硅胶锚合PAMAM型类树形大分子的合成及吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚酰胺-胺型(Polyamidoamine, PAMAM)树形大分子是近二十年才成功合成的一类新型高分子材料,由于具有精确的分子结构、分子内存在大量的空腔以及表面含有大量的官能团等特点,容易实现对金属及其离子的包埋与吸附,这些特点使其在多个领域有潜在的应用价值,成为相关领域的研究热点。
     本文采用发散式合成法,通过重复以下两步反应:(1)丙烯酸甲酯与表面氨基的Michael加成反应;(2)乙二胺同以酯基为端基的产物的酰胺化反应,得到了一系列硅胶锚合的PAMAM型类树形大分子,利用傅立叶红外光谱、X-射线衍射、热重分析、孔径分析、扫描电镜等方法对产物进行了表征,分别研究了对Au~(3+)、Pd~(2+)、Pt~(4+)、Ag~+、Cu~(2+)、Zn~(2+)、Hg~(2+)等金属离子的静态吸附容量、动态吸附容量以及酸度、pH值对吸附量的影响。通过实验得到以下结论:
     1.通过发散式合成法成功合成一系列以酯基和氨基为端基的硅胶锚合的PAMAM型类树形大分子。硅胶表面类树形大分子的接枝率随着类树形大分子代数的增加而增加,但是由于空间位阻的存在以及分子内和分子间交联产物的出现,实际接枝率要低于理论值。
     2.通过红外光谱跟踪测试反应进程结果显示,在25℃下,至少分别需要5天、7天、8天、9天才能使以酯基为端基的SiO_2-G0.5、SiO_2-G1.5、SiO_2-G2.5、SiO_2-G3.5等半代产品与乙二胺完全反应得到相应的以氨基为端基的SiO_2-G0、SiO_2-G1.0、SiO_2-G2.0、SiO_2-G3.0、SiO_2-G4.0等整代产品。
     3.产物的BET表面积,BJH脱附平均孔径、孔容随着硅胶表面锚合的树形大分子的代数的增加逐渐降低。
     4.静态吸附实验结果表明,所有的以酯基和氨基为端基的PAMAM型螯合树脂对贵金属离子Au~(3+)和Pd~(2+)表现出了优于Pt~(4+)、Ag~+及Cu~(2+)、Zn~(2+)、Hg~(2+)等贱金属离子的吸附性能;并且研究结果表明,并不是硅胶表面的接枝率越高对金属离子的饱和吸附量越大。
     5.动态吸附实验结果表明,除了以酯基为端基的半代产品对Ag~+的吸附中存在多种吸附机理外,对Au~(3+)、Pd~(2+)、Pt~(4+)、Cu~(2+)、Hg~(2+)的动态吸附都属液膜扩散控制机理。
     6.溶液酸度及pH值对合成的PAMAM型类树形大分子的吸附性能具有重要的影响。对Pd~(2+)的最佳吸附酸度为2mol/L;除了pH值对以氨基为端基的整代产品吸附Cu~(2+)影响比较复杂外,大多数产品对Cu~(2+)和Ag~+的最佳吸附pH值为4。
Polyamidoamine (PAMAM) is one of the novel dendritic polymers which was successfully synthesized in recently decades. It is an ideal candidate for metal ions adsorption because of its well-defined structure, hollow cavities deep within the branching structure and high density of functional groups. Great attenation had been paid to PAMAM dendrimer due to its great potential appalication in many fields.
     In this thesis, a series of ester- and amino-terminated dendrimer-like PAMAM grafted silica-gel was prepared with a divergent method by repeating two processes: (1) Michael addition of methyl acrylate (MA) to surface amino groups; (2) amidation of the resulting esters with ethylenediamine (EDA) fromγ-aminopropyl silica gel core. Their structures were characterized by FTIR, XRD, TG, porous analysis and SEM. Au~(3+), Pd~(2+), Pt~(4+), Ag~+, Cu~(2+), Zn~(2+) and Hg~(2+) were chosen as representative to investigate the static and dynamic adsorption properties of the dendrimer-like PAMAM. The relationship between adsorption capacities and acid concentrtation, pH value was also evaluated. Some conclusions can be drawn as follows:
     1. Ester- and amino-terminated dendrimer-like highly branched PAMAM polymers were successfully grafted on the surface of silica gel via a divergent method. The percentage of grafting of dendrimer-like PAMAM polymer on the surface of silica-gel increased with increase of the number of generations of the grafted PAMAM dendrimer, but the observed grafting at every generation was much smaller than that of the theoretical value because of steric hindrance and inter- and intra-groups crosslinking.
     2. The monitoring by FTIR indicated it needed at least 5, 7, 8, and 9 days for SiO_2-G0.5, SiO_2-G1.5, SiO_2-G2.5 and SiO_2-G3.5 to be converted into SiO_2-G0, SiO_2-G1.0, SiO_2-G2.0、SiO_2-G3.0 and SiO_2-G4.0, respectively at 25℃.
     3. The BET surface area, BJH desorption average pore diameter and BJH desorption cumulative volume of pores for the products decrease after the series of grafting reactions.
     4. Static adsorption showed that both ester- and amino-terminated dendrimer-like PAMAM grafted silica-gel exhibited better adsorption capabilities for Au~(3+) and Pd~(2+) than for base metal ions Cu~(2+), Zn~(2+), Hg~(2+) and noble metal ions Pt~(4+) and Ag~+. Also, one conclusion can be drawn form the investigation, that is, a high percentage of grafting of polymer onto the surface of silica-gel did not mean a high adsorption capacity.
     5. Dynamic adsorption shows that the adsorption mechanism for Au~(3+), Pd~(2+), Pt~(4+), Cu~(2+), Hg~(2+) are all belongs to the Film Diffusion Control mechanism, except the dynamic adsorption of ester-terminated dendrimer-like PAMAM grafted silica-gel for Ag~+.
     6. Acid concentrtation and pH value have an important effect on sorption properties. For Pd~(2+), the optimum acid concentrtation is 2mol/L. As for Ag~+ and Cu~(2+), most of the products exhibite highest sorption capacities when pH value is 4, except the sorption for Cu~(2+) of the amino-terminated products.
引文
[1] 王俊德,商振华,郁蕴璐,高效液相色谱法[M],中国石化出版社,1992:73
    [2] Joseph J. Pesek , Maria T. Matyska , Eric J. Williamsen , et al, Synthesis and characterization of alkyl bonded phases from a silica hydride via hydrosilation with free radical initiation, Journal of Chromatography A,1997,786(2):219-228
    [3] Yasuzo Suzuki, Frank H. Quina, Alain Berthod, et al, Covalently bound ionene polyelectrolyte-silica gel stationary phases for HPLC, Analytical Chemistry,2001, 73(8): 1754-1765
    [4] J. J, Kirkland, J. L. Glajch, R. D. Farlee, Synthesis and characterization of highly stable bonded phases for High-Performance Liquid Chromatography column packings, Analytical Chemistry,1989,61(1):2-11
    [5] S. Christine Bourque, Francüois Maltais, Wen-Jing Xiao, et al, Hydroformylation reactions with Rhodium-complexed Dendrimers on silica, Journal of the American Chemical Society, 1999,121(13):3035-3038
    [6] Feng Li, Hongquan Jiang, Shusheng Zhang, An ion-imprinted silica-supported organic– inorganic hybrid sorbent prepared by a surface imprinting technique combined with a polysaccharide incorporated sol–gel process for selective separation of cadmium(II) from aqueous solution,Talanta,2007,71(4):1487-1493
    [7] Damian Perez-Quintanilla, Isabel del Hierro, Mariano Fajardo, et al, 2-Mercaptothiazoline modified mesoporous silica for mercury removal from aqueous media, Journal of Hazardous Materials,2006,134(1-3):245-256
    [8] Walid A. Daoud , John H. Xin, Xiaoming Tao, Synthesis and characterization of hydrophobic silica nanocomposites, Applied Surface Science,2006,252(15):5368-5371
    [9] Emilie Sibottier, Stéphanie Sayen, Fabien Gaboriaud, et al, Factors affecting the preparation and properties of electrodeposited silica thin films functionalized with amine or thiol groups,Langmuir,2006, 22 (20):8366-8373
    [10] 杨新立,王俊德,熊博晖,高效液相色谱用硅质填料的进展,色谱,2000,18(4):308-312
    [11] 黄晓佳,杨新立,刘学良,等,色谱填料制备技术及反相烷基硅胶键合相研究, 化学试剂, 2001,23(2):77-81
    [12] 王俊德,商振华,郁蕴璐,高效液相色谱法[M],中国石化出版社,1992:107-108
    [13] 杨瑞琴,蒋生祥,陈立仁,聚合物涂敷反相高效液相色谱固定相,色谱,1998,16(6): 501- 505
    [14] 于世林,高效液相色谱方法及应用(第二版)[M],化学工业出版社,2005:73-76
    [15] Takashi Monde, Nobuyuki Nakayama, Koji Yano, et al, Adsorption characteristics of silica gels treated with fluorinated silylation agents, Journal of Colloid and Interface Science, 1997,185(1):111-118
    [16] Teofil Jesionowski , Andrzej Krysztafkiewicz, Comparison of the techniques used to modify amorphous hydrated silicas, Journal of Non-Crystalline Solids,2000,277(1):45-57
    [17] Shraboni Das, Tapan Kumar Jain, Amarnath Maitra, Inorganic–organic hybrid nanoparticles from n-octyl triethoxy silane, Journal of Colloid and Interface Science, 2002,252(1):82-88
    [18] J. Choma, M. Kloske ,M. Jaroniec, An improved methodology for adsorption characterization of unmodified and modified silica gels, Journal of Colloid and Interface Science,2003,266(1):168-174
    [19] Wen Zhou, Jian Hua Dong, Kun Yuan Qiu, et al, Effect of 3-aminopropyltriethoxysilane on properties of poly(butyl acrylate-co-maleic anhydride)/silica hybrid materials, Journal of Applied Polymer Science,1999,73(3):419-424
    [20] L. D. White , C. P. Tripp, An infrared study of the amine-catalyzed reaction of methoxy- methyl silanes with Silica, Journal of Colloid and Interface Science,2000, 227(1):237- 243
    [21] Y. Joshua Du, Matt Damron, Grace Tang, et al, Inorganic/organic hybrid coatings for aircraft aluminum alloy substrates ,Progress in Organic Coatings, 2001,41(4):226-232
    [22] Bor-Kuan Chen, T.-M. Chiu,Sun-Yuan Tsay, Synthesis and characterization of polyimide/silica hybrid nanocomposites, Journal of Applied Polymer Science, 2004,94(1): 382-393
    [23] von Werne, T., Patten, T. E., Atom transfer radical polymerization from nanoparticles: a tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled/"living" radical polymerizations from surfaces, Journal of the American Chemical Society, 2001,123(31):7497-7505
    [24] Mori, H., Seng, D. C., Zhang, M., et al, Hybrid nanoparticles with hyperbranched polymer shells via self-condensing atom transfer radical polymerization from silicasurfaces, Langmuir, 2002, 18(9):3682-3693
    [25] Xianyi Chen, David P. Randall, Christian Perruchot, et al, Synthesis and aqueous solution properties of polyelectrolyte-grafted silica particles prepared by surface-initiated atom transfer radical polymerization ,Journal of Colloid and Interface Science, 2003, 257(1): 56-64
    [26]Christine Dufès, Ijeoma F. Uchegbu, Andreas G. Sch?tzlein, Dendrimers in gene delivery, Advanced Drug Delivery Reviews, 2005, 57(15):2177-2202
    [27]Ophir Flomenbom, Roey J. Amir, Doron Shabat, et al, Some new aspects of dendrimer applications,Journal of Luminescence, 2005,111(4):315-325
    [28]M. Pilar García Armada, José Losada, Magdalena Zamora, et al, Electrocatalytical properties of polymethylferrocenyl dendrimers and their applications in biosensing, Bioelectrochemistry, 2006, 69(1):65-73
    [29]Parag Kolhe, Jayant Khandare, Omathanu Pillai, et al, Preparation, cellular transport, and activity of polyamidoamine-based dendritic nanodevices with a high drug payload, Biomaterials, 2006, 27(4):660-669
    [30]Leto-Aikaterini Tziveleka, Anna-Maria G. Psarra, Dimitris Tsiourvas et al, Synthesis and characterization of guanidinylated poly(propylene imine) dendrimers as gene transfection agents, Journal of Controlled Release, 2007,117(1):137-146
    [31]冯圣玉,张洁,李美江,等,有机硅高分子及其应用[M],化学工业出版社(材料科学与工程出版中心),2004:349-351
    [32]谭惠民,罗运军,树枝形聚合物[M],化学工业出版社(材料科学与工程出版中心), 2004: 16- 17
    [33]谭惠民,罗运军,树枝形聚合物[M],化学工业出版社(材料科学与工程出版中心), 2002: 19
    [34]L. Henry Bryant Jr., Martin W. Brechbiel, Chuanchu Wu, et al, Synthesis and relaxometry of high-generation (G = 5, 7, 9, and 10) PAMAM dendrimer-DOTA- gadolinium chelates, Journal of Magnetic Resonance Imaging, 1999,9(2):348-352
    [35]Aijun Gong, Qinghua Fan, Yongming Chen, et al, Two-phase hydroformylation reaction catalysed by rhodium-complexed water-soluble dendrimers, Journal of Molecular Catalysis A: Chemical, 2000, 159(2):225-232
    [36]Ziqiang Lei, Zhiwang Yang, Qiaorong Han, et al,Catalytic oxidation of ethylbenzene bydendritic PAMAMSA-Mn(II) complexes, Chemical Research in China Universities,2001, 17(3): 158-159
    [37]Zhiwang Yang, Qiaoxiang Kang, Hengchang Ma, et al, Oxidation of cyclohexene by dendritic PAMAMSA-Mn(II) complexes, Journal of Molecular Catalysis A: Chemical, 2004, 213(2):169-176
    [38]徐厚才,罗运军,谭惠民,等,树形聚酰胺胺与 Cu~(2+)的络合作用,分析测试学报,2001, 20(3):1-4
    [39]王金凤,贾欣茹,金钟,等,聚酰胺-胺型树枝状化合物与四氯化钛的配合及其催化作用初步研究,高等学校化学学报,2001,22(4):709-711
    [40]李国平,罗运军,徐厚才,等,银离子与聚酰胺-胺型树形高分子配位作用的研究,无机化学学报,2003,19(11):1212-1216
    [41]靳丽强,李彦春,金属配位树枝状大分子鞣剂的合成及表征,中国皮革,2005,34(1): 19- 21
    [42]Rachid Touzani , Howard Alper, PAMAM dendrimer-palladium complex catalyzed synthesis of five-, six- or seven membered ring lactones and lactams by cyclocarbonylation methodology, Journal of Molecular Catalysis A: Chemical, 2005, 227(1-2):197-207
    [43]George R. Newkome, Kyung Soo Yoo, Seok-Ho Hwang, et al, Metallodendrimers: homo- and heterogeneous tier construction by bis(2,2′:6′,2″-terpyridinyl)Ru(II) complex connectivity, Tetrahedron, 2003,59 (22):3955-3964
    [44]Gregory S. Smith, Selwyn F. Mapolie, Iminopyridyl-palladium dendritic catalyst precursors: evaluation in Heck reactions, Journal of Molecular Catalysis A: Chemical, 2004, 213(2):187-192
    [45]Kunio Esumi, Miyuki Ichikawa , Tomokazu Yoshimura, Adsorption characteristics of poly(amidoamine) and poly(propylene imine) dendrimers on gold ,Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 232(2-3):249-252
    [46]Chungkyun Kim, Inkyung Jung, Preparation of dendritic carbosilanes with peripheral ethynyldicobalt hexacarbonyl tetrahedrane C_2Co_2, Inorganic Chemistry Communications, 1998, 1(11): 427-430
    [47]Chungkyun Kim, Inkyung Jung, Preparation of dendritic carbosilanes containing ethynyl groups and dicobalt hexacarbonyl clusters on the periphery, Journal of OrganometallicChemistry, 1999, 588(1):9-19
    [48]张其震,孙继润,王大庆,等,有机金属钯硅碳烷树状分子液晶配合物研究,高等学校化学学报,1998, 19(5):827-829
    [49]Herlinde Beerens, Francis Verpoort ,Ludo Verdonck, Low-generation carbosilane dendrimers as core for starpolymers using a Ru–ROMP catalyst, Journal of Molecular Catalysis A: Chemical, 2000, 151(1-2):279-282
    [50]Herlinde Beerens, Francis Verpoort, Ludo Verdonck, A new ROMP W-initiator as model for W-carbosilane dendrimers for the synthesis of starpolymers ,Journal of Molecular Catalysis A: Chemical, 2000,159(2):197-201
    [51]Herlinde I. Beerens, Peter Wijkens, Johann T. B. H. Jastrzebski, et al, Coordination of a Ru(II)-complex to a tetrafunctional P-ligand: a model for Ru---P carbosilane dendrimers, Journal of Organometallic Chemistry, 2000, 603(2):244-248
    [52]Silvia Arévalo, José M. Benito, Ernesto de Jesús, et al, Silane dendrimers containing titanium complexes on their periphery, Journal of Organometallic Chemistry, 2000, 602(1-2): 208-210
    [53]Chungkyun Kim, Hyojeong Kim, 2,2′:6′,2″-Terpyridine and bis(2,2′:6′,2″-terpyridine) ruthenium(II) complex on the dendritic periphery, Journal of Organometallic Chemistry, 2003,673(1-2): 77-83
    [54]Zhanjiang Zheng, Jie Chen, Yuesheng Li, The synthesis and catalytic activity of poly(bis(imino)pyridyl) iron(II) metallodendrimer ,Journal of Organometallic Chemistry, 2004, 689(19):3040-3045
    [55]Anne-Marie Caminade, Régis Laurent, Bruno Chaudret, et al, Phosphine-terminated dendrimers: Synthesis and complexation properties, Coordination Chemistry Reviews, 1998, 178-180(1):793-821
    [56]Tomoo Mizugaki, Masahiko Ooe, Kohki Ebitani , et al, Catalysis of dendrimer- bound Pd(II) complex: Selective hydrogenation of conjugated dienes to monoenes, Journal of Molecular Catalysis A: Chemical, 1999, 145(1-2):329-333
    [57]Chiming Che, Jiesheng Huang , Junlong Zhang, Dendritic metalloporphyrins as catalysts for organic transformations, Comptes Rendus Chimie, 2003, 6(8-10):1105-1115
    [58]El bieta Poniatowska, Grzegorz M. Salamo czyk, Phosphite dendrimers and their organometallic derivatives, Tetrahedron Letters, 2003, 44(23):4315-4317
    [59]Tao Zhou, Robert C. Hider, Zu D. Liu , et al, Iron(III)-selective dendritic chelators, Tetrahedron Letters, 2004, 45(51):9393-9396
    [60]Jan-Martin Heldt, Nathalie Fischer-Durand, Michèle Salmain, et al, Preparation and characterization of poly(amidoamine) dendrimers functionalized with a rhenium carbonyl complex and PEG as new IR probes for carbonyl metallo immunoassay, Journal of Organometallic Chemistry, 2004,689(25):4775-4782
    [61]Suhas Chavan, Wouter Maes, Joos Wahlen, et al, Benzimidazole-functionalized dendrons as molybdenum supports for selective epoxidation catalysis, Catalysis Communications, 2005, 6(3): 241-246
    [62]Jae Buem Oh, Yong Hee Kim, Min Kook Nah , et al, Inert and stable erbium(III)-cored complexes based on metalloporphyrins bearing aryl-ether dendron for optical amplification: synthesis and emission enhancement, Journal of Luminescence, 2005, 111 (4):255-264
    [63]Swali, V., Wells, N. J., Langley, G. J., et al, Solid-phase Dendrimer synthesis and the generation of super-high-loading resin beads for combinatorial chemistry, The Journal of Organic Chemistry,1997,62(15):4902-4903
    [64]Andrea Basso, Brian Evans, Neil Pegg, et al, Solid-phase synthesis of aryl ethers on high loading dendrimer resin, Tetrahedron Letters, 2000,41(9):3763-3767
    [65]Christophe Fromont, Mark Bradley, High-loading resin beads for solid phase synthesis using triple branching symmetrical dendrimers, Chemical Communications, 2000, 4:283- 284
    [66]Sylvain Lebreton, Nicholas Newcombe, Mark Bradley, Rapid synthesis of high-loading resins using triple branched protected monomer for dendrimer synthesis,Tetrahedron Letters, 2002, 43(13):2475-2478
    [67]Sylvain Lebreton, Siew-Eng How, Monika Buchholz, et al, Solid-phase construction: high efficiency dendrimer synthesis using AB3 isocyanate-type monomers, Tetrahedron, 59(22): 3945-3953
    [68]Andrea Basso, Mark Bradley, Brian Evans, et al, Solid phase synthesis of aryl-ether dendrimers, Chemical Communications, 2001, 8:697-698
    [69]Changmei Sun, Rongjun Qu, Chunnuan Ji, et al, Preparation and adsorption properties of crosslinked polystyrene-supported low-generation diethanolamine-typed dendrimer formetal ions, Talanta, 70(1):14-19
    [70]李翠林,马恒昌,雷子强,担载树状高分子 Co 配合物的合成及其对异丙苯的催化氧化 性能研究,甘肃教育学院学报(自然科学版) ,2004,18(2):57-59
    [71]李翠林,杨志旺,雷自强, 担载树状高分子铜配合物催化氧化环己烯性能研究, 西北师范大学学报(自然科学版),2004,40(2):42-45
    [72]Cui-Lin Li, Zhi-Wang Yang, Shang Wu, et al, Chloromethyl polystyrene supported dendritic Sn complexes, preparation and catalytic Baeyer–Villiger oxidation, Reactive and Functional Polymers, 2007,67(1):53-59
    [73]Dahan, A., Portnoy, M., Synthesis of Poly(aryl benzyl ether) Dendrimers on solid support Macromolecules, 2003,36(4):1034-1038
    [74] Adi Dahan, Avi Weissberg , Moshe Portnoy, Preparation of novel polythioether dendrons on a solid support, Chemical Communications, 2003,10:1206-1207
    [75] Bourque, S. C., Maltais, F., Xiao, W.-J., et al, Hydroformylation reactions with Rhodium-complexed Dendrimers on silica, Journal of the American Chemical Society, 1999, 121(13):3035-3038.
    [76]Jan P. K. Reynhardt, Yong Yang, Abdelhamid Sayari, et al, Rhodium complexed C2-PAMAM Dendrimers supported on large pore davisil silica as catalysts for the hydroformylation of olefins, Advanced Synthesis & Catalysis, 2005,347(10):1379-1388
    [77] Shlomo Antebi, Prabhat Arya, Leo E. Manzer, et al, Carbonylation reactions of iodoarenes with PAMAM Dendrimer-Palladium catalysts immobilized on slica, The Journal of Organic Chemistry, 2002,67(15):6623-6631
    [78] Pumza P. Zweni, Howard Alper, Dendrimer-palladium complex catalyzed oxidation of terminal alkenes to methylketones, Advanced Synthesis & Catalysis , 2004,346(7): 849- 854
    [79]Reynhardt, J. P. K., Yang, Y., Sayari, A., et al, Periodic mesoporous silica-supported recyclable Rhodium-complexed Dendrimer catalysts, Chemistry of Materials, 2004, 16(21): 4095-4102
    [80] X. Z. Wu, P. Liu, Q. S. Pu, et al, Preparation of dendrimer-like polyamidoamine immobilized silica-gel and its application to online preconcentration and separation palladium prior to FAAS determination, Talanta, 2004, 62(5): 918–923
    [81]Peng Liu, Xiongzhi Wu, Qiaosheng Pu, et al, Preparation of poly(propyleneimine)dendrimer immobilized silica gel and its application as novel microcolumn packing for the no-line FI preconcentration and separation of Platinum, Annali di Chimica, 2005,95 (9-10):695-701
    [82]Aijun Gong, Yongming Chen, Xi Zhang, et al, Synthesis and characterization of Dendritic poly(amidoamine)-silica gel hybrids, Journal of applied polymer science, 2000,78(12): 2186- 2190
    [83]Stefan Hecht, Jean M. J. Fréchet, Dendritisch eingeschlossene aktive zentren: Anwendung des isolationsprinzips der natur in der biomimetik und den materialwissenschaften, Angewandte Chemie, 2001, 113(1):76-94
    [84]Tae-il Kim, Jung-un Baek, Cheng Zhe Bai, et al, Arginine-conjugated polypropylenimine dendrimer as a non-toxic and efficient gene delivery carrier, Biomaterials, 2007, 28(11) :2061-2067
    [85]Zhu Yang, Wenquan Zhang, Jianhua Liu et al, Synthesis of amphiphilic poly(ether- amide) dendrimer endcapped with poly(ethylene glycol) grafts and its solubilization to salicylic acid, Colloids and Surfaces B: Biointerfaces, 2007, 55(2):229-234
    [86]Frank N. Crespilho, Francisco C. Nart, Jr., Osvaldo N. Oliveira et al, Oxygen reduction and diffusion in electroactive nanostructured membranes (ENM) using a layer-by-layer dendrimer-gold nanoparticle approach , Electrochimica Acta, 2007,52(14):4649-4653
    [87]Hiroaki Yoshioka, Masaru Suzuki, Masaki Mugisawa, et al, Synthesis and applications of novel fluorinated dendrimer-type copolymers by the use of fluoroalkanoyl peroxide as a key intermediate, Journal of Colloid and Interface Science, 2007, 308 (1):4-10
    [88]Fausto Puntoriero, Francesco Nastasi, Marco Cavazzini, et al, Coupling synthetic antenna and electron donor species: A tetranuclear mixed-metal Os(II)–Ru(II) dendrimer containing six phenothiazine donor subunits at the periphery, Coordination Chemistry Reviews, 2007, 251(3-4):536-545
    [89]Paul J. Flory, Molecular size distribution in three dimensional polymers. VI. Branched polymers containing A-R-Bf-1 type units, Journal of American Chemcal Society,1952, 74(11):2718-2723
    [90]E. Buhleier, W. Wehner, F. Vogtle, "Cascade" and "Nonskid-chain-like" syntheses of molecular cavity topologies, Synthesis, 1978:155-158
    [91]D. A. Tomalia, H. Baker, J. Dewald, et al, A new class of polymers: Starburst-Dendriticmacromolecules, Polymer Journal, 1985,17 (1):117-132
    [92]George R. Newkome , Zhongqi Yao, Gregory R. Baker, et al, Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol,The Journal of Organic Chemistry, 1985, 50(11):2003-2004
    [93]Craig J. Hawker, Karen L. Wooley, Jean M. J. Frechet, Solvatochromism as a probe of the microenvironment in dendritic polyethers: transition from an extended to a globular structure, Journal of the American Chemical Society, 1993, 115(10):4375-4376
    [94]周兴旺,吕鉴泉, ABPT 键合硅胶的合成与表征, 湖北师范学院学报(自然科学版), 2001, 21(4):34-36
    [95]沙春洁,功能化十八烷基反相硅胶填料的制备与表征,中国海洋大学硕士学位论文, 2005:21-22
    [96]Norio Tsubokawa, Hajime Ichioka, Toshiya Satoh, et al, Grafting of ‘dendrimer-like’ highly branched polymer onto ultrafine silica surface, Reactive and Functional Polymers, 1998,37(1-3):75- 82
    [97]Jean M.J. Frechet, Donald A. Tomalia, Dendrimers and other Dendritic polymers, Electronic Edition., John Wiley & Sons Ltd.,2001,p590-596
    [98]丁立国,纳米二氧化硅的制备与应用研究,哈尔滨工程大学硕士学位论文,2004:25
    [99]Peter M. Price, James H. Clark, Duncan J. Macquarrie, Modified silicas for clean technology, Journal of the Chemical Society, Dalton Transactions, 2000,2:101–110
    [100]M. Waksmundzka-Hajnos, A. Petruczynik, Retention behaviour of some phenls and anilines on CN-, diol-, and silica precoated HPTLC plates, Journal of Liquid Chromatography & Related Technologies, 1999, 22(1): 51 – 75
    [101]Fernanda M.B. Coutinho, Márcia A.F.S. Neves, Marcos L. Dias, et al, Large surface area divinylbenzene copolymers for size exclusion chromatography, Journal of High Resolution Chromatography, 1999, 22(1): 63-66
    [102]Terfloth G J, Pirkle W H, Lynam K G, et al. Broadly applicable polysiloxane-based chiral stationary phase for high-performance liquid chromatography and supercritical fluid chromatography. Journal of Chromatography A, 1995, 705(2): 185-194
    [103]Ching-Erh Lin, Fang-Kuo Li , Chen-Hsing Lin, Evaluation of new chiral stationary phases of bonded cyanuric chloride with amino acid and naphthylalkylamine substituents for liquid chromatographic separation of amino acids and amino alcohols asdinitrobenzoyl derivatives, Journal of Chromatography A, 1996,722(1-2) :211-220
    [104]Peng Liu, Qiaosheng Pu ,Zhixing Su, Synthesis of silica gel immobilized thiourea and its application to the on-line preconcentration and separation of silver, gold and palladium, Analyst, 2000, 125:147–150
    [105]A. Tong , Y. Akama ,S. Tanaka, Selective preconcentration of Au(III), Pt(IV) and Pd(II) on silica gel modified with γ-aminopropyltriethoxysilane, Analytica Chimica Acta, 1990, 230: 179-181
    [106]Mohamed E. Mahmoud , Mohammed S. M. Al Saadi, Selective solid phase extraction and preconcentration of iron(III) based on silica gel-chemically immobilized purpurogallin, Analytica Chimica Acta, 2001, 450(1-2): 239-246
    [107]Mohamed E. Mahmoud, Gamal A. GoharMahmoud M. E., Gohar G. A, Silica gel-immobilized-dithioacetal derivatives as potential solid phase extractors for mercury (II), Talanta 2000, 51(1):77-87
    [108]Yadollah Yamini, Naader Alizadeh and Mojtaba Shamsipur, Solid phase extraction and determination of ultra trace amounts of mercury (II) using octadecyl silica membrane disks modified by hexathia-18-crown-6-tetraone and cold vapour atomic absorption spectrometry, Analytica Chimica Acta, 1997, 355(1): 69-74
    [109]Barcicki J, Pawlowski L, Chichocki A, et al, In physicochemical methods for water and wastewater treatment,Pawlowski L, Ed, Pergamon: London, 1980:237
    [110]Kanjiro Torigoe, Akihiro Suzuki, and Kunio Esumi, Au (III)–PAMAM interaction and formation of Au–PAMAM nanocomposites in ethyl acetate, Journal of Colloid and Interface Science 2001, 241, 346–356
    [111]Qu R. J., Wang C.H., Nie Z.J., et al, Studies on the syntheses and properties of snake-cage type chelating resins Ⅰ :System of carboxymethyl-chitosan/B-62/ triethylenetetramine, Chinese Journal of Reactive Polymers,1999,8(1-2):28-37
    [112]姜志新,离子交换动力学及其应用,离子交换与吸附,1989,5(1):54-73
    [113]孙维林, 沈之荃, 张一烽, 以硫醚为主链的螯合树脂研究 Ⅰ.4-氨基安替吡啉树脂和乙基原磺酸基树脂的合成及吸附性能, 离子交换与吸附, 1997,13(1):23-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700