-1799
    [14]Shinagawa, Y. Akazawa and T. Wakimoto. Jitter Analysis of High-Speed Sampling Systems [J]. IEEE J. of Solid-Sate Circuits, vol.25, no.1, pp.220-4, Feb.1990.
    [15]Li, J., Zeng, X., Xie, L., Chen, J., Zhang, J., Guo, Y. A 1.8-V22-mW 10-bit 30-MS/s Pipelined CMOS ADC for Low-Power Subsampling Applications [J]. IEEE J. Solid-State Circuits,2008,43, (2), pp.321-329
    [16]T. Brooks et al.A cascaded sigma-delta pipeline A/D converter with 1.25 MHz signal bandwidth and 89 dB SNR [J]. IEEE J. Solid-State Circuits, vol.32, no.12, pp. 1896-1906, Dec.1997.
    [17]S. Ryu, B. Song, K. Bacrania. A 10-bit 50-MS/s Pipelined ADC with Opamp Current Reuse [C]. IEEE J. Solid State Circuits, pp.475-485, vol.42, No.3, March 2007.
    [18]K. Chandrashekar and B. Bakkaloglu. A 10b 50MS/s Opamp-Sharing Pipeline A/D With Current-Reuse OTAs [C]. IEEE CICC, Sep.2009, pp.263-266
    [19]Rudy van de Plassche. CMOS integrated analog-to-digital and digital-to-analog converters [M],2nd Edition, Kluwer Academic publishers,2003.
    [20]Stephen H. Lewis and Paul R. Gray. A Pipelined 5-Msample/s 9-bit Analog-to-Digital Converter [J]. IEEE J. Solid-State Circuits,1987, SC-22(6):954-961.
    [21]Stephen H Lewis. Optimizing the stage resolution in pipelined, multistage, analog-to-digital converters for video-rate applications [J]. IEEE Trans. Circuits and Systems II:Analog and digital signal processing,1992,39(8):516-523.
    [22]Lauri Sumanen, Mikko Waltari, and Kari A. I. Halonen. A 10-bit 200-MS/s CMOS parallel pipeline A/D converter [J]. IEEE Journal of Solid-State Circuits, July 2001,36: 1048-1055.
    [23]Y.B.H. Leung, B.H. Lin. A mismatch-independent DNL pipelined analog-to-digital converter [J]. IEEE Trans Circuits Syst. II:Analog Digital Signal Processing,1999, 46(S):517-526
    [24]Paul J. Hurst, Stephen H. Lewis. Determination of Stability Using Rerurn Ratios in Balanced Fully Differential Feedback Circuits [J]. IEEE Transactions on Circuits and Systems II:Analog and Digital Signal Processing. Vol.42(12),1995.pp.805-817
    [25]J. Arias, V. Boccuzzi, L. Quintanilla, L. Enriquez, D. Bisbal, M. Banu, and J. Barbolla.Low-Power Pipeline ADC for Wireless LANs [J]. IEEE J. Solid-State Circuits, vol.39,pp.1338-1340, Aug.2004.
    [26]Y. Chiu. Inherently linear capacitor error-averaging techniques for pipelined A/D conversion [J]. IEEE Transactions on Circuits and Systems Ⅱ:Analog and Digital Signal Processing, vol.47, no.3, pp.229-232, Mar.2000.
    [27]H.-S. Chen, B.-S. Song and K. Bacrania.A 14-b 20-Msamples/s CMOS pipelined ADC [J]. IEEE Journal of Solid-State Circuits, vol.36, pp.997-1001, Jun.2001.
    [28]P. C. Yu, H.-S. Lee, A 2.5-V,12-b,5-MSample/s pipelined CMOS ADC [J], IEEE Journal of Solid-State Circuits, vol.31, no.12, pp.1854-61, Dec.1996.
    [29]B. Nauta and G. Hoogzaad. How to Deal with Substrate Noise in Analog CMOS Circuits [C],Proc. ECCTD.97, Sept.1997
    [30]M. Ingels and M. S. J. Steyaert. Design Strategies and Decoupling Techniques for Reducing the Effects of Electrical Interference in Mixed-Mode IC's [J] IEEE J. Solid-State Circuits, vol.32, pp.1136-1141, July.1997
    [1]B. Min, P. Kim, D. Boisvert, A. Aude. A 69mW 10b 80MS/S Pipelined CMOS ADC[C]. ISSCC Digest of Technical Papers, Feb.2003,324-325
    [2]J. Li, X. Zeng, L. Xie, J. Chen, J. Zhang, Y. Guo. A 1.8-V 22-mW 10-bit 30-MS/s Pipelined CMOS ADC for Low-Power Subsampling Applications [J]. IEEE J. Solid-State Circuits,2008,43, (2):321-329
    [3]S. Ryu, B. Song, K. Bacrania. A 10-bit 50-MS/s Pipelined ADC with Opamp Current Reuse [J]. IEEE J. Solid State Circuits,2007,42(3):475-485
    [4]K. Chandrashekar and B. Bakkaloglu. A 10b 50MS/s Opamp-Sharing Pipeline A/D With Current-Reuse OTAs[C]. IEEE CICC, Sep.2009,263-266
    [5]K. Gulati, M. S. Peng, A. Pulincherry, C. E. Munoz, M. Lugin, A. R. Bugeja, J. Li, and A.P. Chandrakasan. A Highly Integrated CMOS Analog Baseband Transceiver With 180 MSPS 13-bit Pipelined CMOS ADC and Dual 12-bit DACs [J]. IEEE J. Solid-State Circuits.vol.41, Aug.2006,1856-1866
    [6]Mehr and L. Singer. A 55-mW 10-bit 40-Msample/s Nyquist-rate CMOS ADC [J]. IEEE J.Solid-State Circuits, vol.35, Mar.2000,318-325

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700