人脐带间充质干细胞移植治疗脑血管疾病的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:脑血管疾病是一类严重威胁人类健康的神经系统疾病,脑血管疾病包括脑缺血和脑出血两种亚型,因出血或缺血导致神经组织损伤从而引起神经功能的障碍或缺失,至今临床上仍无有效的治疗办法。干细胞技术的发展为治疗甚至治愈脑血管疾病提供了可能。胚胎干细胞和成体干细胞都可以作为治疗神经系统疾病的种子细胞。间充质干细胞(Mesenchymal stem cells,MSC)属于成体干细胞,相对于胚胎干细胞和其它成体干细胞如神经干细胞等具有多方面的优点,因此近年来倍受研究者们的关注。实验证明,间充质干细胞对神经退行性疾病、神经免疫性疾病、神经系统损伤性疾病和脑血管疾病都有积极的治疗意义,尽管其潜在的作用机制尚未明确。最近,脐带(Umbilical cord,UC)被发现可以作为MSC的理想来源,因此脐带MSC(UC-MSC)是否可以成为治疗脑血管疾病的理想种子细胞,值得进我们去研究。
     目的:建立大鼠脑出血和脑缺血两种脑血管疾病模型,探讨人UC-MSC移植对大鼠脑血管的作用和作用机制,为人UC-MSC在神经科学领域的临床应用提供理论依据和实验基础。
     方法:利用酶消化法从足月妊娠剖宫产健康新生儿的脐带,通过贴壁法取得到原代培养的细胞,消化传代后,取P4-P6代的细胞移植用。线栓法制备SD大鼠大脑中动脉缺血再灌注(MCAO)模型,纹状体内定点注射细菌Ⅶ型胶原酶制备大鼠脑出血(ICH)模型。于24小时后,将体外荧光标记的人脐带MSC损伤局部注射到脑缺血或脑出血模型中,在移植后的4周(或5周)每周进行一次mNSS和Morris水迷宫两种神经功能的评价,在移植后14天,行TTC染色分析脑缺血梗死面积的大小。脑出血的体积在28天检测,并进行结晶紫/速兰蓝色显示其损伤区域。移植后7天,用vWF或ASMA染色脑组织切片,统计脑缺血/脑出血周围区域的血管密度,并且用相应的促血管增生因子抗体染色分析分析脑组织VEGF和bFGF的水平。另外,在脑出血大鼠移植实验中,细胞移植后3天,我们还分析了损伤组织周围的炎症细胞浸润程度、神经元凋亡程度、以及活性氧簇(ROS)和基质金属蛋白酶(MMPs)的浓度。同时,我们还评价了UC-MSC在体外的成血管能力和向神经诱导分化的情况。
     结果:UC-MSC在体外能够分化成为血管细胞和神经细胞,移植到脑缺血和脑出血模型中mNSS评分和Morris水迷宫潜伏期明显短于PBS对照组。移植后七天接受UC-MSC治疗的脑缺血或脑出血大鼠损伤周围去的血管密度明显高于它们的对照组,在MCAO实验中,UC-MSC移植后的大鼠血管密度也明显高于对照组。此外,在ICH中,UC-MSC治疗能够有效的抑制炎症细胞的浸润,降低ROS和MMPs的浓度。
     结论:人脐带MSC可以有效促进脑缺血和脑出血大鼠的神经功能恢复,其潜在的机制和血管新生、抑制炎症相关。
Background: Cerebrovascular diseases, which include cerebral ischemia and hemorrhage, represent severe clinical events of central nervous system disorder. Until today, effective therapeutic strategy is still lacking as to the neurological deficits after the occurrence of these diseases. The advancement of stem cell technology bring about prospectives in the treatment of these disorders. The candidate of stem cells includes embryonic stem cells (ESC) as well as adult stem cells, among which, mesenchymal stem cells (MSC) seem to be a more promising one regarding their advantages over ESC and other type of adult stem cells like neural stem cells (NSC). It has been proven that MSC could be beneficial in the treatment of a variety of diseases in central nervous system, though the underlying mechanisms are still unknown. Umbilical cord tissue has been recently regarded as a rich and ideal source of MSC thus umbilical cord derived MSC (UC-MSC) are deserved to be investigated in the treatment of cerebrovascular diseases.
     Objective: This study was designed to determine if UC-MSC intracerebarl transplantation of UC-MSC could promote the recovery of neurological functions after middle cerebral artery occlusion (MCAO) and intracerebral hemorrhage (ICH) in rats, and meantime to analyze the potential mechanisms.
     Methods: UC-MSC were isolated by cocktail enzyme digestion of human umbilical cords, CM-DiI labeled passage 4-6 UC-MSC were injected intracerebrally into the MCAO or ICH rats. Neurological evaluation including mNSS and Morris water maze test were conducted every week after transplantation. The injured volume of MCAO and ICH rats were calculated at 14 days and 28 days post-transplantation, respectively. In addition, vascular density and pro-angiogenic factors VEGF and bFGF were detected at 7 days after treatment in use of specific antibodies. In ICH rats, infiltration of inflammatory cells, reactive oxygen species (ROS) level and matrix metalloproteinase (MMPs) activity were detected at 3 days after transplantation. We also evaluated angiogenic and neurogenic potentials of UC-MSC in vitro.
     Results: UC-MSC could differentiate into both vascular cells and neural cells in vitro. Rats of MCAO and ICH received UC-MSC treatment show significant improved neurological functions as revealed by mNSS and water maze test. In addition, at 7 days after injection, the vascular density around injured region was drastically increased in UC-MSC treated rats in both MCAO and ICH model as compared to PBS groups. In ICH model, UC-MSC treatment can inhibit the leucocytes infiltration and microglial activation, ROS production and MMPs activity around ICH region.
     Conclusions: Human UC-MSC could effectively accelerate the recovery of neurological function after cerebrovascular diseases, and the underlying mechanisms may be associated with their ability to promote angiogenesis and inhibit inflammation.
引文
1. Lewitzky M, Yamanaka S. Reprogramming somatic cells towards pluripotency by defined factors. Current opinion in biotechnology 2007; 18 (5):467-473.
    2. Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131 (5):861-872.
    3. Nishikawa S, Goldstein RA, Nierras CR. The promise of human induced pluripotent stem cells for research and therapy. Nature reviews 2008; 9 (9):725-729.
    4. Chua SJ, Bielecki R, Wong CJ et al. Neural progenitors, neurons and oligodendrocytes from human umbilical cord blood cells in a serum-free, feeder-free cell culture. Biochemical and biophysical research communications 2009; 379 (2):217-221.
    5. Lee KD. Applications of mesenchymal stem cells: an updated review. Chang Gung medical journal 2008; 31 (3):228-236.
    6. Honczarenko M, Le Y, Swierkowski M et al. Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem cells (Dayton, Ohio) 2006; 24 (4):1030-1041.
    7. Li Y, Mclntosh K, Chen J et al. Allogeneic bone marrow stromal cells promote glial-axonal remodeling without immunologic sensitization after stroke in rats. Experimental neurology 2006; 198 (2):313-325.
    8. Spaggiari GM, Capobianco A, Abdelrazik H et al. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 2008; 111 (3):1327-1333.
    9. Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet 2008; 371 (9624):1612-1623.
    10. Romero JR, Morris J, Pikula A. Stroke prevention: modifying risk factors. Therapeutic advances in cardiovascular disease 2008; 2 (4):287-303.
    11. Lederer CW, Santama N. Neural stem cells: mechanisms of fate specification and nuclear reprogramming in regenerative medicine. Biotechnology journal 2008; 3 (12):1521-1538.
    12. Andres RH, Choi R, Steinberg GK, Guzman R. Potential of adult neural stem cells in stroke therapy. Regenerative medicine 2008; 3 (6):893-905.
    13. Suter DM, Krause KH. Neural commitment of embryonic stem cells: molecules, pathways and potential for cell therapy. The Journal of pathology 2008; 215 (4):355-368.
    14. Chen J, Li Y, Wang L et al. Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. Journal of the neurological sciences 2001; 189 (l-2):49-57.
    15. Chen J, Li Y, Katakowski M et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. Journal of neuroscience research 2003; 73 (6):778-786.
    16. Pavlichenko N, Sokolova I, Vijde S et al. Mesenchymal stem cells transplantation could be beneficial for treatment of experimental ischemic stroke in rats. Brain research 2008; 1233:203-213.
    17. Park HJ, Lee PH, Bang OY, Lee G, Ahn YH. Mesenchymal stem cells therapy exerts neuroprotection in a progressive animal model of Parkinson's disease. Journal of neurochemistry 2008.
    18. Slavin S, Kurkalli BG, Karussis D. The potential use of adult stem cells for the treatment of multiple sclerosis and other neurodegenerative disorders. Clinical neurology and neurosurgery 2008.
    19. Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE. Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem cells (Dayton, Ohio) 2005; 23 (2):220-229.
    20. Lu LL, Liu YJ, Yang SG et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 2006; 91 (8):1017-1026.
    21. Weiss ML, Medicetty S, Bledsoe AR et al. Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease. Stem cells (Dayton, Ohio) 2006; 24 (3):781-792.
    22. Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science (New York, NY 1999; 284 (5411):143-147.
    23. Dominici M, Le Blanc K, Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8 (4):315-317.
    24. Wu KH, Zhou B, Mo XM et al. Therapeutic potential of human umbilical cord-derived stem cells in ischemic diseases. Transplantation proceedings 2007; 39 (5):1620-1622.
    25. Wu KH, Zhou B, Yu CT et al. Therapeutic potential of human umbilical cord derived stem cells in a rat myocardial infarction model. The Annals of thoracic surgery 2007; 83 (4):1491-1498.
    26. Ishikane S, Ohnishi S, Yamahara K et al. Allogeneic injection of fetal membrane-derived mesenchymal stem cells induces therapeutic angiogenesis in a rat model of hind limb ischemia. Stem cells (Dayton, Ohio) 2008; 26 (10):2625-2633.
    27. Pasha Z, Wang Y, Sheikh R et al. Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovascular research 2008; 77 (1):134-142.
    28. Wang J, Tsirka SE. Tuftsin fragment 1-3 is beneficial when delivered after the induction of intracerebral hemorrhage. Stroke; a journal of cerebral circulation 2005; 36 (3):613-618.
    29. Emsley HC, Smith CJ, Tyrrell PJ, Hopkins SJ. Inflammation in acute ischemic stroke and its relevance to stroke critical care. Neurocritical care 2008; 9 (1):125-138.
    30. Wang J, Dore S. Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab 2007; 27 (5):894-908.
    31. Weiss SJ. Tissue destruction by neutrophils. The New England journal of medicine 1989; 320 (6):365-376.
    32. Facchinetti F, Dawson VL, Dawson TM. Free radicals as mediators of neuronal injury. Cellular and molecular neurobiology 1998; 18 (6):667-682.
    33. Wagner KR, Packard BA, Hall CL et al. Protein oxidation and heme oxygenase-1 induction in porcine white matter following intracerebral infusions of whole blood or plasma. Developmental neuroscience 2002; 24 (2-3): 154-160.
    34. Cunningham LA, Wetzel M, Rosenberg GA. Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia 2005; 50 (4):329-339.
    35. Yong VW. Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci 2005; 6 (12):931-944.
    36. Gasche Y, Fujimura M, Morita-Fujimura Y et al. Early appearance of activated matrix metalloproteinase-9 after focal cerebral ischemia in mice: a possible role in blood-brain barrier dysfunction. J Cereb Blood Flow Metab 1999; 19 (9): 1020-1028.
    37. Rosenberg GA. Matrix metalloproteinases in neuroinflammation. Glia 2002; 39 (3):279-291.
    38. Wells JE, Biernaskie J, Szymanska A et al. Matrix metalloproteinase (MMP)-12 expression has a negative impact on sensorimotor function following intracerebral haemorrhage in mice. Eur J Neurosci 2005; 21 (1):187-196.
    39. Alvarez-Sabin J, Delgado P, Abilleira S et al. Temporal profile of matrix metalloproteinases and their inhibitors after spontaneous intracerebral hemorrhage: relationship to clinical and radiological outcome. Stroke; a journal of cerebral circulation 2004; 35 (6):1316-1322.
    40. Rosenberg GA, Navratil M. Metalloproteinase inhibition blocks edema in intracerebral hemorrhage in the rat. Neurology 1997; 48 (4):921-926.
    41. Wang J, Tsirka SE. Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage. Brain 2005; 128 (Pt 7): 1622-1633.
    42. Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem cells (Dayton, Ohio) 2003; 21 (1):105-110.
    43. Kim JW, Kim SY, Park SY et al. Mesenchymal progenitor cells in the human umbilical cord. Annals of hematology 2004; 83 (12):733-738.
    44. Wang HS, Hung SC, Peng ST et al. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem cells (Dayton, Ohio) 2004; 22 (7):1330-1337.
    45. Can A, Karahuseyinoglu S. Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem cells (Dayton, Ohio) 2007; 25 (11):2886-2895.
    46. Lund RD, Wang S, Lu B et al. Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease. Stem cells (Dayton, Ohio) 2007; 25 (3):602-611.
    47. Weiss ML, Mitchell KE, Hix JE et al. Transplantation of porcine umbilical cord matrix cells into the rat brain. Experimental neurology 2003; 182 (2):288-299.
    48. Medicetty S, Bledsoe AR, Fahrenholtz CB, Troyer D, Weiss ML. Transplantation of pig stem cells into rat brain: proliferation during the first 8 weeks. Experimental neurology 2004; 190 (1):32-41.
    49. Shen LH, Li Y, Chen J et al. Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke. Neuroscience 2006; 137 (2):393-399.
    50. Azizi SA, Stokes D, Augelli BJ, DiGirolamo C, Prockop DJ. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats梥imilarities to astrocyte grafts. Proceedings of the National Academy of Sciences of the United States of America 1998; 95 (7):3908-3913.
    51. Matyszak MK. Inflammation in the CNS: balance between immunological privilege and immune responses. Progress in neurobiology 1998; 56 (1):19-35.
    52. Pachter JS, de Vries HE, Fabry Z. The blood-brain barrier and its role in immune privilege in the central nervous system. Journal of neuropathology and experimental neurology 2003; 62 (6):593-604.
    53. Porada CD, Zanjani ED, Almeida-Porad G. Adult mesenchymal stem cells: a pluripotent population with multiple applications. Current stem cell research & therapy 2006; 1 (3):365-369.
    54. Noel D, Djouad F, Bouffi C, Mrugala D, Jorgensen C. Multipotent mesenchymal stromal cells and immune tolerance. Leukemia & lymphoma 2007; 48 (7): 1283-1289.
    55. Ennis J, Gotherstrom C, Le Blanc K, Davies JE. In vitro immunologic properties of human umbilical cord perivascular cells. Cytotherapy 2008; 10 (2):174-181.
    56. Chen J, Li Y, Wang L et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke; a journal of cerebral circulation 2001; 32 (4):1005-1011.
    57. Chen J, Sanberg PR, Li Y et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke; a journal of cerebral circulation 2001; 32 (11):2682-2688.
    58. Honma T, Honmou O, Iihoshi S et al. Intravenous infusion of immortalized human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Experimental neurology 2006; 199 (1):56-66.
    59. Keimpema E, Fokkens MR, Nagy Z et al. Early transient presence of implanted bone marrow stem cells reduces lesion size after cerebral ischaemia in adult rats. Neuropathology and applied neurobiology 2009; 35 (1):89-102.
    60. Fatar M, Stroick M, Griebe M et al. Lipoaspirate-derived adult mesenchymal stem cells improve functional outcome during intracerebral hemorrhage by proliferation of endogenous progenitor cells stem cells in intracerebral hemorrhages. Neuroscience letters 2008; 443 (3): 174-178.
    61. Kim JM, Lee ST, Chu K et al. Systemic transplantation of human adipose stem cells attenuated cerebral inflammation and degeneration in a hemorrhagic stroke model. Brain research 2007; 1183:43-50.
    62. Seyfried D, Ding J, Han Y et al. Effects of intravenous administration of human bone marrow stromal cells after intracerebral hemorrhage in rats. Journal of neurosurgery 2006; 104 (2):313-318.
    63. Bantubungi K, Blum D, Cuvelier L et al. Stem cell factor and mesenchymal and neural stem cell transplantation in a rat model of Huntington's disease. Molecular and cellular neurosciences 2008; 37 (3):454-470.
    64. Gerdoni E, Gallo B, Casazza S et al. Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Annals of neurology 2007; 61 (3):219-227.
    65. Kong QF, Sun B, Bai SS et al. Administration of bone marrow stromal cells ameliorates experimental autoimmune myasthenia gravis by altering the balance of Thl/Th2/Thl7/Treg cell subsets through the secretion of TGF-beta. Journal of neuroimmunology 2009.
    66. Mahmood A, Lu D, Chopp M. Marrow stromal cell transplantation after traumatic brain injury promotes cellular proliferation within the brain. Neurosurgery 2004; 55 (5):1185-1193.
    67. Lee KH, Suh-Kim H, Choi JS et al. Human mesenchymal stem cell transplantation promotes functional recovery following acute spinal cord injury in rats. Acta neurobiologiae experimentalis 2007; 67 (1):13-22.
    68. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of neuroscience research 2000; 61 (4):364-370.
    69. Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Experimental neurology 2000; 164 (2):247-256.
    70. Sanchez-Ramos JR, Song S, Kamath SG et al. Expression of neural markers in human umbilical cord blood. Experimental neurology 2001; 171 (1):109-115.
    71. Jeong JA, Gang EJ, Hong SH et al. Rapid neural differentiation of human cord blood-derived mesenchymal stem cells. Neuroreport 2004; 15 (11):1731-1734.
    72. Neuhuber B, Gallo G, Howard L et al. Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. Journal of neuroscience research 2004; 77 (2): 192-204.
    73. Tondreau T, Lagneaux L, Dejeneffe M et al. Bone marrow-derived mesenchymal stem cells already express specific neural proteins before any differentiation. Differentiation; research in biological diversity 2004; 72 (7):319-326.
    74. Cho KJ, Trzaska KA, Greco SJ et al. Neurons derived from human mesenchymal stem cells show synaptic transmission and can be induced to produce the neurotransmitter substance P by interleukin-1 alpha. Stem cells (Dayton, Ohio) 2005; 23(3):383-391.
    75. Mareschi K, Novara M, Rustichelli D et al. Neural differentiation of human mesenchymal stem cells: Evidence for expression of neural markers and eag K+ channel types. Experimental hematology 2006; 34 (11):1563-1572.
    76. Trzaska KA, Reddy BY, Munoz JL et al. Loss of RE-1 silencing factor in mesenchymal stem cell-derived dopamine progenitors induces functional maturity. Molecular and cellular neurosciences 2008; 39 (2):285-290.
    77. Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proceedings of the National Academy of Sciences of the United States of America 1999; 96 (19):10711-10716.
    78. Deng J, Petersen BE, Steindler DA, Jorgensen ML, Laywell ED. Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem cells (Dayton, Ohio) 2006; 24 (4): 1054-1064.
    79. Ding DC, Shyu WC, Chiang MF et al. Enhancement of neuroplasticity through upregulation of betal-integrin in human umbilical cord-derived stromal cell implanted stroke model. Neurobiology of disease 2007; 27 (3):339-353.
    80. Kiel ME, Chen CP, Sadowski D, McKinnon RD. Stem cell-derived therapeutic myelin repair requires 7% cell replacement. Stem cells (Dayton, Ohio) 2008; 26 (9):2229-2236.
    81. Mancuso MR, Kuhnert F, Kuo CJ. Developmental angiogenesis of the central nervous system. Lymphatic research and biology 2008; 6 (3-4):173-180.
    82. Tang T, Liu XJ, Zhang ZQ et al. Cerebral angiogenesis after collagenase-induced intracerebral hemorrhage in rats. Brain research 2007; 1175:134-142.
    83. Beck H, Plate KH. Angiogenesis after cerebral ischemia. Acta neuropathologica 2009.
    84. Lin TN, Te J, Lee M, Sun GY, Hsu CY. Induction of basic fibroblast growth factor (bFGF) expression following focal cerebral ischemia. Brain Res Mol Brain Res 1997;49(1-2):255-265.
    85. Lennmyr F, Ata KA, Funa K, Olsson Y, Terent A. Expression of vascular endothelial growth factor (VEGF) and its receptors (Fit-1 and Flk-1) following permanent and transient occlusion of the middle cerebral artery in the rat. Journal of neuropathology and experimental neurology 1998; 57 (9):874-882.
    86. Wang RG, Zhu XZ. Expression of angiopoietin-2 and vascular endothelial growth factor in mice cerebral cortex after permanent focal cerebral ischemia. Acta pharmacologica Sinica 2002; 23 (5):405-411.
    87. Zhang ZG, Zhang L, Croll SD, Chopp M. Angiopoietin-1 reduces cerebral blood vessel leakage and ischemic lesion volume after focal cerebral embolic ischemia in mice. Neuroscience 2002; 113 (3):683-687.
    88. Kaya D, Gursoy-Ozdemir Y, Yemisci M et al. VEGF protects brain against focal ischemia without increasing blood--brain permeability when administered intracerebroventricularly. J Cereb Blood Flow Metab 2005; 25 (9):1111-1118.
    89. Lee ST, Chu K, Jung KH et al. Granulocyte colony-stimulating factor enhances angiogenesis after focal cerebral ischemia. Brain research 2005; 1058 (1-2):120-128.
    90. Hoang S, Liauw J, Choi M et al. Netrin-4 enhances angiogenesis and neurologic outcome after cerebral ischemia. J Cereb Blood Flow Metab 2009; 29 (2):385-397.
    91. Tanaka R, Miyasaka Y, Yada K, Ohwada T, Kameya T. Basic fibroblast growth factor increases regional cerebral blood flow and reduces infarct size after experimental ischemia in a rat model. Stroke; a journal of cerebral circulation 1995; 26(11):2154-2158; discussion 2158-2159.
    92. Athyros VG, Kakafika AI, Tziomalos K, Papageorgiou AA, Karagiannis A. Statins for the prevention of first or recurrent stroke. Current vascular pharmacology 2008;6(2):124-133.
    93. Bersano A, Ballabio E, Lanfranconi S et al. Statins and stroke. Current medicinal chemistry 2008; 15 (23):2380-2392.
    94. Chen J, Cui X, Zacharek A, Chopp M. Increasing Angl/Tie2 expression by simvastatin treatment induces vascular stabilization and neuroblast migration after stroke. Journal of cellular and molecular medicine 2008.
    95. Rodriguez-Yanez M, Agulla J, Rodriguez-Gonzalez R, Sobrino T, Castillo J. Statins and stroke. Therapeutic advances in cardiovascular disease 2008; 2 (3):157-166.
    96. Zacharek A, Chen J, Cui X, Yang Y, Chopp M. Simvastatin increases notch signaling activity and promotes arteriogenesis after stroke. Stroke; a journal of cerebral circulation 2009; 40 (1):254-260.
    97. Chen J, Zhang ZG, Li Y et al. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circulation research 2003; 92 (6):692-699.
    98. Kim Y, Kim H, Cho H et al. Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia. Cell Physiol Biochem 2007; 20 (6):867-876.
    99. Zacharek A, Chen J, Cui X et al. Angiopoietin1/Tie2 and VEGF/Flk1 induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. J Cereb Blood Flow Metab 2007; 27 (10): 1684-1691.
    100. Zhou B, Han ZC, Poon MC, Pu W. Mesenchymal stem/stromal cells (MSC) transfected with stromal derived factor 1 (SDF-1) for therapeutic neovascularization: enhancement of cell recruitment and entrapment. Medical hypotheses 2007; 68 (6):1268-1271.
    101. Oswald J, Boxberger S, Jorgensen B et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem cells (Dayton, Ohio) 2004; 22 (3):377-384.
    102. Alviano F, Fossati V, Marchionni C et al. Term Amniotic membrane is a high throughput source for multipotent Mesenchymal Stem Cells with the ability to differentiate into endothelial cells in vitro. BMC developmental biology 2007; 7:11.
    103. Al-Khaldi A, Eliopoulos N, Martineau D et al. Postnatal bone marrow stromal cells elicit a potent VEGF-dependent neoangiogenic response in vivo. Gene therapy 2003; 10(8):621-629.
    104. Schmal H, Niemeyer P, Roesslein M et al. Comparison of cellular functionality of human mesenchymal stromal cells and PBMC. Cytotherapy 2007; 9 (1):69-79.
    105. Barlow S, Brooke G, Chatterjee K et al. Comparison of human placenta- and bone marrow-derived multipotent mesenchymal stem cells. Stem cells and development 2008; 17 (6):1095-1107.
    106. Friedman R, Betancur M, Boissel L et al. Umbilical cord mesenchymal stem cells: adjuvants for human cell transplantation. Biol Blood Marrow Transplant 2007; 13 (12): 1477-1486.
    107. Kinnaird T, Stabile E, Burnett MS et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 2004; 109 (12):1543-1549.
    108. Chen X, Li Y, Wang L et al. Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology 2002; 22 (4):275-279.
    109. Halkos ME, Zhao ZQ, Kerendi F et al. Intravenous infusion of mesenchymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction. Basic research in cardiology 2008; 103 (6):525-536.
    110. Liu XH, Bai CG, Xu ZY et al. Therapeutic potential of angiogenin modified mesenchymal stem cells: angiogenin improves mesenchymal stem cells survival under hypoxia and enhances vasculogenesis in myocardial infarction. Microvascular research 2008; 76 (1):23-30.
    111. da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of cell science 2006; 119 (Pt 11):2204-2213.
    112. Crisan M, Yap S, Casteilla L et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell stem cell 2008; 3 (3):301-313.
    113. Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 2003; 18 (4):696-704.
    114. Diaz-Flores L, Gutierrez R, Lopez-Alonso A, Gonzalez R, Varela H. Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis. Clinical orthopaedics and related research 1992 (275):280-286.
    115. Doherty MJ, Ashton BA, Walsh S et al. Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res 1998; 13 (5):828-838.
    116. Diaz-Flores L, Gutierrez R, Varela H. Behavior of postcapillary venule pericytes during postnatal angiogenesis. Journal of morphology 1992; 213 (1):33-45.
    117. Risau W. Mechanisms of angiogenesis. Nature 1997; 386 (6626):671-674.
    118. Eliceiri BP, Cheresh DA. Adhesion events in angiogenesis. Current opinion in cell biology 2001; 13 (5):563-568.
    119. Wang J, Tsirka SE. Contribution of extracellular proteolysis and microglia to intracerebral hemorrhage. Neurocrit Care 2005; 3 (1):77-85.
    120. Basic Kes V, Simundic AM, Nikolac N, Topic E, Demarin V. Pro-inflammatory and anti-inflammatory cytokines in acute ischemic stroke and their relation to early neurological deficit and stroke outcome. Clinical biochemistry 2008; 41(16-17):1330-1334.
    121. Tuttolomondo A, Di Raimondo D, di Sciacca R, Pinto A, Licata G. Inflammatory cytokines in acute ischemic stroke. Current pharmaceutical design 2008; 14(33):3574-3589.
    122. Turner R, Vink R. Inhibition of neurogenic inflammation as a novel treatment for ischemic stroke. Drug news & perspectives 2007; 20 (4):221-226.
    123. Jordan J, Segura T, Brea D, Galindo MF, Castillo J. Inflammation as therapeutic objective in stroke. Current pharmaceutical design 2008; 14 (33):3549-3564.
    124. Yrjanheikki J, Keinanen R, Pellikka M, Hokfelt T, Koistinaho J. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proceedings of the National Academy of Sciences of the United States of America 1998; 95 (26):15769-15774.
    125. Masada T, Hua Y, Xi G et al Overexpression of interleukin-1 receptor antagonist reduces brain edema induced by intracerebral hemorrhage and thrombin. Acta neurochirurgica 2003; 86:463-467.
    126. Uccelli A, Moretta L, Pistoia V. Immunoregulatory function of mesenchymal stem cells. Eur J Immunol 2006; 36 (10):2566-2573.
    127. Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood 2007; 110 (10):3499-3506.
    128. Ren G, Zhang L, Zhao X et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell stem cell 2008; 2 (2):141-150.
    129. Jung YJ, Ju SY, Yoo ES et al. MSC-DC interactions: MSC inhibit maturation and migration of BM-derived DC. Cytotherapy 2007; 9 (5):451-458.
    130. English K, Barry FP, Mahon BP. Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunology letters 2008; 115 (1):50-58.
    131. Krampera M, Glennie S, Dyson J et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003; 101 (9):3722-3729.
    132. Suzdaltseva YG, Burunova VV, Vakhrushev Ⅳ, Cheglakov IB, Yarygin KN. In vitro comparison of immunological properties of cultured human mesenchymal cells from various sources. Bulletin of experimental biology and medicine 2008; 145 (2):228-231.
    133. Prigione I, Benvenuto F, Bocca P et al. Reciprocal Interactions between Human Mesenchymal Stem Cells and {gamma} {delta} T Cells or Invariant Natural Killer T (Inkt) Cells. Stem cells (Dayton, Ohio) 2008.
    134. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 2003; 75 (3):389-397.
    135. Weiss ML, Anderson C, Medicetty S et al. Immune properties of human umbilical cord Wharton's jelly-derived cells. Stem cells (Dayton, Ohio) 2008; 26 (11):2865-2874.
    136. von Bonin M, Stolzel F, Goedecke A et al. Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium. Bone marrow transplantation 2009; 43 (3):245-251.
    137. Zheng ZH, Li XY, Ding J, Jia JF, Zhu P. Allogeneic mesenchymal stem cell and mesenchymal stem cell-differentiated chondrocyte suppress the responses of type Ⅱ collagen-reactive T cells in rheumatoid arthritis. Rheumatology (Oxford, England) 2008;47(1):22-30.
    138. Mazzini L, Mareschi K, Ferrero I et al. Stem cell treatment in Amyotrophic Lateral Sclerosis. Journal of the neurological sciences 2008; 265 (1-2):78-83.
    139. Lee RH, Seo MJ, Reger RL et al. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proceedings of the National Academy of Sciences of the United States of America 2006; 103 (46):17438-17443.
    140. Ortiz LA, Dutreil M, Fattman C et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proceedings of the National Academy of Sciences of the United States of America 2007; 104 (26): 11002-11007.
    141. Le Blanc K, Rasmusson I, Sundberg B et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004; 363 (9419): 1439-1441.
    1. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science (New York, NY 1992; 255 (5052):1707-1710.
    2. Morshead CM, Reynolds BA, Craig CG et al. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 1994; 13 (5): 1071-1082.
    3. Carpenter MK, Winkler C, Fricker R et al. Generation and transplantation of EGF-responsive neural stem cells derived from GFAP-hNGF transgenic mice. Experimental neurology 1997; 148 (1):187-204.
    4. Chiasson BJ, Tropepe V, Morshead CM, van der Kooy D. Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. J Neurosci 1999; 19 (11):4462-4471.
    5. Eriksson PS, Perfilieva E, Bjork-Eriksson T et al. Neurogenesis in the adult human hippocampus. Nature medicine 1998; 4 (11): 1313-1317.
    6. Shi J, Miles DK, Orr BA, Massa SM, Kernie SG. Injury-induced neurogenesis in Bax-deficient mice: evidence for regulation by voltage-gated potassium channels. The European journal of neuroscience 2007; 25 (12):3499-3512.
    7. Miles DK, Kernie SG. Hypoxic-ischemic brain injury activates early hippocampal stem/progenitor cells to replace vulnerable neuroblasts. Hippocampus 2008; 18 (8):793-806.
    8. Yu TS, Zhang G, Liebl DJ, Kernie SG. Traumatic brain injury-induced hippocampal neurogenesis requires activation of early nestin-expressing progenitors. J Neurosci 2008; 28 (48):12901-12912.
    9. Bjorklund A, Lindvall O. Cell replacement therapies for central nervous system disorders. Nature neuroscience 2000; 3 (6):537-544.
    10. Bjorklund LM, Sanchez-Pernaute R, Chung S et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proceedings of the National Academy of Sciences of the United States of America 2002; 99 (4):2344-2349.
    11. Takagi Y, Nishimura M, Morizane A et al. Survival and differentiation of neural progenitor cells derived from embryonic stem cells and transplanted into ischemic brain. Journal of neurosurgery 2005; 103 (2):304-310.
    12. Akiyama Y, Honmou O, Kato T et al. Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Experimental neurology 2001; 167 (1):27-39.
    13. Lewitzky M, Yamanaka S. Reprogramming somatic cells towards pluripotency by defined factors. Current opinion in biotechnology 2007; 18 (5):467-473.
    14. Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131 (5):861-872.
    15. Nishikawa S, Goldstein RA, Nierras CR. The promise of human induced pluripotent stem cells for research and therapy. Nature reviews 2008; 9 (9):725-729.
    16. Wernig M, Zhao JP, Pruszak J et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America 2008; 105 (15):5856-5861.
    17. Gurdon JB, Melton DA. Nuclear reprogramming in cells. Science (New York, NY 2008; 322 (5909):1811-1815.
    18. Saito S, Sawai K, Murayama Y, Fukuda K, Yokoyama K. Nuclear transfer to study the nuclear reprogramming of human stem cells. Methods in molecular biology (Clifton, NJ 2008; 438:151-169.
    19. Wakayama S, Cummins JM, Wakayama T. Nuclear reprogramming to produce cloned mice and embryonic stem cells from somatic cells. Reproductive biomedicine online 2008; 16 (4):545-552.
    20. da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of cell science 2006; 119 (Pt 11):2204-2213.
    21. Crisan M, Yap S, Casteilla L et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell stem cell 2008; 3 (3):301-313.
    22. Xu W, Zhang X, Qian H et al. Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Experimental biology and medicine (Maywood, NJ 2004; 229 (7):623-631.
    23. Lee KD, Kuo TK, Whang-Peng J et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology (Baltimore, Md 2004; 40 (6): 1275-1284.
    24. Jin K, Mao XO, Batteur S, Sun Y, Greenberg DA. Induction of neuronal markers in bone marrow cells: differential effects of growth factors and patterns of intracellular expression. Experimental neurology 2003; 184 (1):78-89.
    25. Barry FP, Murphy JM, English K, Mahon BP. Immunogenicity of adult mesenchymal stem cells: lessons from the fetal allograft. Stem cells and development 2005; 14 (3):252-265.
    26. Porada CD, Zanjani ED, Almeida-Porad G. Adult mesenchymal stem cells: a pluripotent population with multiple applications. Current stem cell research & therapy 2006; 1 (3):365-369.
    27. Ennis J, Gotherstrom C, Le Blanc K, Davies JE. In vitro immunologic properties of human umbilical cord perivascular cells. Cytotherapy 2008; 10 (2):174-181.
    28. Weiss ML, Anderson C, Medicetty S et al. Immune properties of human umbilical cord Wharton's jelly-derived cells. Stem cells (Dayton, Ohio) 2008; 26 (11):2865-2874.
    29. Bossolasco P, Cova L, Calzarossa C et al. Neuro-glial differentiation of human bone marrow stem cells in vitro. Experimental neurology 2005; 193 (2):312-325.
    30. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of neuroscience research 2000; 61 (4):364-370.
    31. Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Experimental neurology 2000; 164 (2):247-256.
    32. Sanchez-Ramos JR, Song S, Kamath SG et al. Expression of neural markers in human umbilical cord blood. Experimental neurology 2001; 171 (1): 109-115.
    33. Jeong JA, Gang EJ, Hong SH et al. Rapid neural differentiation of human cord blood-derived mesenchymal stem cells. Neuroreport 2004; 15 (11): 1731-1734.
    34. Fu YS, Shih YT, Cheng YC, Min MY. Transformation of human umbilical mesenchymal cells into neurons in vitro. Journal of biomedical science 2004; 11 (5):652-660.
    35. Kohyama J, Abe H, Shimazaki T et al. Brain from bone: efficient "meta-differentiation" of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation; research in biological diversity 2001;68(4-5):235-244.
    36. Neuhuber B, Gallo G, Howard L et al. Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. Journal of neuroscience research 2004; 77 (2): 192-204.
    37. Corti S, Locatelli F, Strazzer S, Guglieri M, Comi GP. Neuronal generation from somatic stem cells: current knowledge and perspectives on the treatment of acquired and degenerative central nervous system disorders. Current gene therapy 2003; 3 (3):247-272.
    38. Tondreau T, Lagneaux L, Dejeneffe M et al. Bone marrow-derived mesenchymal stem cells already express specific neural proteins before any differentiation. Differentiation; research in biological diversity 2004; 72 (7):319-326.
    39. Reh TA. Neural stem cells: form and function. Nature neuroscience 2002; 5 (5):392-394.
    40. Cho KJ, Trzaska KA, Greco SJ et al. Neurons derived from human mesenchymal stem cells show synaptic transmission and can be induced to produce the neurotransmitter substance P by interleukin-1 alpha. Stem cells (Dayton, Ohio) 2005; 23(3):383-391.
    41. Mareschi K, Novara M, Rustichelli D et al. Neural differentiation of human mesenchymal stem cells: Evidence for expression of neural markers and eag K+ channel types. Experimental hematology 2006; 34 (11):1563-1572.
    42. Trzaska KA, Reddy BY, Munoz JL et al. Loss of RE-1 silencing factor in mesenchymal stem cell-derived dopamine progenitors induces functional maturity. Molecular and cellular neurosciences 2008; 39 (2):285-290.
    43. Weiss ML, Medicetty S, Bledsoe AR et al. Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease. Stem cells (Dayton, Ohio) 2006; 24 (3):781-792.
    44. Li Y, Chen J, Wang L et al. Intracerebral transplantation of bone marrow stromal cells in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Neuroscience letters 2001; 316 (2):67-70.
    45. Lu L, Zhao C, Liu Y et al. Therapeutic benefit of TH-engineered mesenchymal stem cells for Parkinson's disease. Brain research 2005; 15 (1):46-51.
    46. Hofstetter CP, Schwarz EJ, Hess D et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proceedings of the National Academy of Sciences of the United States of America 2002; 99 (4):2199-2204.
    47. Mahmood A, Lu D, Lu M, Chopp M. Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery 2003; 53 (3):697-702; discussion 702-693.
    48. Mahmood A, Lu D, Chopp M. Marrow stromal cell transplantation after traumatic brain injury promotes cellular proliferation within the brain. Neurosurgery 2004; 55 (5):1185-1193.
    49. Chen J, Li Y, Wang L et al. Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. Journal of the neurological sciences 2001; 189 (1-2):49-57.
    50. Chen J, Li Y, Wang L et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke; a journal of cerebral circulation 2001; 32(4): 1005-1011.
    51. Chen J, Sanberg PR, Li Y et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke; a journal of cerebral circulation 2001; 32 (11):2682-2688.
    52. Chen J, Zhang ZG, Li Y et al. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circulation research 2003; 92 (6):692-699.
    53. Honma T, Honmou O, Iihoshi S et al. Intravenous infusion of immortalized human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Experimental neurology 2006; 199 (1):56-66.
    54. Iihoshi S, Honmou O, Houkin K, Hashi K, Kocsis JD. A therapeutic window for intravenous administration of autologous bone marrow after cerebral ischemia in adult rats. Brain research 2004; 1007 (1-2):1-9.
    55. Seyfried D, Ding J, Han Y et al. Effects of intravenous administration of human bone marrow stromal cells after intracerebral hemorrhage in rats. Journal of neurosurgery 2006; 104 (2):313-318.
    56. Zhang RL, Chopp M, Zaloga C et al. The temporal profiles of ICAM-1 protein and mRNA expression after transient MCA occlusion in the rat. Brain research 1995; 682(1-2):182-188.
    57. Kim JS. Cytokines and adhesion molecules in stroke and related diseases. Journal of the neurological sciences 1996; 137 (2):69-78.
    58. Hatashita S, Hoff JT. Brain edema and cerebrovascular permeability during cerebral ischemia in rats. Stroke; a journal of cerebral circulation 1990; 21 (4):582-588.
    59. Kim DH, Yoo KH, Choi KS et al. Gene expression profile of cytokine and growth factor during differentiation of bone marrow-derived mesenchymal stem cell. Cytokine 2005; 31 (2):119-126.
    60. Li Y, Chen J, Chen XG et al. Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology 2002; 59 (4):514-523.
    61. Hamano K, Li TS, Kobayashi T et al. Angiogenesis induced by the implantation of self-bone marrow cells: a new material for therapeutic angiogenesis. Cell transplantation 2000; 9 (3):439-443.
    62. Takahashi T, Kalka C, Masuda H et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature medicine 1999; 5 (4):434-438.
    1. Can A, Karahuseyinoglu S. Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem cells (Dayton, Ohio) 2007; 25 (11):2886-2895.
    2. Lee OK, Kuo TK, Chen WM et al. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 2004; 103 (5):1669-1675.
    3. Lu LL, Liu YJ, Yang SG et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 2006; 91 (8):1017-1026.
    4. Parolini O, Alviano F, Bagnara GP et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem cells (Dayton, Ohio) 2008; 26 (2):300-311.
    5. Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science (New York, NY 1999; 284 (5411):143-147.
    6. Wang HS, Hung SC, Peng ST et al. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem cells (Dayton, Ohio) 2004; 22 (7):1330-1337.
    7. Crisan M, Yap S, Casteilla L et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell stem cell 2008; 3 (3):301-313.
    8. da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of cell science 2006; 119 (Pt 11):2204-2213.
    9. Bossolasco P, Cova L, Calzarossa C et al. Neuro-glial differentiation of human bone marrow stem cells in vitro. Experimental neurology 2005; 193 (2):312-325.
    10. Corti S, Locatelli F, Strazzer S, Guglieri M, Comi GP. Neuronal generation from somatic stem cells: current knowledge and perspectives on the treatment of acquired and degenerative central nervous system disorders. Current gene therapy 2003; 3 (3):247-272.
    11. Fu YS, Shih YT, Cheng YC, Min MY. Transformation of human umbilical mesenchymal cells into neurons in vitro. Journal of biomedical science 2004; 11 (5):652-660.
    12. Jeong JA, Gang EJ, Hong SH et al. Rapid neural differentiation of human cord blood-derived mesenchymal stem cells. Neuroreport 2004; 15 (11):1731-1734.
    13. Jin K, Mao XO, Batteur S, Sun Y, Greenberg DA. Induction of neuronal markers in bone marrow cells: differential effects of growth factors and patterns of intracellular expression. Experimental neurology 2003; 184 (1):78-89.
    14. Lee KD, Kuo TK, Whang-Peng J et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology (Baltimore, Md 2004; 40 (6): 1275-1284.
    15. Xu W, Zhang X, Qian H et al. Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Experimental biology and medicine (Maywood, NJ 2004; 229 (7):623-631.
    16. Chen J, Li Y, Wang L et al. Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. Journal of the neurological sciences 2001; 189 (1-2):49-57.
    17. Chen J, Li Y, Wang L et al Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke; a journal of cerebral circulation 2001; 32 (4): 1005-1011.
    18. Ding DC, Shyu WC, Chiang MF et al. Enhancement of neuroplasticity through upregulation of betal-integrin in human umbilical cord-derived stromal cell implanted stroke model. Neurobiology of disease 2007; 27 (3):339-353.
    19. Fatar M, Stroick M, Griebe M et al. Lipoaspirate-derived adult mesenchymal stem cells improve functional outcome during intracerebral hemorrhage by proliferation of endogenous progenitor cells stem cells in intracerebral hemorrhages. Neuroscience letters 2008; 443 (3): 174-178.
    20. Keimpema E, Fokkens MR, Nagy Z et al. Early transient presence of implanted bone marrow stem cells reduces lesion size after cerebral ischaemia in adult rats. Neuropathology and applied neurobiology 2009; 35 (1):89-102.
    21. Kim JM, Lee ST, Chu K et al. Systemic transplantation of human adipose stem cells attenuated cerebral inflammation and degeneration in a hemorrhagic stroke model. Brain research 2007; 1183:43-50.
    22. Li Y, Mclntosh K, Chen J et al. Allogeneic bone marrow stromal cells promote glial-axonal remodeling without immunologic sensitization after stroke in rats. Experimental neurology 2006; 198 (2):313-325.
    23. Seyfried D, Ding J, Han Y et al. Effects of intravenous administration of human bone marrow stromal cells after intracerebral hemorrhage in rats. Journal of neurosurgery 2006; 104 (2):313-318.
    24. Shen LH, Li Y, Chen J et al. Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke. Neuroscience 2006; 137 (2):393-399.
    25. Zhou B, Han ZC, Poon MC, Pu W. Mesenchymal stem/stromal cells (MSC) transfected with stromal derived factor 1 (SDF-1) for therapeutic neovascularization: enhancement of cell recruitment and entrapment. Medical hypotheses 2007; 68 (6):1268-1271.
    26. Adams HP, Jr. Stroke: a vascular pathology with inadequate management. J Hypertens Suppl 2003; 21 (5):S3-7.
    27. McColl BW, Allan SM, Rothwell NJ. Systemic inflammation and stroke: aetiology, pathology and targets for therapy. Biochemical Society transactions 2007; 35 (Pt 5):1163-1165.
    28. Ooneda G. Pathology of stroke. Japanese circulation journal 1986; 50 (12):1224-1234.
    29. Skvortsova Ⅵ, Botsina AY. The 2nd Russian International Congress on Cerebrovascular Pathology and Stroke, 17-20 September, St Petersburg, Russian Federation. Int J Stroke 2008; 3 (2):150-151.
    30. Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet 2008; 371 (9624):1612-1623.
    31. Romero JR, Morris J, Pikula A. Stroke prevention: modifying risk factors. Therapeutic advances in cardiovascular disease 2008; 2 (4):287-303.
    32. Tuttolomondo A, Di Raimondo D, di Sciacca R, Pinto A, Licata G. Inflammatory cytokines in acute ischemic stroke. Current pharmaceutical design 2008; 14 (33):3574-3589.
    33. Ritter LS, Orozco JA, Coull BM, McDonagh PF, Rosenblum WI. Leukocyte accumulation and hemodynamic changes in the cerebral microcirculation during early reperfusion after stroke. Stroke; a journal of cerebral circulation 2000; 31 (5):1153-1161.
    34. Sharp F, Liu DZ, Zhan X, Ander BP. Intracerebral hemorrhage injury mechanisms: glutamate neurotoxicity, thrombin, and Src. Acta neurochirurgica 2008; 105:43-46.
    35. Xi G, Hua Y, Bhasin RR et al. Mechanisms of edema formation after intracerebral hemorrhage: effects of extravasated red blood cells on blood flow and blood-brain barrier integrity. Stroke; a journal of cerebral circulation 2001; 32 (152):2932-2938.
    36. Thiex R, Tsirka SE. Brain edema after intracerebral hemorrhage: mechanisms, treatment options, management strategies, and operative indications. Neurosurgical focus 2007; 22 (5):E6.
    37. Wang J, Dore S. Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab 2007; 27 (5):894-908.
    38. Wang J, Dore S. Heme oxygenase 2 deficiency increases brain swelling and inflammation after intracerebral hemorrhage. Neuroscience 2008; 155 (4):1133-1141.
    39. Zhang X, Li H, Hu S et al. Brain edema after intracerebral hemorrhage in rats: the role of inflammation. Neurology India 2006; 54 (4):402-407.
    40. Zhao X, Zhang Y, Strong R, Grotta JC, Aronowski J. 15d-Prostaglandin J2 activates peroxisome proliferator-activated receptor-gamma, promotes expression of catalase, and reduces inflammation, behavioral dysfunction, and neuronal loss after intracerebral hemorrhage in rats. J Cereb Blood Flow Metab 2006; 26 (6):811-820.
    41. Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet neurology 2006; 5 (1):53-63.
    42. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of neuroscience research 2000; 61 (4):364-370.
    43. Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Experimental neurology 2000; 164 (2):247-256.
    44. Sanchez-Ramos JR, Song S, Kamath SG et al. Expression of neural markers in human umbilical cord blood. Experimental neurology 2001; 171 (1): 109-115.
    45. Kohyama J, Abe H, Shimazaki T et al. Brain from bone: efficient "meta-differentiation" of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation; research in biological diversity 2001;68(4-5):235-244.
    46. Zhang H, Huang Z, Xu Y, Zhang S. Differentiation and neurological benefit of the mesenchymal stem cells transplanted into the rat brain following intracerebral hemorrhage. Neurological research 2006; 28 (1): 104-112.
    47. Chen J, Zhang ZG, Li Y et al Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circulation research 2003; 92 (6):692-699.
    48. Zacharek A, Chen J, Cui X et al. Angiopoietinl/Tie2 and VEGF/Flkl induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. J Cereb Blood Flow Metab 2007; 27 (10):1684-1691.
    49. Al-Khaldi A, Eliopoulos N, Martineau D et al. Postnatal bone marrow stromal cells elicit a potent VEGF-dependent neoangiogenic response in vivo. Gene therapy 2003;10(8):621-629.
    50. Oswald J, Boxberger S, Jorgensen B et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem cells (Dayton, Ohio) 2004; 22 (3):377-384.
    51. Kinnaird T, Stabile E, Burnett MS et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 2004; 109 (12):1543-1549.
    52. Liao W, Xie J, Zhong J et al. Therapeutic effect of human umbilical cord multipotent mesenchymal stromal cells in a rat model of stroke. Transplantation 2009; 87(3):350-359.
    53. Silva GV, Litovsky S, Assad JA et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 2005; 111 (2): 150-156.
    54. Wu KH, Zhou B, Yu CT et al. Therapeutic potential of human umbilical cord derived stem cells in a rat myocardial infarction model. The Annals of thoracic surgery 2007; 83 (4):1491-1498.
    55. Halkos ME, Zhao ZQ, Kerendi F et al. Intravenous infusion of mesenchymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction. Basic research in cardiology 2008; 103 (6):525-536.
    56. Ishikane S, Ohnishi S, Yamahara K et al. Allogeneic injection of fetal membrane-derived mesenchymal stem cells induces therapeutic angiogenesis in a rat model of hind limb ischemia. Stem cells (Dayton, Ohio) 2008; 26 (10):2625-2633.
    57. Honczarenko M, Le Y, Swierkowski M et al. Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem cells (Dayton, Ohio) 2006; 24 (4): 1030-1041.
    58. Schmal H, Niemeyer P, Roesslein M et al. Comparison of cellular functionality of human mesenchymal stromal cells and PBMC. Cytotherapy 2007; 9 (1):69-79.
    59. Friedman R, Betancur M, Boissel L et al. Umbilical cord mesenchymal stem cells: adjuvants for human cell transplantation. Biol Blood Marrow Transplant 2007; 13 (12):1477-1486.
    60. Wang RG, Zhu XZ. Expression of angiopoietin-2 and vascular endothelial growth factor in mice cerebral cortex after permanent focal cerebral ischemia. Acta pharmacologica Sinica 2002; 23 (5):405-411.
    61. Zhang ZG, Zhang L, Croll SD, Chopp M. Angiopoietin-1 reduces cerebral blood vessel leakage and ischemic lesion volume after focal cerebral embolic ischemia in mice. Neuroscience 2002; 113 (3):683-687.
    62. Tang T, Liu XJ, Zhang ZQ et al. Cerebral angiogenesis after collagenase-induced intracerebral hemorrhage in rats. Brain research 2007; 1175:134-142.
    63. Rodriguez-Yanez M, Agulla J, Rodriguez-Gonzalez R, Sobrino T, Castillo J. Statins and stroke. Therapeutic advances in cardiovascular disease 2008; 2 (3):157-166.
    64. Zacharek A, Chen J, Cui X, Yang Y, Chopp M. Simvastatin increases notch signaling activity and promotes arteriogenesis after stroke. Stroke; a journal of cerebral circulation 2009; 40 (1):254-260.
    65. Chen J, Cui X, Zacharek A et al. Niaspan increases angiogenesis and improves functional recovery after stroke. Annals of neurology 2007; 62 (1):49-58.
    66. Majumdar MK, Keane-Moore M, Buyaner D et al. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. Journal of biomedical science 2003; 10 (2):228-241.
    67. Djouad F, Plence P, Bony C et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003; 102 (10):3837-3844.
    68. Krampera M, Glennie S, Dyson J et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003; 101 (9):3722-3729.
    69. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105 (4):1815-1822.
    70. Prigione I, Benvenuto F, Bocca P et al. Reciprocal Interactions between Human Mesenchymal Stem Cells and {gamma} {delta} T Cells or Invariant Natural Killer T (Inkt) Cells. Stem cells (Dayton, Ohio) 2008.
    71. Spaggiari GM, Capobianco A, Abdelrazik H et al. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 2008; 111 (3):1327-1333.
    72. Krampera M, Cosmi L, Angeli R et al Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem cells (Dayton, Ohio) 2006; 24 (2):386-398.
    73. Meisel R, Zibert A, Laryea M et al. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 2004; 103 (12):4619-4621.
    74. Zheng ZH, Li XY, Ding J, Jia JF, Zhu P. Allogeneic mesenchymal stem cell and mesenchymal stem cell-differentiated chondrocyte suppress the responses of type Ⅱ collagen-reactive T cells in rheumatoid arthritis. Rheumatology (Oxford, England) 2008;47(1):22-30.
    75. Gerdoni E, Gallo B, Casazza S et al. Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Annals of neurology 2007; 61 (3):219-227.
    76. Lee RH, Seo MJ, Reger RL et al. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proceedings of the National Academy of Sciences of the United States of America 2006; 103 (46): 17438-17443.
    77. von Bonin M, Stolzel F, Goedecke A et al. Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium. Bone marrow transplantation 2009; 43 (3):245-251.
    78. Lazarus HM, Koc ON, Devine SM et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 2005; 11 (5):389-398.
    79. Le Blanc K, Rasmusson I, Sundberg B et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004; 363 (9419): 1439-1441.
    80. Ortiz LA, Dutreil M, Fattman C et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proceedings of the National Academy of Sciences of the United States of America 2007; 104 (26):11002-11007.
    81. Guo J, Lin GS, Bao CY, Hu ZM, Hu MY. Anti-inflammation role for mesenchymal stem cells transplantation in myocardial infarction. Inflammation 2007; 30(3-4):97-104.
    82. Ren G, Zhang L, Zhao X et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell stem cell 2008; 2 (2):141-150.
    83. Haynesworth SE, Baber MA, Caplan AI. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. Journal of cellular physiology 1996; 166 (3):585-592.
    84. Ferrer I, Kxupinski J, Goutan E et al. Brain-derived neurotrophic factor reduces cortical cell death by ischemia after middle cerebral artery occlusion in the rat. Acta neuropathologica2001; 101 (3):229-238.
    85. Schabitz WR, Sommer C, Zoder W et al. Intravenous brain-derived neurotrophic factor reduces infarct size and counterregulates Bax and Bcl-2 expression after temporary focal cerebral ischemia. Stroke; a journal of cerebral circulation 2000; 31 (9):2212-2217.
    86. Piao CS, Gonzalez-Toledo ME, Xue YQ et al. The role of stem cell factor and granulocyte-colony stimulating factor in brain repair during chronic stroke. J Cereb Blood Flow Metab 2009.
    87. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science (New York, NY 1992; 255 (5052):1707-1710.
    88. Morshead CM, Reynolds BA, Craig CG et al. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 1994; 13 (5):1071-1082.
    89. Eriksson PS, Perfilieva E, Bjork-Eriksson T et al. Neurogenesis in the adult human hippocampus. Nature medicine 1998; 4 (11):1313-1317.
    90. Chiasson BJ, Tropepe V, Morshead CM, van der Kooy D. Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. J Neurosci 1999; 19 (11):4462-4471.
    91. Darsalia V, Heldmann U, Lindvall O, Kokaia Z. Stroke-induced neurogenesis in aged brain. Stroke; ajournal of cerebral circulation 2005; 36 (8):1790-1795.
    92. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nature medicine 2002; 8 (9):963-970.
    93. Tonchev AB, Yamashima T, Zhao L, Okano HJ, Okano H. Proliferation of neural and neuronal progenitors after global brain ischemia in young adult macaque monkeys. Molecular and cellular neurosciences 2003; 23 (2):292-301.
    94. Chen J, Li Y, Katakowski M et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. Journal of neuroscience research 2003; 73 (6):778-786.
    95. Chen J, Li Y, Zhang R et al. Combination therapy of stroke in rats with a nitric oxide donor and human bone marrow stromal cells enhances angiogenesis and neurogenesis. Brain research 2004; 1005 (1-2):21-28.
    96. Cunningham LA, Wetzel M, Rosenberg GA. Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia 2005; 50 (4):329-339.
    97. Wang J, Tsirka SE. Tuftsin fragment 1-3 is beneficial when delivered after the induction of intracerebral hemorrhage. Stroke 2005; 36 (3):613-618.
    98. Wang J, Tsirka SE. Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage. Brain 2005; 128 (Pt 7): 1622-1633.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700