粘结层合金元素对热障涂层粘结层/TGO界面结合因子的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热障涂层是高温下被应用于热端部件表面的一种涂层,通过在基体合金表面涂覆陶瓷层进行隔热,来提高部件的工作效率及寿命。粘结层是在陶瓷层与金属基体之间的一层改善陶瓷层与基体粘结性的过渡层。在热障涂层工作过程中,粘结层部分元素被氧化,在粘结层与陶瓷层之间生成热增长氧化物(TGO),实验证明,热障涂层的失效往往发生在陶瓷层与粘结层之间的界面结合处。
     本文以固体与分子经验电子理论(EET)和改进的TFD理论为基础,从晶体价电子结构和界面电子结构的角度,对热增长氧化物层中α-Al_2O_3的价电子结构进行了分析。计算了不同Al、Y、Cr、Co、Hf含量的粘结层与热增长氧化物层之间的界面结合因子,通过界面结合因子σ(或σ′),ρ_((hkl)),ρ_((uvw)),△ρ_(min),σ_(equal),σ_(super)的计算结果分析得出:
     1.粘结层中添加铝的含量在2-wt%时,对于界面粘附性是最有利的;在铝含量低于10-wt%时,有利于改善TGO与粘结层之间的界面粘附性,而高于10-wt%是不利于界面结合的。铝含量低于或等于8-wt%时应该是有利于缓解界面的应力的。
     2.当粘结层的取向为(111)和(100)时,加Y可以改善该界面的界面结合。但当粘结层取向为(110)时,只有Y含量高于0.7-wt%时才能使△ρ_(min)比无Y时小,在0.7-wt%时达到最小,同时,粘结层的面电子密度ρ也是在0.7-wt%时才比未添加时高,且随着Y含量的增加有下降趋势。综合分析表明,粘结层中Y的含量在0.7-wt%~0.9-wt%有利于粘结层界面结合的稳定。
     3.不论粘结层处于何种位相,Co的加入都有利于缓解界面应力以及保持界面电子密度的连续性,且在10~14-wt%趋于最佳。当粘结层的表面为(110)时,Co含量的增加有利于提高界面的结合力,而当粘结层的表面为(100)和(111)时,界面的结合力不受Co含量影响。
     4.当粘结层的取向为(111)和(100)时,加Cr可以改善该界面的界面结合。如能控制工艺因素,使粘结层出现表面为(111)或(100)的织构,则加Cr可以改善TGO/粘结层界面的界面结合。在目前工艺条件控制织构比较困难的情况下,从界面结合考虑,热障涂层粘结层中含Cr量应尽量降低。
     5.Hf的添加是改善该界面结合的,且在低于1.3-at%(3.9-wt%)Hf含量的范围内,这些界面结合因子都趋向于较佳的状态。可以认为,在满足Ni基粘结层强度、韧性、抗热腐蚀性要求的适当含量的Hf可改善热障涂层的TGO/粘结层的界面结合。
Thermal barrier coatings (TBCs) are commonly used to the surface of thermo-parts. TBCs can improve the work efficency and longevity of parts by covering top coat on the surface of alloy substrate. Bond coat is a kind of coating that improved the interface conjunction between the bond coat and the top coat. Some elements of bond coat are oxidized and forms thermally grown oxide (TGO) between bond coat and ceramic top coat during the application of the thermal barrier coatings. It is proved by experiments that the failure of TBCs typically occurs at the interface between the bond coat and the TGO.
     Based on the Empirical electron theory in solid and molecule (EET) and improved Thomas-Fermi-Dirac (TFD) theory in this thesis, the valence electron structure ofα-Al_2O_3 in the thermally grown oxide (TGO) are analyzed, and that is in view of the valence electron structure and interface electron structure of the crystals. The interface conjunction factor between the bonding layer and ceramic layer of the thermal barrier coatings of different content of Al、Co、Cr、Y、Hf are calculated. The results are as following. Considering the electron density parameters ofρ,△ρ_(min),σ,σ_(super),σ_(equal) on the bond-coat/TGO interface, the following conclusion can be obtained:
     1. Considering the cohesion force of the interface, the most favorable aluminium content of the bond-coat is 2-wt%. The aluminium content beneath 10-wt% is favorable, and the aluminium content over 10-wt% is harmful in this case. The aluminium content of the bond-coat being not more than 8-wt% is considered to decrease the interface stress.
     2. When the orientation of the bonding layer is (100) or (111), the addition of Y can improve the interface conjunction. When the orientation is (110), the electron density parameters of△ρ_(min) is lower than the one without Y when the Y content is more than 0.7-wt%; Furthermore,△ρ_(min) is the lowest when the Y content is 0.7-wt%. The electron density with Y content of 0.7-wt% of its (110) crystal plane is higher than without Y, and the interface electron density slightly decreases with the increase of the yttrium content when the yttrium content is higher than 0.7-wt%. Comprehensive analysis indicates that the bond-coat yttrium content of 0.7-wt%-0.9-wt% or a little higher is also suitable for the stability of the interface cohesion of the bond coat.
     3. No matter what orientation of the bonding layer in, the addition of Co can be in favor of the release of interface stress and keep the continuity of the interface electron density. At the same time, the Co content of 10-wt% -14-wt% is the optimal. While the orientation of the bonding layer is (110), the increasing of Co content can enhance the interface conjunction. However, when the orientation is (100) or (111), the content of Co almost has no effect.
     4. When the orientation of the bonding layer is (100) or (111), the addition of Cr can improve the interface conjunction of the interface. If the factors of techniques can be controlled and formed orientation of being (111), (100) in the bonding layer, the addition of Cr can improve the interface conjunction between the bond coat and the TGO. Therefore, in the situation when the texture in the bonding layer is controlled with difficulty, considering the interface conjunction, the content of Cr of Ni-based bonding layer should be reduced as low as possible.
     5. The additional of Hf is beneficial for the interface conjunction. Furthermore, these interface conjunction factors tend to the better estate beneath the Hf content of 1.3-at% (3.9-wt%). It is thought that the suitability Hf content can improve the interface conjunction between the bond coat and the TGO at the condition of meeting the intensity, toughness and anti-thermo -causticity of Ni-based bond coat.
引文
[1]Nitin P Padture,Maurice Gell,Eric H.Jordan.Thermal Barrier Coatings for Gas-Turbine Engine Applications[J].Science,2002,296:280-284
    [2]张玉娟,张玉驰,孙晓峰,等.热障涂层的发展现状[J].材料保护,2004,37(6):26
    [3]李美妲,胡望宇,孙晓峰,等.热障涂层的研究进展与发展趋势[J].材料导报,2005,19(4):41-45
    [4]刘凤岭.面向21世纪的热障涂层结构设计[J].材料保护,2000,33:86-88
    [5]Demasci J T,Sheffier K D,Ortiz M.NASA CR-182230.NASA-Lewis Research Center,1989,12
    [6]Evans A G.,Mumm D R.,Hutchinson J W,et al.Mechanisms controlling the durability of thermal barrier coatings[D].Prog.Mater Sci.,2001,46:505-553
    [7]R G Wellman,J R Nicholls.Erosion,corrosion and erosion-corrosion of EB PVD thermal barrier coatings.Tribology International 2008,41:657-662
    [8]Movchan B A.Functional graded EB-PVD coatings[J].Surface and Coatings Technology,2002,149:252
    [9]Wolfe D E,Movchan M B.Architecture of functionally graded ceramic/metallic coatings by electron beam physical vapor deposition[C].TMS Annual Meeting,1997,93
    [10]Kim J H,Kim M C,Park C G..Evaluation of functionally graded thermal barrier coatings fabricated by detonation gun spray technique[J].Surface and Coatings Technology,2003,168(223):275
    [11]郭洪波.电子束物理气相沉积梯度热障涂层热疲劳行为及失效机制[D].北京:北京航空航天大学,2001,8:8-10
    [12]Hesnawi A.The effects of Zr and Hf additions on the high temperature oxidation of NiCoCrAlY bond coat for TBC system[D].Beijing University of Aeronautics and Astronautics,2006,7:1-5
    [13]徐前岗,陆峰,吴学仁,唐建新.NiCoCrAlYHf/EB-PVD热障涂层的热循环氧化行为[J].中国有色金属学报,2004,14(9):1519-1524
    [14]刘纯波,林锋,蒋显亮.热障涂层的研究现状与发展趋势[J].中国有色金属学报,2007,17(1):1-13
    [15]W Zhang,J R Smith,A G Evans.The connection between ab initio calculations and interface adhesion measurements on metal/oxide systems:Ni/Al_2O_3 and Cu/Al_2O_3[J].Acta Materialia,2002,50:3803-3816
    [16]Karin M Carling,Emily A.Carter.Effects of segregating elements on the adhesive strength and structure of the α-Al_2O_3/β-NiAl interface[J].Acta Materialia,2007,55:2791-2803
    [17]Xu Huibin,Gong Shengkai,Deng Liang.Preparation of thermal barrier coatings for gas turbine blades by EB-PVD[J].Thin Solid Films,1998,334:98-102
    [18]Movchan B A,Malashenko I S,Yu K,et al.Two and three-layer coatings produced by deposition in vacuum for gas turbine blade protection[J].Surface and Coatings Technology,1994,67:55-63
    [19]徐惠彬,宫声凯,刘福顺.航空发动机热障涂层材料体系的研究[J].航空学报,2000,21(1):7-12
    [20]余瑞璜.固体与分子经验电子理论[J].科学通报.1978,23(4):217
    [21]S H Yu.The empirical electron theory of solid and molecules-the hypothesis of equivalent valence electron[J].Chinese Science Bulletin,1981,26(7):506
    [22]张瑞林.固体与分子经验电子理论[M].长春:吉林科学技术出版社,1993
    [23]Guo Yongquan,Yu Riuhuang,Zhang Ruilin.Calculation of magnetic properties and analysis of valence electron structures of LaT13-xAlx(T=Fe,Co)compound[J].J.Phys.Chem.B.1998,102(1):9
    [24]刘志林,李志林,刘伟东.界面电子结构与性能[M].北京:科学出版社,2002.7-14,149,222
    [25]孙振国,李志林,刘志林.合金异相界面电子密度的计算[J].科学通报,1995,40(24):2219-2222
    [26]Liu Zhilin,Li Zhilin,Sun Zhenguo.Catalysis mechanism and catalyst design of diamond growth[J].Metallurgical and Materials Transactions A,1999,30(11):2757-2766
    [27]Cheng Kaijia.Application of the TFD model and Yu's theory to material design[J].Progress in Natural Science,1993,3(3):211-230
    [28]Liu Zhilin,Li Zhilin,Sun Zhenguo.Electron density of austenite/martensite biphase interface[J].Chinese Science Bulletin,1996,41(5):367-370
    [29]刘志林,李志林,刘伟东.界面电子结构与界面性能[M].北京:科学出版社,2002.163-240
    [30]Li Zhilin,Liu Zhilin,Liu Weidong,et al.Interface conjunction factors of the second phase particles in alloysand their effects[J].Science in China(Series E),2002,45(2):195-205
    [31]J Schwarzer,D Lohe,O Vohringer.Influence of the TGO creep behavior on delamination stress development in thermal barrier coating systems[J].Materials Science and Engineering A,2004,387-389:692-695
    [32]Y H So/m,K Vaidyanathan,M Ronski,et al.Thermal cycling of EB-PVD/MCrA1Y thermal barrier coatings Ⅱ[J].Evolution of photo-stimulated luminescence,Surface and Coatings Technology,2001,146-147:70-78
    [33]M Martena,D Botto,P Fino,et al.Modelling of TBC system failure:Stress distribution as a function of TGO thickness and thermal expansion mismatch[J].Engineering Failure Analysis,2006,13:409-426
    [34]R G Wellman,J R Nicholls,Erosion.corrosion and erosion-corrosion of EB-PVD thermal barrier coatings[J].Tribology International,2008,41:657-662
    [35]徐前岗,唐建新,陆峰,吴学仁.EB-PVD热障涂层TGO中氧化物混合区的形成及其影响[J].材料工程,2004,7:10-17
    [36]I T Spitsberga,D R Mumm,A G Evans.On the failure mechanisms of thermal barrier coatings with diffusion aluminide bond coatings[J].Materials Science and Engineering A,2005,394:176-191
    [37]管恒荣,李美妲,孙晓峰,等.高温合金热障涂层的氧化和失效研究金属学报[J].2002,38(11):1133-1140
    [38]李志林,吴远启.粘结层中的Co对热障涂层界面结合因子的影响[J].北京化工大 学学报,2004,31(4):36-40
    [39]李志林,吴远启.粘结层中Cr对热障涂层界面结合因子的影响[J].中国有色金属学报,2004,14(9):1477-1482
    [40]Zhi linli,Weiliu,Yuan qiwu.Influence of yttrium on the interface valence electron density of thermal barrier coatings[J].Materials Chemistry and Physics,2007,105:278-285
    [41]余瑞璜.CrO_3,σ-CrO_2,Cr_2O_3,α-Al_2O_3的熔点,沸点和在水中及其它溶液中溶解度的电子理论[C].结构化学,1984,3.179-193
    [42]孙振国,李志林,刘志林.Fe_3C_(001)晶面共价电子密度的计算[J].科学通报,1997,42(2):214-216
    [43]Ahm J,Rabalais J W.Composition and structure of the Al_2O_3 {0001}-(1x1)surface Surf.Sci.,1997,388:121-131
    [44]Toofan J,Watson P R.The termination of the α-Al_2O_3(0001)surface:a LEED crystal lography determination.Surface Science,1998,401:162-172
    [45]I J Bennett,W G Sloof.Modelling the influence of reactive elements on the work of adhesion between a thermally grown oxide and a bond coat alloy.Materials and Corrosion,2006,57(3):223-229
    [46]Causa M,Dovesi R.,Pisani C.et al.Ab initio characterization of the(0001)and(1010)crystal faces of α-alumina.Surf.Sci.1989,215:259-271.
    [47]Blonski S,Garofalini S H.Molecular dynamics simulations of α-alumina and γ-alumina surfaces.Surface Science,1993,295:263-274.
    [48]Manassidis I,Devita A,Gillan M J.Structure of the(0001)surface of α-Al_2O_3 from first principles calculations.Surface Science Letter,1993,285:L517-L521
    [49]Gautier-Soyer M,Jollet F,Noguera C.Influence of surface relaxation on the electronic states of the α-Al_2O_3(0001)surface:a self-consistent tight-binding approach.Surface Science,1996,352-354:755-759
    [50]Sohn Y H,Biederman P P,Sisson R D.Microstructural development in physical vapour-deposited partially stabilized zirconia thermal barrier coatings[J].Thin Solid Films,1994,250:1-7
    [51]W Zhang,J R.Smith,A G Evans.The connection between ab initio calculations and interface adhesion measurements on metal/oxide systems:Ni/Al_O_3 and Cu/Al_2O_3[J].Acta Materialia,2002,50:3803-3816
    [52]Li Zhilin,Xu Huibin,Gong Shengkai.Interface conjunction factors of thermal barrier coatings and the relationship between factors and composition[J].Science in China(Series E),2003,46:234-244
    [53]冶军.美国镍基高温合金[M].北京:科学出版社,1978.8-49
    [54]张瑞林.固体与分子经验电子理论[M].长春:吉林科学技术出版社,1993.314-315
    [55]Mei Wen,Eric H Jordan,Maurice Gell.Analysis of localized damage in EB-PVD/(Ni,Pt)Al thermal barrier coatings.Surface and Coatings Technology,2006,200:5193-5202
    [56]徐小荣,潘春旭.ZrO_2陶瓷-金属梯度热障涂层的显微结构特征[J].材料科学与工程,2003,11(1):68-72
    [57]徐小荣,潘春旭,杨世柏,等.梯度热障涂层中粘结金属显微组织特征研究[J]. 武汉交通科技大学学报,2000,24(5):493-496
    [58]徐小荣,潘春旭,杨世柏.金属/陶瓷梯度热障涂层热震过程中的显微组织研究[J].武汉交通科技大学学报,2000,24(1):82-85
    [59]B Baufeld,M Schmqcker.Microstructural evolution of a NiCoCrAlY coating on an IN100 substrate[J].Surface and Coatings Technology,2005,199:49-56
    [60]J Zhang,V Desai.Determining thermal conductivity of plasma sprayed TBC by electrochemical impedance spectroscopy[J].Surface and Coatings Technology,2005,190:90-97
    [61]Leonardo Ajdelsztajn,Dustin Hulbert,Amiya Mukherjee,et al.Creep deformation mechanism of cryomilled NiCrAlY bond coat material[J].Surface and Coatings Technology,2007,201:9462-9467
    [62]Franziska Traeger,Robert VaBen,Karl-Heinz Rauwald,et al.Thermal cycling Setup for Testing Thermal Barrier Coatings[J].Advanced Engineering materials,2003,5(6):429-432
    [63]W Braue,P Mechnich,K Fritscher,L Niewolak.Compatibility of mixed zone constituents(YAG,YAP,YCrO_3)with a chromia-enriched TGO phase during the late stage of TBC lifetime[J].Surface and Coatings Technology,2007,202:670-675.
    [64]F Wu,E H Jordan,X Ma,et al.Thermally Grown Oxide Growth Behavior and Spallation Lives Of Solution Precursor Plasma Spray Thermal Barrier Coatings[J].Surface and Coatings Technology,2007,202:1628-1635
    [65]Yingxue Song,Chungen Zhou,Huibin Xu.Corrosion behavior of thermal barrier coatings exposed to NaCl plus water vapor at 1050℃[J].Thin Solid Films,2007:1-4
    [66]Pi Chuen Tsai,Jiing Herng Lee,Chi Lung Chang.Improving the erosion resistance of plasma-sprayed zirconia thermal barrier coatings by laser glazing[J].Surface and Coatings Technology,2007,202:719-724
    [67]H J Ratzer-Scheibe,U Schulz.The effects of heat treatment and gas atmosphere on the thermal conductivity of APS and EB-PVD PYSZ thermal barrier coatings[J].Surface and Coatings Technology,2007,201:7880-7888
    [68]Abbas Afrasiabi,Mohsen Saremi,Akira Kobayashi.A comparative study on hot corrosion resistance of three types of thermal barrier coatings:YSZ,YSZ+Al_2O_3 and YSZ/Al_2O_3[J].Materials Science and Engineering A,2008,478:264-269
    [69]Sang Seok Kim,Yu Fu Liu,Yutaka Kagawa.Evaluation of interfacial mechanical properties under shear loading in EB-PVD TBCs by the pushout method[J].Acta Materialia,2007,55:3771-3781
    [70]Meiheng Li,Xiaofeng Sun,Wangyu Hu et al.Thermal shock behavior of EB-PVD thermal barrier coatings[J].Surface and Coatings Technology,2007,201:7387-7391
    [71]K J Hemker,B G Mendis,C Eberl.Characterizing the microstructure and mechanical behavior of a two-phase NiCoCrAlY bond coat for thermal barrier systems[J].Materials Science and Engineering A,2008,483-484:727-730.
    [72]Z X Chen,Z G Wang,F H Yuan,et al.Interfacial fracture behavior of a thermal barrier coating system under four-point bend loading[J].Materials Science and Engineering A,2008,483-484:629-632
    [73]Shunda Wen,Jinxia Song,Shengkai Gong,et al.Failure behaviors of TBCs on Ni_3Al base alloy IC6A during room temperature tensile test and stress rupture test under the condition of 1100℃/100 MPa[J].Intermetallics,2007,15:801-804
    [74]Chungen Zhou,Na Wang,Huibin Xu.Comparison of thermal cycling behavior of plasma-sprayed nanostructured and traditional thermal barrier coatings[J].Materials Science and Engineering A,2007,452-453:569-574
    [75]Shuqi Guo,Yutaka Kagawa.Isothermal and cycle properties of EB-PVD yttria-partially-stabilized zirconia thermal barrier coatings at 1150 and 1300℃[J].Ceramics International,2007,33:373-378
    [76]Zhou Hong,LiFei,He Bo,et al.Nanostructured yttria stabilized zirconia coatings deposited by air plasma spraying Trans[R].Nonferrous Met.SOCC.Hina,2007,17:389-393
    [77]Marion Bartsch,Bernd Baufeld,S.Dalkilic,et al.Michael Heinzelmann Fatigue cracks in a thermal barrier coating system on a superalloy in multiaxial thermomechanical testing[J].International Journal of Fatigue,2008,30:211-218
    [78]A K Ray,E S Dwarakadasa,D K Das,et al.Fatigue behavior of a thermal barrier coated superalloy at 800℃[J].Materials Science and Engineering A,2007,448:294-298
    [79]P C Tsai,J H Lee,C S Hsu.Hot corrosion behavior of laser-glazed plasma-sprayed yttria-stabilized zirconia thermal barrier coatings in the presence of V_2O_5[J].Surface and Coatings Technology,2007,201:5143-5147
    [80]D S Almeida,C R M.Silva,M C A Nono,et al.Thermal conductivity investigation of zirconia co-doped with yttria and niobia EB-PVD TBCs[J].Materials Science and Engineering A,2007,443:60-65
    [81]郭洪波,宫声凯,徐惠彬,等.EB-PVD梯度热障涂层的制备及其热疲劳性能[J].金属学报,2000,36(7):703-706
    [82]T J Nijdam,W G Sloof.Combined pre-annealing and pre-oxidation treatment for the processing of thermal barrier coatings on NiCoCrAlY bond coatings[J].Surface and Coatings Technology,2006,201:3894-3900
    [83]I Gurrappa,A Sambasiva Rao.Thermal barrier coatings for enhanced efficiency of gas turbine engines[J].Surface and Coatings Technology,2006,201:3016-3029
    [84]W B Gong,C K Sha,D Q Sun,et al.Microstructures and thermal insulation capability of plasma-sprayed nanostructured ceria stabilized zirconia coatings[J].Surface and Coatings Technology,2006,201:3109-3115
    [85]P L Ke,Q M Wang,J Gong,C et al.Progressive damage during thermal shock cycling of D-gun sprayed thermal barrier coatings with hollow spherical ZrO_2-8Y_2O_3[J].Materials Science and Engineering A,2006,435-436:228-236
    [86]A.K.Ray,D.K.Das.Accelerated creep resistance of thermal barrier coated superalloy [J].Materials Letters,2006,60:3019-3022
    [87]J Shi,A M Karlsson,B Baufeld,et al.Evolution of surface morphology of thermo-mechanically cycled NiCoCrAlY bond coats[J].Materials Science and Engineering A,2006,434:39-52
    [88]Dongbo Zhang,Shengkai Gong,Huibin Xu et al.Effect of bond coat surface roughness on the thermal cyclic behavior of thermal barrier coatings[J].Surface and Coatings Technology 2006,201:649-653
    [89]C Mercer,S Faulhaber,N Yao,et al.Investigation of the chemical composition of the thermally grown oxide layer in thermal barrier systems with NiCoCrAlY bond coats [J]. Surface and Coatings Technology, 2006, 201:1495-1502
    [90] B G Mendis, K J T Livib, K J Hemker. Observations of reactive element gettering of sulfur inthermally grown oxide pegs [J]. Scripta Materialia, 2006, 55: 589-592
    [91] W R Chen, X Wu, D Dudzinski, et al. Modification of oxide layer in plasma-sprayed thermal barrier coatings [J]. Surface and Coatings Technology, 2006, 200: 5863-5868
    [92] C R C Lima, J Nin, J M Guilemany. Evaluation of residual stresses of thermal barrier coatings with HVOF thermally sprayed bond coats using the Modified Layer Removal Method (MLRM) [J]. Surface and Coatings Technology, 2006, 200: 5963-5972
    
    [93] H J Ratzer-Scheibe, U Schulz, T Krell. The effect of coating thickness on the thermal conductivity of EB-PVD PYSZ thermal barrier coatings [J]. Surface and Coatings Technology, 2006, 200: 5636-5644
    [94] S Faulhaber, C Mercer, M W Moon, et al. Buckling delamination in compressed multilayers on curved substrates with accompanying ridge cracks [J]. Journal of the Mechanics and Physics of Solids, 2006, 54: 1004-1028
    [95] Feng Tang, Julie M. Schoenung. Evolution of Young's modulus of air plasma sprayed yttria-stabilized zirconia in thermally cycled thermal barrier coatings [J]. Scripta Materialia, 2006, 54: 1587-1592
    [96] Wen Ma, Shengkai Gong, Huibin Xu, et al. The thermal cycling behavior of Lanthanum-Cerium Oxide thermal barrier coating prepared by EB-PVD [J]. Surface and Coatings Technology, 2006, 200: 5113-5118
    [97] Meiheng Li, Xiaofeng Sun, Wangyu Hu, et al. Thermocyclic behavior of sputtered NiCrAlY/EB-PVD7wt%Y_2O_3-ZrO_2 thermal barrier coatings [J]. Surface and Coatings Technology, 2006, 200: 3770-3774
    [98] P L Ke, Y N Wu, Q M. Wang, et al. Study on thermal barrier coatings deposited by detonation gun spraying [J]. Surface and Coatings Technology, 2005, 200: 2271-2276
    [99] A K Ray, D K Das, B Venkataraman, et al. Characterization of rupture and fatigue resistance of TBC superalloy for combustion liners [J]. Materials Science and Engineering A, 2005,405: 194-200
    [100] W R Chen, X Wu, B R Marple, et al. Oxidation and crack nucleation/growth in an air-plasma-sprayed thermal barrier coating with NiCrAlY bond coat [J]. Surface and Coatings Technology, 2005, 197: 109-115
    [101] Feng Tang, Julie M. Schoenung. Local accumulation of thermally grown oxide in plasma-sprayed thermal barrier coatings with rough top-coat/bond-coat interfaces [J].Scripta Materialia, 2005, 52: 905-909
    [102] Shengkai Gong, Dongbo Zhang, Huibin Xu, et al. Thermal barrier coatings with two layer bond coat on intermetallic compound Ni_3Al based alloy [J]. Intermetallics, 2005,13: 295-299
    [103] Huibin Xu, Shengkai Gong, Yue Zhang, et al. Experimental and computational study on hot fatigue process of thermal barrier coatings by EB-PVD [J]. Intermetallics,2005, 13:315-322
    [104] H B Guo, R Vaben, D StOver. Thermophysical properties and thermal cycling behavior of plasma sprayed thick thermal barrier coatings [J]. Surface and Coatings Technology, 2005, 192: 48-56
    [105] S Y Park, J H Kim, M C Kim, et al. Microscopic observation of degradation behavior in yttria and ceria stabilized zirconia thermal barrier coatings under hot corrosion [J].Surface and Coatings Technology, 2005, 190: 357-365
    [106] Y N Wu, P L Ke, Q M Wang, et al. High temperature properties of thermal barrier coatings obtained by detonation spraying [J]. Corrosion Science, 2004,46: 2925-2935
    [107] Chungen Zhou, Na Wang, Zhenbo Wang, et al. Thermal cycling life and thermal diffusivity of a plasma-sprayed nanostructured thermal barrier coating [J]. Scripta Materialia, 2004, 51: 945-948
    [108] Manish Madhwal, Eric H Jordan, Maurice Gell. Failure mechanisms of dense vertically-cracked thermal barrier coatings [J]. Materials Science and Engineering A,2004,384:151-161
    [109] Hakan Brodin, Mats Eskner. The influence of oxidation on mechanical and fracture behaviour of an air plasma-sprayed NiCoCrAlY bond coat [J]. Surface and Coatings Technology, 2004, 187: 113-121
    [110] H B Guo, R Vaben, D Stover. Atmospheric plasma sprayed thick thermal barrier coatings with high segmentation crack density [J]. Surface and Coatings Technology,2004, 186:353-363
    [111] Magnus Jinnestrand, Hakan Brodin. Crack initiation and propagation in air plasma sprayed thermal barrier coatings testing and mathematical modeling of low cycle fatigue behaviour [J]. Materials Science and Engineering A, 2004, 379: 45-57
    [112] A C Fox, T W Clyne. Oxygen transport by gas permeation through the zirconia layer in plasma sprayed thermal barrier coatings [J]. Surface and Coatings Technology,2004, 184:311-321
    [113] Pi Chuen Tsai, Chen Sheng Hsu. High temperature corrosion resistance and microstructural evaluation of laser-glazed plasma-sprayed zirconiay MCrAlY thermal barrier coatings [J]. Surface and Coatings Technology, 2004, 183: 29-34
    [114] T Xu, S Faulhaber, C Mercer, et al. Observations and analyses of failure mechanisms in thermal barrier systems with two phase bond coats based on NiCoCrAlY [J]. Acta Materialia, 2004, 52: 1439-1450
    [115] K T Voisey, T W Clyne. Laser drilling of cooling holes through plasma sprayed thermal barrier coatings [J]. Surface and Coatings Technology, 2004, 176: 296-306
    [116] T Tomimatsu, S J Zhu, Y Kagawa. Local stress distribution in thermally-grown -oxide layer by near-field optical microscopy [J]. Scripta Materialia, 2004, 50: 137-141
    [117] Yun-Chul Jung, Takeo Sasaki, Toru Tomimatsu,et al. Distribution and structures of nanopores in YSZ-TBC deposited by EB-PVD [J]. Science and Technology of Advanced Materials, 2003,4: 571-574
    [118] Lihe Qian, Shijie Zhu, Yutaka Kagawa, et al. Tensile damage evolution behavior in plasma-sprayed thermal barrier coating system [J]. Surface and Coatings Technology,2003, 173: 178-184
    [119] Canumalla Ramachandra, Kang N Lee, Surendra N Tewari. Durability of TBCs with a surface environmental barrier layer under thermal cycling in air and in molten salt [J].Surface and Coatings Technology, 2003, 172: 150-157
    [120] Chungen Zhou, Jingsheng Yu, Shengkai Gong, et al. Influence of water vapor on the high temperature oxidation behavior of thermal barrier coatings [J]. Materials Science and Engineering A, 2003, 348: 327-332
    [121] Jurgen, Muller, Dieter Neuschutz. Efficiency of a-alumina as diffusion barrier between bond coat and bulkmaterial of gas turbine blades [J]. Vacuum, 2003, 71:247-251
    [122] Hongbo Guo, Shengkai Gong, Khiam Aik Khor, et al. Effect of thermal exposure on the microstructure and properties of EB-PVD gradient thermal barrier coatings [J].Surface and Coatings Technology, 2003, 168: 23-29
    [123] Dongbo Zhang, Shengkai Gong, Huibin Xu, et al. Thermal cycling behaviors of thermal barrier coatings on intermetallic Ni_3Al based superalloy [J]. Surface and Coatings Technology, 2003, 168: 78-83
    [124] Y N Wu, F H Wang, W G Hua, et al. Oxidation behavior of thermal barrier coatings obtained by detonation spraying [J]. Surface and Coatings Technology. 2003, 166:189-194
    [125] Dongbo Zhang, Shengkai Gong, Huibin Xu, et al. Measurements of the thermal gradient over EB-PVD thermal barrier coatings [J]. Vacuum, 2003, 70: 11-16
    [126] K W Schlichting, N P Padture, E H Jordan, et al. Failure modes in plasma-sprayed thermal barrier coatings [J]. Materials Science and Engineering A, 2003, 342: 120-130
    
    [127] A Kawasaki, R Watanabe. Thermal fracture behavior of metal/ceramic functionally graded materials [J]. Engineering Fracture Mechanics, 2002, 69: 1713-1728
    [128] Altaf H Carim, Tabbetha A Dobbins, et al. Phase distribution in, and origin of,interfacial protrusions in Ni-Cr-Al-Y/ZrO_2 thermal barrier coatings [J]. Materials Science and Engineering A, 2002, 334: 65-72
    [129] G M Kim, N M Yanar, E N Hewitt, et al. The effect of the type of thermal exposure on the durability of thermal barrier coatings [J]. Scripta Materialia, 2002, 46: 489-495
    [130] Hongbo Guo, Shengkai Gong, Huibin Xu. Evaluation of hot-fatigue behaviors of EB-PVD gradient thermal barrier coatings [J]. Materials Science and Engineering A,2002,325:261-269
    [131] Hongbo Guo, Huibin Xu, Xiaofang Bi, et al. Preparation of Al_2O_3-YSZ composite coating by EB-PVD [J]. Materials Science and Engineering A, 2002, 325: 389-393
    [132] N M Yanar, G H Meier, F S Pettit. The influence of platinum on the failure of EB-PVD YSZ TBCs on NiCoCrAlY bond coats [J]. Scripta Materialia, 2002, 46:325-330
    [133] Y C Zhou, T Hashida. Thermal fatigue failure induced by delamination in thermal barrier Coating [J]. International Journal of Fatigue, 2002, 24: 407-417
    [134] Hongbo Guo, Shengkai Gong, Chungeng Zhou, et al. Investigation on hot-fatigue behaviors of gradient thermal barrier coatings by EB-PVD [J]. Surface and Coatings Technology, 2001, 148: 10-116
    [135] Y H Sohn, J H Kim, E H Jordan, et al. Thermal cycling of EB-PVD/MCrAlY thermal barrier coatings: I. Microstructural development and spallation mechanisms [J].Surface and Coatings Technology, 2001, 146-147: 70-78
    [136] Y H Sohna, K Vaidyanathan, M Ronski, et al. Thermal cycling of EB-PVD/MCrAlY thermal barrier coatings: II. Evolution of photo-stimulated luminescence [J]. Surface and Coatings Technology, 2001, 146-147: 102-109
    [137] U Schulz, M Menzebach, C Leyens, et al. Influence of substrate material on oxidation behavior and cyclic lifetime of EB-PVD TBC systems [J]. Surface and Coatings Technology, 2001, 146-147: 117-123
    [138] N P Padture, K W Schlichting, T Bhatia, et al. Towards durable thermal barrier coatings with novel microstructure deposited by solution precursor/plasma spray [J].Acta mater, 2001, 49: 2251-2257
    [139] K A Khor, Y W Gu, Z L Dong. Mechanical behavior of plasma sprayed functionally graded YSZ/NiCoCrAlY composite coatings [J]. Surface and Coatings Technology,2001,139:200-206
    [140] U Schulz, K Fritscher, C Leyens. Two-source jumping beam evaporation for advanced EB-PVD TBC systems [J]. Surface and Coatings Technology, 2000, 133-134: 40-48
    [141] L Fu, K A Khor, H W Ng, et al. Non-destructive evaluation of plasma sprayed functionally graded thermal barrier coatings [J]. Surface and Coatings Technology,2000,13:233-239
    [142] Xiaofang Bi, Huibin Xu, Shengkai Gong. Investigation of the failure mechanism of thermal barrier coatings prepared by electron beam physical vapor deposition [J].Surface and Coatings Technology, 2000, 130: 122-127
    [143] Huibin Xu, Hongbo Guo, Fushun Liu, et al. Development of gradient thermal barrier coatings and their hot-fatigue behavior [J]. Surface and Coatings Technology, 2000,130:133-139
    [144] D R Mumm, A G Evans. On the role of imperfections in the failure of a thermal barrier coating made by electron beam deposition [J]. Acta mater. 2000, 48:1815-1827
    [145] Maurice Gell, Eric Jordan, Krishnakumar Vaidyanathan, et al. Bond strength, bond stress and spallation mechanisms of thermal barrier coatings [J]. Surface and Coatings Technology, 1999, 120-121: 53-60
    [146] C Leyens, U Schulz, B A Pint, et al. Influence of electron beam physical vapor deposited thermal barrier coating microstructure on thermal barrier coating system performance under cyclic oxidation conditions [J]. Surface and Coatings Technology,1999, 120-121:68-76
    [147] V Teixeira, M Andritschky, W Fischer, et al. Effects of deposition temperature and thermal cycling on residual stress state in zirconia-based thermal barrier coatings [J].Surface and Coatings Technology, 1999, 120-121: 103-111
    [148] Z L Dong, K A Khor, Y W Gu. Microstructure formation in plasma-sprayed functionally graded NiCoCrAlY/yttria-stabilized zirconia coatings [J]. Surface and Coatings Technology, 1999, 114: 181-186
    [149] K A Khor, Z L Dong, Y W Gu. Plasma sprayed functionally graded thermal barrier coatings [J]. Materials Letters, 1999, 38: 437-444
    [150] M Movchana,U, Yu Rudoy. Composition structure and properties of gradient thermal barrier coatings TBCs produced by electron beam physical vapor deposition EB-PVD [J]. Materials and Design, 1998, 19: 253-258
    [151] A C Leger, J Wigren, M O Hansson. Development of a process window for a NiCoCrAlY plasma-sprayed coating [J]. Surface and Coatings Technology, 1998,108-109: 86-92
    [152]K C Chang,W J Wei,C Chen.Oxidation behavior of thermal barrier coatings modified by laser remelting[J].Surface and Coatings Technology,1998,102:197-204
    [153]Z Zurek,J Jedlinski,K Kowalski,et al.Corrosion of bond coat Ni22Cr10AlY-alloy in sulphur-containing atmosphere at temperatures of 1173 and 1273 K[J].Solid State Ionics,1997,101-103:743-747
    [154]Per Bengtsson,Christer Persson.Mo delled and measured residual stresses in plasma sprayed thermal barrier coatings[J].Surface and Coatings Technology,1997,92:78-86
    [155]J Allen Haynes,E Douglas Rigney,Mattison K Ferber,et al.Oxidation and degradation of a plasma-sprayed thermal barrier coating system[J].Surface and Coatings Technology,1996,86-87:102-108
    [156]P Diaz,M.J Edirisinghe,B Ralph.Microstructural changes and phase transformations in a plasma-sprayed zirconia-yttria-titania thermal barrier coating[J].Surface and Coatings Technology,1996,82:284-290
    [157]M Andritschky,V Teixeira,L Rebouta,et al.Adherence of combined physically vapour-deposited and plasma-sprayed ceramic coatings[J].Surface and Coatings Technology,1995,76-77:101-105
    [158]Cecilia Bartuli,Luca Bertamini,Susanna Matera,et al.Investigation of the formation of an amorphous film at the ZrO_2-YRO_3/NiCoCrAlY interface of thermal barrier coatings produced by plasma spraying[J].Materials Science and Engineering A,1995,199:229-237
    [159]M F Stroosnijder,G Macchi.A nuclear method to measure spallation by thermal cycling of protective surface layers[J].Nuclear Instruments and Methods in Physics Research B,1995,100:155-158
    [160]H L Tsai,P C Tsai.Performance of laser-glazed plasma-sprayed(ZrO_2-12wt%Y_2O_3)/(Ni-22wt.%Cr-10wt.%Al-1wt.%Y)thermal barrier coatings in cyclic oxidation tests [J].Surface and Coatings Technology,1995,71:53-59
    [161]宫文彪,孙大干,孙喜兵,等.等离子喷涂纳米团聚体粉末的熔化特性研究[J].材料热处理学报,2007,28(4):125-129
    [162]何博,李飞,周洪,等.钛合金基体EB-PVD热障涂层的制备与初步研究[J].航空材料学报,2007,27(4):25-30
    [163]温顺达,陈立强,宫声凯,等.高温拉压环境下DZ125高温合金的热障涂层失效[J].稀有金属材料与工程,2007,36(6):1012-1015
    [164]李其连,李曙青,杨伟华,等.等离子喷涂纳米热障涂层的微观结构特性与性能[J].机械工人·热加工,2007,5:37-39
    [165]张东博,宫声凯,徐惠彬.IC10合金热障涂层的界面结合强度研究[J].腐蚀科学与防护技术,2006,18(5):329-333
    [166]高永栓,陈立强,宫声凯,等.在高温蠕变环境中的热障涂层失效行为[J].航空学报2005,26(11):121-124
    [167]Tabbetha A Dobbins.用HVOF喷涂Y_2O_3稳定的ZrO_2热障涂层[J].2004,6:6-14
    [168]柯培玲,武颖娜,王启民,等.爆炸喷涂空心球形氧化锆热障涂层的抗热冲击性能[J].金属学报,2005,40(11):541-545
    [169]项民,张琦,骆军华.盐雾腐蚀对NiCoCrAlY涂层性能的影响[J].北京航空航天 大学学报,2004,30(10):1179-1182
    [170]徐前岗,唐建新,王宁,等.粘结层表面预处理对EB-PVD热障涂层循环氧化的影响[J].航空材料学报,2004,24(4):30-34
    [171]王全胜,王富耻,马壮,吕广庶.铝基厚梯度热障涂层制备工艺及性能研究[J].中国表面工程,2004,4:35-41
    [172]李其连.等离子喷涂ZrO_2热障涂层热冲击破坏研究[J].中国表面工程,2004,3:17-25
    [173]武颖娜,孙超,柯培玲,等.爆炸喷涂制备NiCrAlY/NiAl/ZrO_2/Y_2O_3体系热障涂层[J].金属学报,2004,40(5):30-34
    [174]徐前岗,唐建新,王宁,等.EB-PVD热障涂层等温氧化过程中的界面韧性变化[J].航空材料学报,2004,24(2):46-49
    [175]李美姮,孙晓峰,宫声凯,等.EB-PVD热障涂层高温氧化过程中的显微结构和相分析[J].中国腐蚀与防护学报,2002,22(2):105-110
    [176]陈和兴,周克菘,金展鹏,等.离子喷涂热障涂层失效机理的研究[J].广东有色金属学报,2002,12(11):116-119
    [177]李美姮,孙晓峰,宫声凯,等.电子束物理气相沉积热障涂层的高温氧化行为[J].金属学报,2002,38(9):989-993
    [178]郭洪波,宫声凯,徐惠彬.梯度热障涂层的设计[J].航空学报,2002,23(5):467-472
    [179]李美姮,张重远,孙晓峰,等.EB-PVD热障涂层的热循环失效机理[J].材料工程,2002.8:20-23
    [180]李美姬,张重远,孙晓峰,等.一种热障涂层的形貌和相结构特征研究[J].材料导报,2001,15(1):71-75
    [181]张东博,郭洪波,宫声凯,等.EB-PVD热障涂层对高温合金基体断裂特征影响的研究[J].材料科学与工艺,2001,9(3):273-276
    [182]郭洪波,徐惠彬,宫声凯,等.基板温度对EB-PVD梯度热障涂层的微观结构和性能的影响[J].金属学报,2001,37(9):997-1000
    [183]郭洪波,徐惠彬,宫声凯,等,EB-PVD梯度热障涂层的热循环失效机理[J].金属学报,2001,37(2):151-155
    [184]郭洪波,徐惠彬,宫声凯,等.表面强化对EB-PVD热障涂层的高温氧化性能及结合强度的影响[J].稀有金属材料与工程,2001,30(14):314-317
    [185]M Hajjaji.Solid solubility of hafnium in nickel[J].Journal of Alloys and Compounds,1998,274:185-188
    [186]Berit Hinnemann,Emily A.Carter.Adsorption of Al,O,Hf,Y,Pt and S Atoms on α-Al_2O_3(0001)[J].J.Phys.Chem.C,2007,111(19):7105-7126

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700