甲醇裂解制烯烃SAPO-34分子筛催化剂的合成、改性及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用水热合成法制备了一系列SAPO-34分子筛,并进行了XRD表征,考察了硅源、原料配比等合成条件对SAPO-34分子筛结晶度的影响。结果表明:分别以吗啉、正磷酸、拟薄水铝石为模板剂、磷源和铝源时,合成结晶度相对较高的SAPO-34分子筛的条件为:以正硅酸乙酯为硅源,原料摩尔配比Al2O3:P2O5:SiO2:MOR:H2O=1.0:1.0:0.6:3.0:100,陈化时间2 h,晶化温度200℃,晶化时间48 h。
     采用水热合成法,通过在合成过程分别添加甲醇等低碳醇助剂和硝酸锌等金属盐类的方法制备了一系列改性SAPO-34分子筛,以甲醇裂解制取低碳烯烃为模型反应,对所制备的分子筛进行了性能评价,并以添加锌为例,采用XRD、BET、NH3-TPD、XPS和FT-IR等表征技术,系统地研究了锌改性对SAPO-34分子筛催化剂的物理化学特性的影响。结果表明:(1)添加甲醇、乙醇、丁醇、乙二醇和丙三醇均可合成出SAPO-34分子筛;但所合成的分子筛对提高总烯烃(C2=+C3=)选择性没有促进作用或促进作用不大。(2)所制备的MeAPSO-34分子筛具有比SAPO-34分子筛更高的乙烯选择性和总烯烃(C2=+C3=)选择性,且Ni-Zn双金属改性比单金属改性更有利于总烯烃(C2=+C3=)选择性的提高,但金属离子的添加会导致丙烯选择性的降低。与SAPO-34相比,单金属Ni的加入可使乙烯的选择性增加7.7%(由SAPO-34的40.7%增加至NiAPSO-34的48.4%),总烯烃(C2=+C3=)选择性增加2.5%;而双金属Ni-Zn的加入可使乙烯的选择性增加6.5%,总烯烃(C2=+C3=)选择性增加3.2%。(3)当晶化液中硝酸锌质量百分含量为0.41%时(所合成分子筛命名为0.41%ZnAPSO-34),可使总烯烃(C2=+C3=)选择性提高4.7%,相对最高。(4)锌进入了SAPO-34分子筛骨架,且引入锌离子可对分子筛的酸性和孔径分布进行调变。
     以0.41%ZnAPSO-34分子筛催化剂为基础,对甲醇裂解制低碳烯烃的工艺条件进行了研究,确定的相对适宜工艺条件为:温度500℃,水/甲醇质量比5:1,甲醇质量空速3.9 h-1。
SAPO-34 zeolites were synthesized by the hydrothermal method and their structures were characterized by means of X-ray powder diffraction (XRD). The effects of Silica source, raw material ratio and synthesis conditions on the crystallinity were investigated. The results showed that: Taking morpholine (MOR), phosphate, pseudo-boehmite as template, phosphorus source and aluminum source, respectively, the crystallinity of SAPO-34 zeolite was better when synthesized at the following conditions: Took TEOS as silicon source, the raw material mole ratio was Al2O3:P2O5: SiO2:MOR:H2O=1.0:1.0:0.6:3.0:100, the aging time was 2 h, the crystallization temperature was 200℃and the crystallization time was 48 h.
     SAPO-34 zeolite was modified by means of adding alcohol additives such as methanol and metal ions such as zinc nitrate, nickel nitrate and (zinc nitrate + nitrate nickel) in its synthesis, respectively. The catalytic performance of these zeolites was experimentally evaluated taking methanol to olefins (MTO) as the model reaction in a fixed-bed reactor. The effeets of Zn on the physical chemistry characteristics of SAPO-34 zeolite were investigated based on the XRD, XPS, BET, NH3-TPD and FT-IR. The results showed that:(1) Adding methanol, ethanol, butanol, ethylene glycol and glycerol, respectively, all could synthesize SAPO-34 zeolites, but only could increase little of the total olefins (C2=+C3=) selectivity. (2) The MeAPSO-34 (Me=Ni, Zn, Fe, or Ni-Zn) zeolites prepared by adding metal ions when synthesized SAPO-34 had a higher selectivity of ethylene and total selectivity of ethylene and propylene than SAPO-34 zeolite, the total selectivity of ethylene and propylene was higher on Ni-ZnAPSO-34 than on other MeAPSO-34 (Me=Ni, Zn, Fe, Cu) and it was noteworthy that adding metal ions would lead to the decrease of the propylene selectivity. The NiAPSO-34 could make an increase of ethylene selectivity by 7.7% (from 40.7% over SAPO-34 upon to 48.4% over NiAPSO-34) and total selectivity of ethylene and propylene by 2.5%; the Ni-ZnAPSO-34 made an increase of ethylene selectivity by 6.5% and total selectivity of ethylene and propylene by 3.2%. (3) When the mass content of zinc nitrate was 0.41%, the total olefins (C2=+C3=) selectivity increased by 4.7% and was the best. (4) Zn incorporated into the framework of SAPO-34 zeolite, in addition, medium strength acid and appropriate pore size could increase the (C2=+C3=) selectivity.
     Then the effects of temperature, water/methanol weight ratio and methanol WHSV on MTO process were investigated and the optimal condition was determined as follows:the temperature was 500℃, the water/ methanol weight ratio was 5:1 and the methanol WHSV was 3.9 h-1.
引文
[1]胡玉安.乙烯的综合利用[J].当代化工,2003,32(2):94-117
    [2]胡莹梅,罗爱国,李敏.乙烯项目的下游产品分析[J].乙烯工业,2006,18(3):3-6
    [3]王科,李杨,陈鹏.甲醇制丙烯工艺及催化剂技术研究新进展[J].天然气化工,2009,34(5):63-76
    [4]王红秋.我国乙烯工业的发展环境分析[J].国际石油经济,2008,16(2):38-42
    [5]刘一静,刘瑾.天然气制甲醇合成气工艺及进展[J].化工时刊,2007,2(15):64-67
    [6]谷小虎,曹敏,王兰甫,马嫚.中国煤制甲醇产业现状[J].洁净煤技术,2008,14(6):5-7
    [7]马宁,诸林.天然气制甲醇的工艺现状及发展前景[J].化工时刊,2006,20(11):64-67
    [8]李建华,孙艳萍.煤制烯烃的技术进展及经济分析[J].化工技术经济,2006,24(11):43-52
    [9]赵毓璋,景振华.甲醇制烯烃催化剂及工艺的新进展[J].石油炼制与化工,1999,30(2):23-28
    [10]张善全.MTO技术的发展情况及工艺简介[J].内蒙古石油化工,2006,11:52-53
    [11]陈腊山.MTO/MTP技术的研发现状及应用前景[J].化肥设计,2008,46(1):3-6
    [12]付有成.天然气制烯烃技术进展[J].石化技术与应用,2000,18(3):164-166
    [13]张明辉.我国发展煤制烯烃产业的必要性和可行性探讨[J1.化工技术经济,2006,24(1):17-20
    [14]高俊文,张勇.甲醇制烯烃催化剂和工艺的研究进展[J].工业催化,2005,13(增刊):226-231
    [15]刘中民,齐越.甲醇制取低碳烯烃(DMTO)技术的研究开发及工业性试验[J].成果与项目,2006,21(5):406-408
    [16]齐国祯.甲醇制烯烃(MTO)反应过程研究[D].上海:华东理工大学,2006
    [17]陈香生,刘昱陈,俊武.煤基甲醇制烯烃(MTO)工艺生产低碳烯烃的工程技术及投资分析[J].煤化工,2005,10(5):6-11
    [18]黄瑞娟.ZSM-5系列催化剂改性及其用于MTP过程的工艺研究[D].西安:西北大学,2006
    [19]张大治.分子筛催化转化氯甲烷制取低碳烯烃及其反应机理的研究[D].大连:中国科学院大连物理化学研究所,2007
    [20]李晖,王平艳,李晓梅,李秋霞.MTO技术及其催化剂的研究进展[J].化工进展,2008,27(增刊):245-247
    [21]袁庆广,张业,李和平,陈小平,马玉刚.甲醇制低碳烯烃催化剂研究新进展[J].化工技术与开发,2009,38(11):28-31
    [22]Schwartz A B. A new process to improve octane and quality of gasoline[J]. Advanced Catalysis, 1968,18:259-261
    [23]Chang C D. Hydrocarbon from Methanol[M]. New York: Chemical Industries,1983.10
    [24]Marchi A J, Froment G E. Catalytic conversion of methanol into light alkenes on mordenite-line zeolites[J]. Appl Catal A,1993,94(1):91-106
    [25]Prakash A, Unnlkrishnan S. Synthesis of SAPO-34: High silicon incorpration in the presence of moprholine as template[J]. Journal of the Chemical Society, Faraday Transactions,1994,90(15): 2291-2296
    [26]何长青,刘中民,杨立新,蔡光宇.模板剂对SAPO-34分子筛晶粒尺寸和性能的影响[J].催化学报,1995,16(1):33-37
    [27]Dumttriu E, Azzouz A, Hulea V. Synthesis, characterization and catalytic activity of SAPO-34 obtained with piperidine as templating agent [J]. Microporous Materials,1997,10(123):1-12
    [28]谭涓,何长青,刘中民.SAPO-34分子筛研究进展[J].天然气化工,1999,24(2):47-52
    [29]Marchese L, Frache A, Gianotti E, Martra G, Causa M, Coluccia S. ALPO-34 and SAPO-34 synthesized by using morpholine as templating agent. FTIR and FT-Raman studies of the host-guest and guest-guest interactions within the zeolitic framework[J]. Microporous and Mesoporous Materials,1999,30:145-153
    [30]刘红星,谢在库,张成芳,陈庆龄.用氟化氢-三乙胺复合模板剂合SAPO-34分子筛[J].催化学报,2003,24(4):279-283
    [31]刘红星,谢在库,张成芳,陈庆龄,张玉贤.小晶粒SAPO-34分子筛的合成Ⅰ化学合成法[J].华东理工大学学报,2003,29(5):527-530
    [32]付晔,王乐夫,谭宇新.晶化条件对SAPO-34结晶度及催化活性的影响[J].华南理工大学学报(自然科学版),2001,4:30-32
    [33]李建青.SAPO-34分子筛合成工艺的研究[D].西安:西北大学化学工程学院,2007
    [34]郑燕英,杨廷录,周小虹,沈师孔.制备条件对SAPO-34分子筛结构及MTO活性的影响燃[J].料化学学报,1999,27(2):139-143
    [35]刘红星,谢在库,张成芳,陈庆龄.用TEAOH-C4H9NO复合模板剂合成SAPO-34分子筛的研究-SAPO-34分子筛的合成与表征[J].催化学报,2004,25(9):702-706
    [36]李军,张凤美,李黎声,舒兴田.双模板剂法SAPO-34分子筛的合成及其性能[J].石油炼制与化工,2005,36(6):49-52
    [37]李黎声,李军,张凤美.模板剂对SAPO-34的合成及催化性能的影响[J].石油炼制与化工,2008,39(4):1-5
    [38]Inui T, Kang M. Reliable procedure for the synthesis of Ni-SAPO-34 as a highly selective catalyst for methanol to ethylene conversation[J]. Applied Catalysis A: General,1997,164:211-223
    [39]孔黎明,刘晓勤,刘定华.超声对SAPO-34分子筛合成的影响[J].南京理工大学学报,2007,31(4):528-532
    [40]石秀峰,李玉平,任蕾,窦涛.超浓体系下及其共晶SAPO-34分子筛的合成[J].石油学报(石油加工),2008,增刊:230-233
    [41]付晔,王乐夫,谭宇新,纪红兵.SAPO-34分子筛的研究现状及应用前景[J].化学反应工程与工艺,2000,16(1):55-59
    [42]Sunil A, Satyanarayana V V C, Dipak K. Small pore molecular sieves SAPO-34 and SAPO-44 with chabazite structure: A study of silicon incorporation[J]. Journal of Physieal Chemistry,1994, 98:4878-4883
    [43]Denise B. Topological model for the compared acidity of SAPOs and SiAl Zeolites[J]. Zeolites, 1994,14(6):394-401
    [44]张璐璐.SAPO-34分子筛合成与MTO工艺的研究[D].西安:西北大学化学工程学院,2009
    [45]Vomscheid R, Briend M, Peltre M J, Man P P. The role of the remplate in directing the Si distribution in SAPO zeolites[J]. Journal of Physieal Chemistry,1994,98(38):9614-9618
    [46]Liu G Y, Tian P, Zhang Y, Li J Z, Xu L, Meng S H, Liu Z M. Synthesis of SAPO-34 templated by diethylamine: Crystallization process and Si distribution in the crystals[J]. Microporous and Mesoporous Materials,2008,114:416-423
    [47]王亚楠.甲醇制烯烃催化剂SAPO-34的合成与改性[D].大连:大连理工大学,2008
    [48]谭涓,刘中民,何长青,刘宪春,韩秀文,翟润生,包信和.SAPO-34分子筛晶化过程中硅进入骨架的方式和机理[J].催化学报,1999,20(3):227-232
    [49]谭涓,刘中民,何长青,刘宪春,韩秀文,翟润生,包信和.SAPO-34分子筛晶化机理的研究[J].催化学报,1998,19(5):437-441
    [50]Xu L, Du A P, Wei Y X, Wang Y L, Yu Z X, He Y L, Zhang X Z, Liu Z M. Synthesis of SAPO-34 with only Si (4A1) species: Effect of Si contents on Si incorporation mechanism and Si coordination environment of SAPO-34[J]. Microporous and Mesoporous Materials,2008,115: 332-337
    [51]刘红星,谢在库,张成芳,陈庆龄,张玉贤.用氟化氢-三乙胺复合模板剂合成SAPO-34分子筛的晶化历程[J].催化学报,2003,24(11):849-855
    [52]张平,王乐夫.程序升温-漫反射红外光谱考察SAPO-34分子筛表面酸性质[J].分析测试学报,2004,23(1):39-41
    [53]Sastre G, Lewis D W, Catlow C R A. Mechanisms of silicon incorporation in aluminophosphate molecular sieves[J]. Journal of Molecular Catalysis A: Chenmical,1997,119(1-3):349-356
    [54]Sastre G, Lewis D W, Catlow C R A. Modeling of silicon substitution in SAPO-5 and SAPO-34 molecular sieves[J]. Journal of Physical Chenmistry B,1997,101(27):5249-5262
    [55]何长青,刘中民,蔡光宇.SAPO-34分子筛表面酸性质的研究[J].分子催化,1996,10(1):48-54
    [56]刘红星,谢在库,张成芳.不同模板剂合成SAPO-34分子筛的表征与热分解过程研究[J].化学物理学报,2003,16(6):521-527
    [57]Watanabe Y, Koiwai A, Takeuchi H, Hyodo S A, Noda S. Multinuclear NMR Studies on the thermal stability of SAPO-34[J]. Journal of Catalysis,1993,143(2):430-436
    [58]刘中民,黄兴云,何长青,杨越,杨立新,蔡光宇.SAPO-34分子筛的热稳定性及水热稳定[J].催化学报,1996,17(6):540-543
    [59]Liang J, Li H Y, Zhao S, Guo W Gi, Wang R H, Ying M L. Characteristics and performance of SAPO-34 catalyst for methanol-to-olefin conversion[J]. Applied Catalysis,1990,64:31-40
    [61]田鹏.杂原子磷酸铝分子筛及其低温催化烃类氧化反应的研究[D].大连:中国科学院大连物理化学研究所,2004
    [62]白尔铮.甲醇制烯烃用SAPO-34催化剂新进展[J].工业催化,2001,9(4):3-8
    [63]Guan X X, Zhang F X, Wu G J, Guan N J. Synthesis and characterization of a basic molecular sieve:Nitrogen-incorporated SAPO-34[J]. Materials Letters,2006,60:3141-3144
    [64]Mees F D P, Voort V D P, Cool P. Controlled reduction of the acid site density of SAPO-34 molecular sieve by means of silanation and disilanation[J]. Journal of Physieal Chemistry B, 2003,107(14):3161-3167
    [65]李红彬.碱土金属改性SAPO-34催化剂甲醇制烯烃[D].大连:大连理工大学,2009
    [66]Zhang D Z, Wei Y X, Xu L, Chang F X, Liu Z Y, Meng S H, Su B L, Liu Z M. MgAPSO-34 molecular sieves with various Mg stoichiometries: Synthesis, characterization and catalytic behavior in the direct transformation of chloromethane into light olefins[J]. Microporous and Mesoporous Materials,2008,116:684-692
    [67]李红彬,吕金钊,王一婧,王新平.碱土金属改性SAPO-34催化甲醇制烯烃[J].催化学报,2009,30(6):509-513
    [68]刘红星,谢在库,张玉贤,陆贤.CaO改性SAPO-34分子筛的表面酸性及其催化性能[J].石油化工,2005,34(增刊):343-344
    [69]Sun H, Vaughn S N. Conversion of oxygenate(s) to hydrocarbon(s) using small pore non-zeolitic molecular sieve catalysts-comprises using silico-alumino-phosphate[P]. USA Patent: US 6040264.2000-3-21
    [70]吕金钊.稀土(La,Y)改性SAPO-34分子筛催化转化甲醇制烯烃研究[D].大连:大连理工大学,2009
    [7l]金徽.SAPO-n分子筛的制备及用于MTO的研究].西安:西北大学化学工程学院,2006
    [72]Kang M, Inui T. Synthesis of NiAPSO-34 catalysts containing a larger concentration of Ni and effect of its sulfidation on methanol conversion[J]. Journal of Molecular Catalysis A: Chemical, 1999,144:329-335
    [73]Kang M. Synthesis and catalytic performance on methanol conversion of NiAPSO-34 crystals Ⅱ: Catalytic performance under various reaction conditions[J]. Journal of Molecular Catalysis A: Chemical,1999,150(1-2):205-212
    [74]Kang M, Um M H, Park J Y. Synthesis and catalytic performance on methanol conversion of NiAPSO-34 crystals Ⅰ:Effect of preparation factors on the gel formation[J]. Journal of Molecular Catalysis A:Chemical,1999,150(1-2):195-203
    [75]Inoue M, Dhupatemiya P, Phatanasri, Inui T. Synthesis course of the Ni-SAPO-34 catalyst for methanol-to-olefin conversion[J]. Microporous and Mesoporous Materials,1999,28:19-24
    [76]Niekerk M J V, Jack C Q, O'Connor C T. Effect of catalyst modification on the conversion of methanol to light olefins over SAPO-34[J]. Applied Catalysis,1996,138:135-145
    [77]Kang M. Methanol conversion on metal-incorporated SAPO-34s (MeAPSO-34s)[J]. Journal of Molecular Catalysis A: Chemical,2000,160:437-444
    [78]谢在库,刘红星,陈庆龄,张成芳.Zn改性的SAPO-34分子筛的制备及其催化性能[J].石油化工,2003,32(增刊):310-312
    [79]Dubois D R, Obrzut D L, Liu J, Thundimadathil J, Adekkanattu P M, Guin J A, Punnoose A, Seehra M S. Conversion of methanol to olefins over cobalt-, manganese- and nickel-incorporated SAPO-34 molecular sieves[J]. Fuel Processing Technology,2003,83:203-218
    [80]何长青,刘中民,杨立新,蔡光宇.CoAPSO-34分子筛的合成与性能[J].催化学报,1996,17(4):291-295
    [81]Xianchun W, Miehael G A, Rayford G A. Methanol conversion on SAPO-34: reaction condition for fixed-bed reactor[J]. Applied Catalysis A:General,2004,260:63-69
    [82]柯丽,冯静,冯炎,张明森.反应气氛对甲醇制低碳烯烃反应的影响[J].石油化工,2006,35(6):439-542
    [83]Ivar M D A, Wendelbo R, Andersen A, Akporiaye D, Mostad H, Fuglerud T. The effect of crystallite size on the activity and selectivity of the reaction of ethanol and 2-propanol over SAPO-34[J]. Microporous and Mesoporous Materials,1999,29:159-171
    [84]齐国祯,谢在库,刘红星,钟思青,张成芳,陈庆龄.甲醇制烯烃反应过程中SAPO-34分子筛催化剂的积碳行为研究[J].石油化工,2006,35(1):29-32
    [85]Qi G Z, Xie Z K, Yang W M, Zhong S Q, Liu H X, Zhang C F, Chen Q L. Behaviors of coke deposition on SAPO-34 catalyst during methanol conversion to light olefins[J]. Fuel Processing Technology,2007,88:437-441
    [86]Chen D, Rebo H P, Moljord Kl, Holmen A.The role of coke deposition in the conversion of methanol to olefins over SAPO-34[J]. Studies in Surface Science and Catalysis,1997,111: 159-166
    [87]Marchi A J, Froment G F. Catalytic conversion of methanol to light alkenes on SAPO molecular sieve[J]. Applied Catalysis,1991,71(1):139-152
    [88]Wu X C, Anthony R G. Effect of feed composition on methanol conversion to light olefins over SAPO-34[J]. Applied Catalysis A:General,2001,218(1-2):241-250
    [89]StOker M. Methanol-to-hydrocarbons: Catalytic materials and their behavior[J]. Microporous Mesoporous Mater,1999,29:3-48
    [90]Salehirad F, Anderson M W. Solid-state 13C MAS NMR study of methanol-to-hydrocarbon chemistry over H-SAPO-34[J]. Journal of Catalysis,1996,164(2):301-314
    [91]Forester T R, Howe R F. In situ of FTIR studies of methanol and dimethyl ether in ZSM-5[J]. J Am Chem Soc,1987,109:5076
    [92]Haw J F. Zeolite acid strength and reaction mechanisms in catalysis[J]. Physical Chemistry Chemical Physics,2002,4:5431-5441
    [93]Song W G, Marcus D M, Haw J F. An oft-studied reaction that may never have been: Direct catalytic conversion of methanol or dimethyl ether to hydrocarbons on the solid acids HZSM-5 or HSAPO-34[J]. Journal of the American Chemical Society,2002,124:3844-3845
    [94]王晓婷.N2O一步氧化苯制苯酚Fe-ZSM-5分子筛催化剂失活与再生研究[D].北京:北京化工大学,2007
    [95]徐如人,庞文琴,屠昆岗.沸石分子筛的结构与合成[M].长春:吉林大学出社,1987.218-220
    [96]李建青,崔飞,张毅航,程惠亭,张秀成.水热合成法合成SAPO-34分子筛[J].化学工程,2009,37(3):46-49
    [97]刘平,任杰,孙予罕.改进水热法合成SAPO-11及其酸性和异构化活性[J].催化学报,2008,29(4):379-384
    [98]Treacy M M J, Higgins J B. Collection of Simulated XRD Powder Patterns for Zeolites[M]. Elsevier Science,2007
    [99]Kang M, Inui T. Dynamic reaction characteristics affected by water molecular during the methanol to olefin conversion on NiAPSO-34 catalyst[J]. Journal of Molecular Catalysis A: Chemical,1999,144 (2):329-335

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700