MoS_2/Zr“软”涂层自润滑刀具的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用中频磁控溅射与多弧离子镀相结合的工艺在硬质合金和高速钢基体上沉积制备出了MoS_2/Zr系列“软”涂层刀具,并对涂层刀具的设计理论、涂层结构、制备工艺、物理机械性能、表面形貌和界面结合机制、摩擦磨损特性及切削性能进行了系统深入的研究。
     建立了基于残余热应力的涂层与基体材料的物理相容性分析模型,深入分析了基体材料的物理性能参数和沉积温度对涂层刀具残余热应力的影响及其分布规律。结果表明:涂层与基体之间热膨胀系数的差异是影响涂层残余热应力大小的主要因素。通过物理化学相容性分析,确定了与MoS_2“软”涂层材料相匹配的两种最佳基体材料,分别为YT15硬质合金和M2高速钢。分析了过渡层对涂层残余热应力的影响。结果表明:在YT15基体与MoS_2涂层之间添加过渡层后,涂层的残余热应力值均较纯MoS_2涂层的残余热应力值显著降低,其中尤以添加Zr过渡层时涂层的残余热应力值最小;而在M2基体与MoS_2涂层之间添加Ti、Cr或Zr过渡层后,涂层的残余热应力值反而较纯MoS_2涂层的残余热应力值有所增大。因此,应根据不同涂层与基体材料的组合,选择合适的过渡层材料,以达到降低涂层刀具残余热应力的目的。
     采用中频磁控溅射与多弧离子镀相结合的工艺成功制备了MZ-1(MoS_2/Zr+YT15硬质合金)和MZ-2(MoS_2/Zr+M2高速钢)两种“软”涂层刀具。考察了前处理工艺对涂层性能的影响。结果表明:采用研磨抛光+超声波清洗的前处理工艺能够改善涂层与基体之间的界面结合状态。研究了制备工艺参数对涂层性能的影响,得出了基体负偏压、靶电流、沉积温度和沉积时间对涂层的硬度、厚度、界面结合力及表面粗糙度等的影响规律,确定了两种涂层刀具的最佳制备工艺参数,即对于MZ-1涂层刀具:基体负偏压-200 V,MoS_2靶电压700 V,Zr靶电流60 A,工作气压0.45 Pa,沉积温度200℃,沉积时间120 min;对于MZ-2涂层刀具:沉积温度150℃,其他参数与MZ-1相同。
     系统地研究了MoS_2/Zr“软”涂层刀具的物理机械性能和界面结合机制。结果表明:MZ-1刀具的涂层厚度2.4μm,硬度10.0 GPa,涂层与基体的界面结合力60 N;MZ-2刀具的涂层厚度2.6μm,硬度9.4 GPa,涂层与基体的界面结合力63 N;两种涂层的硬度和与基体之间的结合力均较纯MoS_2涂层的硬度和结合力有显著提高。通过对MoS_2/Zr“软”涂层刀具的表面形貌、微观结构和界面结合机制的分析可知,用中频磁控溅射与多弧离子镀相结合的工艺制备的MoS_2/Zr“软”涂层表面较为平整,涂层呈现非晶态结构,涂层中各元素分布均匀,涂层与基体材料存在由相互扩散形成的“伪”扩散层,使得涂层与基体的界面结合较为紧密。
     系统地研究了MoS_2/Zr“软”涂层刀具材料的摩擦磨损特性,探讨了载荷、摩擦距离等对其摩擦磨损性能的影响。结果表明:当分别与45#钢和Al_2O_3球对摩时,MZ-1和MZ-2涂层的摩擦系数随摩擦距离的增大而增大,随载荷的增大而减小;磨损率随载荷的增大而增大。与纯MoS_2涂层相比,MZ-1和MZ-2涂层的摩擦系数和磨损量均显著降低。对摩擦球表面磨损形貌和成分的分析表明,MoS_2/Zr“软”涂层材料与对摩材料表面之间所形成的转移润滑膜是影响材料摩擦磨损性能的关键因素之一。由于摩擦副间转移膜的存在,涂层和对摩材料的摩擦转变为涂层和转移膜之间的“内”摩擦,从而降低了摩擦过程的摩擦系数,提高了材料的耐磨性能。
     对MoS_2/Zr“软”涂层刀具的切削性能进行了试验研究,并与未涂层的YT15硬质合金刀具和M2高速钢刀具进行了对比。结果表明:加工调质45#钢时,MZ-1涂层刀具的前刀面摩擦系数和切削力均小于未涂层刀具,刀具的耐磨损能力获得提高;钻削45#钢的试验结果表明,MZ-2涂层刀具的后刀面磨损量降低,刀具的磨损程度减轻。试验同时发现,切削速度对MZ-1涂层刀具的磨损性能产生重要影响。低速切削时,涂层刀具的切削性能优于未涂层刀具;当切削速度增大,由于切削过程中产生的切削热和机械应力的作用,涂层出现分层剥落,从而加剧了刀具的磨损。通过对MoS_2/Zr“软”涂层刀具切削加工润滑机理的分析可知,无论是在润滑膜完整的状态抑或边界润滑状态下,由于表面“软”涂层的存在,涂层刀具的摩擦力和摩擦系数均降低;MoS_2/Zr“软”涂层在刀具和切屑之间起到润滑剂的作用,从而降低了刀具的磨损。
MoS_2/Zr self-lubricating coated tools were developed by medium-frequency magnetron sputtering combined with multi-arc ion plating technique on cemented carbide and high speed steel substrates. Tribological behaviors and wear mechanisms were detailed studied as well as its design theory, coating structures, deposition process parameters, mechanical properties and cutting performance.
     The finite element method (FEM) modeling for thermal residual stress analysis of the coatings was established and used to analyze physical compatibility of coating and substrate. The effect factors of the residual stress inside the coated tools such as substrates' physical parameters and deposition temperature were analyzed. Results indicated that residual stresses of coated tools are mainly affected by substrates' thermal expansion coefficient and Young's modulus, while substrates' Poisson ratio has little effect to residual stress. The optimum substrate materials matched with MoS_2 coating were selected afterwards, they were YT15 cemented carbide and M2 high speed steel, respectively. The FEM analysis results indicated that the residual stress on interface of the coated tools could be decreased by using suitable interlayer material. For MoS_2 coating deposited onto YT15 cemented carbide substrate, the residual stress with Zr interlayer is much smaller than that with Ti or Cr interlayer, while for MoS_2 coating deposited onto M2 high speed steel substrate, any interlayer (Ti/Cr/Zr) was not advised used.
     The soft coated MZ-1 (MoS_2/Zr+YT15) and MZ-2 (MoS_2/Zr+M2) tools were successfully developed by medium-frequency magnetron sputtering coupled with multi-arc ion plating technique. The optimum parameters (working gas (Ar) pressure: 0.45Pa; substrate bias: -200 V; MoS_2 target voltage: 700 V; Zr target arc current: 60 A; deposition time: 120 min; deposition temperature: 200℃=(for MZ-1) and 150℃(for MZ-2)). Fore treatment process of coated tools was studied. The results indicated that fore treatment process of polishing and ultrasonic cleaning can improve adhesion strength between the coating and substrate.
     The physical and mechanical properties of MZ-1 and MZ-2 coated tools were roundly studied. The structure of MZ-1 and MZ-2 coated tools is dense and coating elements are distributed equably. The coating micro-hardness is 10.0 GPa and 9.4 GPa both of which are higher than that of pure MoS_2 coating, and the adhesion strength is 60 N and 63 N, respectively, corresponding to MZ-1 and MZ-2 tools. The coating thickness of MZ-1 and MZ-2 is 2.4 and 2.6 urn, respectively. The interface adhesion mechanism of MZ series coatings and substrates is an interaction of mechanical occlusion and diffusion.
     The effect of load and friction distance on the friction and wear behavior of MoS_2/Zr coated materials sliding against 45# steel and Al_2O_3 ball was studied, respectively. The experiment results showed that the friction coefficient of MoS_2/Zr coated materials increases with increasing of friction distance, and decreases with increasing load. The wear rate increases with increasing load. Both friction coefficient and wear rate are much smaller than that of pure M0S2 coating. EDX analyses for the surface of coated tools and counterpart ball indicated that there was transfer layer formed, which was found to play an important role in reducing the friction coefficient and wear rate of MoS_2/Zr coated tools.
     The cutting performance of MoS_2/Zr coated tools was studied, and compared with YT15 cemented carbide and M2 high speed steel uncoated tools. The experimental results indicate that deposition of MoS_2/Zr soft coating onto YT15 and M2 tools shows decreased friction coefficient and flank wear compared with those of uncoated tools when dry cutting 45# quenched steel. Cutting speeds were found to have a profound effect on the wear behaviors of MoS_2/Zr coated tools. In case of low speed cutting, the MoS_2/Zr coated tools showed much better cutting performance compared to the uncoated tools, in high speed cutting processes, delamination of coating occurred owing to the elevated cutting temperature, which may initiate the loss of the coating from the rake face, and lead the increase of the tool wear.
引文
1. S. C. Lim, C. Y. H. Lim. Effective use of coated tools-the wear-map approach. Surface and Coatings Technology, 2001,139(2-3): 127-134.
    
    2. S. Soderberg. Advances in metal cutting tool materials. Journal of Metallurgy, 1997, 26 (1): 65-70.
    
    3.唐伟忠.薄膜材料制备原理、技术及应用.第二版.北京:冶金工业出版社,2003.
    
    4.邓建新,赵军.数控刀具材料选用手册.北京:机械工业出版社,2004.
    
    5. J. X. Deng, J. H. Liu, J. L Zhao, et al. Friction and wear behaviors of the PVD ZrN coated carbide in sliding wear tests and in machining processes. Wear, 2008,264: 298-307.
    
    6. J. X. Deng, J. H. Liu, J. L. Zhao, et al. Wear mechanisms of PVD ZrN coated tools in machining. International Journal of Refractory Metals and Hard Materials, 2008,26: 164-172.
    
    7.邓建新,艾兴.Al_2O_3/TiB_2/SiCw陶瓷刀具加工镍基合金时的磨损机理.硅酸盐学报,1997, 25(2):192-196.
    
    8. N. M. Renevier, V. C. Fox, D. G Teer, et al. Coating characteristics and tribological properties of sputter-deposited MoS_2 metal composite coatings deposited by closed field unbalanced magnetron sputter ion plating. Surface and Coatings Technology, 2000, 127 (1): 24-37.
    
    9. K. D. Bouzakis, N. Michailidis, N. Vidakis. Failure mechanisms of physically vapour deposited coated hard metal cutting inserts in turning. Wear, 2001,248 (1-2): 29-37.
    
    10. S. Hadjiyiannis, K. D. Bouzakis, G Skordaris. The influence of the coating thickness on its strength properties and on the milling performance of PVD coated inserts. Surface and Coatings Technology, 2003, 174-175: 393-401.
    
    11. K. D. Bouzakis, S. Hadjiyiannis, G Skordaris. The effect of thickness, mechanical strength and hardness properties on the milling performance of PVD coated cemented carbides inserts. Surface and Coatings Technology, 2004, 177-178: 657-664.
    
    12. H. E Cheng, Y. W Wen. Correlation between process parameters, microstructure and hardness of titanium nitride films by chemical vapor deposition. Surface and Coatings Technology, 2004, 179(1-2): 103-109.
    
    13.张俊彦.薄膜/涂层的摩擦学设计及其研究进展.摩擦学学报,2006,26(4):387-396.
    
    14.邓建新,丁泽良,赵军等.高温自润滑陶瓷刀具材料及其切削性能的研究.机械工程学报, 2003,39(8):106-109.
    
    15.邓建新,艾兴.陶瓷刀具切削加工时的磨损与润滑及其与加工对象的匹配研究.机械工程 学报,2002,38(4):40-46.
    
    16. Y. Yamamoto, A. Ura. Influence of interposed wear particles on the wear and friction of silicon carbide in different dry atmospheres. Wear, 1992, 154 (2): 141-150.
    
    17. J. X. Deng, X. Ai. Friction and wear behavior of Al_2O_3/TiB_2 ceramic composite against cemented carbide in various atmosphere at elevated temperature. Wear, 1996, 195 (2): 128-132.
    
    18. J. X. Deng, X. Ai. Wear behavior and mechanisms of alumina based ceramic tools in machining of ferrous and non-ferrous alloys. Tribology International, 1997, 30 (11): 807-813.
    
    19.邓建新,艾兴.氧化对Al_2O_3/TiB_2陶瓷刀具耐磨性能的影响.硅酸盐学报,1996,24(2): 160-165.
    
    20.邓建新,曹同坤,艾兴.Al_2O_3/TiC/CaF_2自润滑陶瓷刀具切削过程中的减摩机理.机械工程 学报,2006,42(7):109-113.
    
    21.曹同坤,邓建新,孙军龙.Al_2O_3/TiC/CaF_2自润滑陶瓷材料的研究.材料工程,2005,(3): 23-26.
    
    22. J. X. Deng, T. K. Cao, J. L. Sun. Microstructure and mechanical properties of hot-pressed Al_2O_3/TiC ceramic composites with the additions of solid lubricants. Ceramics International, 2005, 31 (2): 249-256.
    
    23. J. X. Deng, T. K. Cao, L. L. Liu. Self-lubricating behaviors of Al_2O_3/TiB_2 ceramic tools in dry high-speed machining of hardened steel. Journal of the European Ceramic Society, 2005, 25 (7): 1073-1079.
    
    24. J. X. Deng, T. K. Cao, Z. L Ding, et al. Tribological behaviors of hot-pressed Al_2O_3/TiC ceramic composites with the additions of CaF_2 solid lubricants. Journal of the European Ceramic Society, 2006,26(8): 1317-1323.
    
    25. J. X. Deng, T. K. Cao, J. L. Sun. Mechanical properties and microstructure of self-lubricating ceramic cutting tool materials. Materials Science Forum, 2004,471-472: 221-224.
    
    26. J. X. Deng, L. L. Liu, X. F. Yang, et al. Self-lubrication of Al_2O_3/TiC/CaF_2 ceramic composites in sliding wear tests and in machining processes. Materials and Design, 2007,28 (3): 757-764.
    
    27. J. X. Deng, T. K. Cao, X. F. Yang, et al. Wear behavior and self tribofilm formation of hot-pressed Al_2O_3/TiC/CaF_2 ceramic composites sliding against cemented carbide. Ceramics International, 2007, 33 (2): 213-220.
    
    28. J. X. Deng, W. L. Song, H. Zhang. Design, fabrication and properties of a self-lubricated tool in dry cutting. International Journal of Machine Tools and Manufacture, 2008, doi: 10.1016/j.ijmachtools.2008.1008.1001.
    
    29. Y. R. Liu, J. J. Liu, Z. Du. The cutting performance and wear mechanism of ceramic cutting tools with M0S2 coating deposited by magnetron sputtering. Wear, 1999,231 (4): 285-292.
    
    30. F. Klocke, T. Krieg. Coated tools for metal cutting features and applications. Annals of the CIRP, 1999,48 (2): 515-525.
    
    31. F. Klocke, T. Krieg, K. Gerschwiler. Improved cutting processes with adapted coating systems. Annals of the CIRP, 1998,47 (1): 65-68.
    
    32.石淼森.固体润滑材料.北京:化学工业出版社,2000.
    
    33. J. M. Martin, C. Donnet, H. Pascal, et al. Superlubricity of MoS_2: crystal orientation mechanisms. Surface and Coatings Technology, 1994, 68-69: 427-432.
    
    34. F. I. Ilie, C. M. Tita. Tribological properties of solid lubricant nanocomposite coatings obtained by magnetron sputtered of MoS_2/metal (Ti, Mo) nanoparticles. Proceedings of the Romanian Academy Series A-Mathematics Physics Technical Sciences Information Science, 2007, 8 (3): 207-211.
    
    35. I. Efeoglu. Deposition and characteriztion of a multilayered-composite solid lubricant coating. Reviews on Advanced Materials Science, 2007,15 (2): 87-94.
    
    36. M. Fenker, M. Balzer, H. Kappl, et al. Corrosion behaviour of MoS_x-based coatings deposited onto high speed steel by magnetron sputtering. Surface and Coatings Technology, 2006, 201 (7): 40994104.
    
    37. X. Wang, Y. M. Xing, S. L. Ma, et al. Microstructure and mechanical properties of MoS2/titanium composite coatings with different titanium content. Surface and Coatings Technology, 2007,201 (9-11): 5290-5293.
    
    38. J. I. Onate, M. Brizuela, J. L. Viviente, et al. MoS_x lubricant coatings produced by PVD technologies. Transactions of the Institute of Metal Finishing, 2007, 85 (2): 75-81.
    
    39. V. Fox, A. Jones, N.M. Renevier, et al. Hard lubricating coatings for cutting and forming tools and mechanical components. Surface and Coatings Technology, 2000, 125: 347-353.
    
    40. N. M. Renevier, V. C. Fox, D. G Teer, et al. Performance of low friction MoS2/titanium composite coatings used in forming applications. Materials and Design, 2000, 21 (4): 337-343.
    
    41. N. M. Renevier, N. Lobiondo, V.C. Fox, et al. Performance of MoS_2/metal composite coatings used for dry machining and other industrial applications. Surface and Coatings Technology, 2000,123 (8): 84-91.
    
    42. D. G Teer, J. Hampshire, V. Fox, et al. The tribological properties of MoS_2/metal composite coatings deposited by closed field magnetron sputtering. Surface and Coatings Technology, 1997, 94-5 (1-3): 572-577.
    
    43. E. Arslan, O. Baran, I. Efeoglu, et al. Evaluation of adhesion and fatigue of MoS_2-Nb solid-lubricant films deposited by pulsed-dc magnetron sputtering. Surface and Coatings Technology, 2008,202 (11): 2344-2348.
    
    44. R. Gilmore, M. A. Baker, P. N. Gibson, et al. Low-friction TiN-MoS_2 coatings produced by dc magnetron co-deposition. Surface and Coatings Technology, 1998, 109 (1-3): 345-351.
    
    45. J. H. Wang, Y. Xia, E. Wieers, et al. Influence of deposition conditions on the crystal structure of MoS_2 coating. Journal of Materials Science and Technology, 2006, 22 (3): 324-328.
    
    46. Y. L. Li, S. Y. Kin. Preparation and performance of MoS_2/Ti composite films. Rare Metal Materials and Engineering, 2006, 35 (8): 1308-1310.
    
    47. J. H. Wang, Y. Xia, E. Wieers, et al. Growth characteristics of MoS_2 coatings prepared by unbalanced bipolar DC magnetron sputtering. Transactions of Nonferrous Metals Society of??China, 2005, 15(6): 1214-1218.
    
    48. I. Efeoglu, F. Bulbul. Effect of crystallographic orientation on the friction and wear properties of Mo_xS_y-Ti coatings by pulsed-dc in nitrogen and humid air. Wear, 2005,258 (5-6): 852-860.
    
    49. I. Bertoti, M. Mohai, N. M. Renevier, et al. XPS investigation of ion beam treated MoS_2-Ti composite coatings. Surface and Coatings Technology, 2000,125 (1-3): 173-178.
    
    50. J. H. Wang, W. Lauwerens, E. Wieers, et al. Structure and tribological properties of MoS_x coatings prepared by bipolar DC magnetron sputtering. Surface and Coatings Technology, 2001, 139(2-3): 143-152.
    
    51. Y. L. Li, S. Y. Kim. Microstructural and tribological behavior of TiAlN/MoS_2-Ti coatings. Rare Metals, 2006,25 (4): 326-330.
    
    52. S. K. Kim, P. V. Vinh. Deposition of (Ti,Cr,Zr)N-MoS_2 thin films by DC magnetron sputtering. Ifost 2006: 1st International Forum on Strategic Technology, Proceedings E-Vehicle Technology, 2006,190-192.
    
    53. T. Kubart, T. Polcar, L. Kopecky, et al. Temperature dependence of tribological properties of MoS_2 and MoSe_2 coatings. Surface and Coatings Technology, 2005,193 (1-3): 230-233.
    
    54. F. Bulbul, I. Efeoglu, E. Arslan. The effect of bias voltage and working pressure on S/Mo ratio at MoS_2-Ti composite films. Applied Surface Science, 2007,253 (9): 4415-4419.
    
    55. M. Audronis, A. Leyland, P. J. Kelly, et al. Composition and structure-property relationships of chromium-diboride/molybdenum-disulphide PVD nanocomposite hard coatings deposited by pulsed magnetron sputtering. Applied Physics A-Materials Science and Processing, 2008, 91: 77-86.
    
    56. P. D. Fleischauer, J. R. Lince. A comparison of oxidation and oxygen substitution in MoS_2 solid film lubricants. Tribology International, 1999,32 (11): 627-636.
    
    57. P. Gribi, Z. W. Sun, F. Levy. Effects of low-energy ion-bomardement on RF sputtered MoS_x films. Journal of Physics D-Applied Physics, 1989,22 (1): 238-240.
    
    58. N. Panich, P. Wangyao, S. Hannongbua, et al. Effect of polytetrafluoroethylene doping on tribological property improvement of MoS_2 nano-thin films on Ti-substrate. Reviews on Advanced Materials Science, 2007,16 (1-2): 88-95.
    
    59. V. Spassov, A. Savan, A. R. Phani, et al. Quaternary-matrix, nanocomposite self-lubricating PVD coatings in the system TiAlCN-MoS_2 structure and tribological properties. Continuous Nanophase and Nanostructured Materials, 2004,788: 309-314.
    
    60. V. Weiss, W. Bohne, J. Rohrich, et al. Reactive magnetron sputtering of molybdenum sulfide thin films: In situ synchrotron X-ray diffraction and transmission electron microscopy study. Journal of Applied Physics, 2004, 95 (12): 7665-7673.
    
    61. C. R. Yang, F. J. Guo, P. L. Wang, et al. Study of XPS and ESR of IBAD MoS_2 composite films. Proceedings of the First China International Conference on High-Performance Ceramics, 2001, 456-457.
    
    62. V. Y. Fominski, V. N. Nevolin, R. I. Romanov, et al. Ion-assisted deposition of MoS_x films from laser-generated plume under pulsed electric field. Journal of Applied Physics, 2001, 89 (2): 1449-1457.
    
    63. J. Sobota, G Sorensen. Ion bombardment of solid lubricating nanoparticle coatings. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 1997,127: 945-948.
    
    64. D. N. Dunn, L. E. Seitzman, I. L. Singer. The origin of an anomalous, low 2 theta peak in X-ray diffraction spectra of MoS_2 films grown by ion beam assisted deposition. Journal of Materials Research, 1997,12 (5): 1191-1194.
    
    65. L. E. Seitzman, R. N. Bolster, I. L. Singer. Effects of temperature and ion-to-atom ratio on the orientation of IBAD MoS_2 coatings. Thin Solid Films, 1995,260 (2): 143-147.
    
    66. A. Jain, S. Srivastav. Treatment of MoS2 films by high-energy heavy ion beams. Thin Solid Films, 1996,277 (1-2): 128-131.
    
    67. L. E. Seitzman, R. N. Bolster, I. L. Singer. X-ray diffraction of MoS_2 coatings prepared by ion-beam-assisted deposition. Surface and Coatings Technology, 1992, 52 (1): 93-98.
    
    68. R. N. Bolster, I. L. Singer, J. C. Wegand, et al. Prepration by ion-beam-assisted deposition, analysis and tribological behavior of MoS_2 films. Surface and Coatings Technology, 1991, 46 (2): 207-216.
    
    69. J. R. Lince, P. D. Fleischauer. Noble-gas ion-bombardment of the basel-plane surface of MoS_2. Journal of Vacuum Science and Technology A-Vacuum, Surfaces and Films, 1987, 5 (4): 1312-1313.
    
    70. Z. W. Sun, P. Gribi, F. Levy. Low-energy ion-bomardment induced anisotropy in sputtered MoS_x thin films. Journal of Physics D-Applied Physics, 1989, 22 (8): 1210-1216.
    
    71. H. C. Feng, J. M. Chen. Effects of low-energy argon-ion bombardment on MoS_2. Journal of Physics C-Solid State Physics, 1974,7 (5): 75-78.
    
    72. H. D. Wang, B. S. Xu, J. J. Liu, et al. Molybdenum disulfide coating deposited by hybrid treatment and its friction-reduction performance. Surface and Coatings Technology, 2007, 201 (15): 6719-6722.
    
    73. J. J. Nainaparampil, A. R. Phani, J. E. Krzanowski, et al. Pulsed laser-ablated MoS_2-Al films: friction and wear in humid conditions. Surface and Coatings Technology, 2004, 187 (2-3): 326-335.
    
    74. S. D. Walck, M. S. Donley, J. S. Zabinski, et al. Characterization of pulsed-laser deposition MoS2 by transmission electron-microscopy. Journal of Materials Research, 1993, 8 (11): 2933-2941.
    
    75. J. Bulicz, MORALES DE LA GARZA L, S. Fuentes. Chemical interaction of pulsed laser deposited Co with the MoS_2(0001) surface. Surface Science, 1996, 365 (2): 411-421.
    
    76. M. Mosleh, S. J. P. Laube, N. P. Suh. Friction of undulated surfaces coated with MoS_2 by pulsed??laser deposition. Tribology Transactions, 1999,42 (3): 495-502.
    
    77. J. S. Zabinski, A. A. Voevodin, J. J. Nainaparampil, et al. Novel thin film solid lubricants and hard coatings by pulsed laser based techniques. Surface Engineering: Science and Technology, 1999,127-142.
    
    78. J. J. Hu, J. S. Zabinski, J. E. Bultman, et al. Structure characterization of pulsed laser deposited MoS_x-WSe_y composite films of tribological interests. Tribology Letters, 2006,24 (2): 127-135.
    
    79. N. T. McDevitt, J. E. Bultman, J. S. Zabinski. Study of amorphous MoS_2 films grown by pulsed laser deposition. Applied Spectroscopy, 1998, 52 (9): 1160-1164.
    
    80. N. T. McDevitt, J. S. Zabinski, M. S. Donley. The use of Raman-scattering to study disorder in pulsed-laser deposition MoS_2 films. Thin Solid Films, 1994,240 (1-2): 76-81.
    
    81. J. J. Hu, J. E. Bultman, J. S. Zabinski. Microstructure and lubrication mechanism of multilayered MoS_2/Sb_2O_3 thin films. Tribology Letters, 2006,21 (2): 169-174.
    
    82. E. Arslan, F. Bulbul, A. Alsaran, et al. The effect of deposition parameters and Ti content on structural and wear properties of MoS_2-Ti coatings. Wear, 2005,259 814-819.
    
    83.韩成名,周兰英,贾庆莲等.非平衡纳米复合等离子体镀膜法沉积二硫化钼复合膜的摩擦 学性能的研究.兵工学报,2004,25(3):335-339.
    
    84. D. M. Zhuang, J. J. Liu, B. L. Zhu, et al. A study of the friction and wear performance of MoS_x thin films produced by ion beam enhanced deposition and magnetron sputtering. Wear, 1997, 210 (1-2): 45-49.
    
    85. J. Moser, F. Levy, F. Bussy. Composition and growth mode of MoS_x sputtered films. Journal of Vacuum Science and Technology A-Vacuum, Surfaces, and Films, 1994, 12 (2): 494-500.
    
    86.宋贵宏,杜昊,贺春林.硬质与超硬涂层——结构、性能、制备与表征.北京:化学工业出 版社,2007.
    
    87. W. Olbrich, G. Kampschulte. Additional ion bombardment in PVD processes generated by a superimposed pulse bias voltage. Surface and Coatings Technology, 1993,61 (1-3): 262-267.
    
    88. W. Olbrich, G Kampschulte. Superimposed pulse bias voltage used in arc and sputter technology. Surface and Coatings Technology, 1993, 59 (1-3): 274-289.
    
    89. W. Olbrich, J. Fessmann, G Kampschulte, et al. Improved control of TiN coating properties using cathodic arc evaporation with a pulsed bias. Surface and Coatings Technology, 1991, 49 (1-3): 258-263.
    
    90.姚寿山,李戈杨,胡文彬.表面科学与技术.北京:机械工业出版社,2005.
    
    91. L. K. Cheah, X. Shi, B. K. Tay, et al. Modification of tetrahedral amorphous carbon film by concurrent Ar ion bombardment during deposition. Surface and Coatings Technology, 1998, 105 (1-2): 91-96.
    
    92. S. Ravi, P. Silva, S. Xu, et al. Nanocrystallites in tetrahedral amorphous carbon films. Applied Physics Letters, 1996, 69 (4): 491-493.
    
    93. A. W. Baouchi, A. J. Perry. A study of the macroparticle distribution in cathodic-arc-evaporated TiNfilms. Surface and Coatings Technology, 1991,49 (1-3): 253-257.
    
    94. A. Anders. Growth and decay of macroparticles: A feasible approach to clean vacuum arc plasma. Journal of Applied Physics, 1997, 82 (8): 3679-3688.
    
    95.荆阳,庞思勤,张学恒等.TiAlN-MoS_2/TiAlN硬质润滑膜研究.北京理工大学学报,2002, 22(4):457-459.
    
    96. N. Lobiondo, N. M Renevier, V. C. Fox, et al. Performance of MoS_2/metal composite coatings used for dry machining and other industrial applications. Surface and Coatings Technology, 2000,123 (8): 84-91.
    
    97. N. M. Renevier, J. Hamphire, V. C. Fox, et al. Advantages of using self-lubricating, hard, wear-resistant MoS_2-based coatings. Surface and Coatings Technology, 2001, 142-144 (7): 67-77.
    
    98. N. M. Renevier, H. Oosterling, U. Konig, et al. Performance and limitation of hybrid PECVD (hard coating)-PVD magnetron sputtering MoS_2-Ti composite coated inserts tested for dry high speed milling of steel and grey cast iron. Surface and Coatings Technology, 2003, 163-164: 659-667.
    
    99. W. H. Kao. Tribological properties and high speed drilling application of MoS_2-Cr coatings. Wear, 2005,258: 812-825.
    
    100. V. C. Fox, J. Hampshire, D. G Teer. MoS_2/metal composite coatings deposited by closed-field unbalanced magnetron sputtering: tribological properties and industrial uses. Surface and Coatings Technology, 1999,112(1-3): 118-122.
    
    101.邓建新,葛培琪,艾兴.切削加工的润滑技术研究进展与展望.摩擦学学报,2003,23(6): 546-550.
    
    102. D. Julthongpiput, H. S. Ahn, A. Sidorenko, et al. Towards self-lubricated nanocoatings. Tribology International, 2002, 35 (12): 829-836.
    
    103. W. Wei, J. Lankford. Friction and wear of ion beam modified ceramic for use in high temperature adiabatic engines. Material Science Engineering, 1987, 90: 307-315.
    
    104. E. Arslan, F. Bulbul, A. Alsaran, et al. The effect of deposition parameters and Ti content on structural and wear properties of MoS_2-Ti coatings. Wear, 2005,259: 814-819.
    
    105. R. I. Amaro, R. C. Martins, J. O. Seabra, et al. Molybdenum disulphide/titanium low friction coating for gears application. Tribology International, 2005, 38 (4): 423-434.
    
    106. Y. L. Su, W. H. Kao. Tribological behaviour and wear mechanism of MoS_2-Cr coatings sliding against various counterbody. Tribology International, 2003, 36: 11-23.
    
    107. J. Haider, M. Rahman, B. Corcoran, et al. Simulation of thermal stress in magnetron sputtered thin coating by finite element analysis. Journal of Materials Processing Technology, 2005, 168 (1): 36-41.
    
    108. M. Rahman, J. Haider, D. P. Dowling, et al. Deposition of magnetron sputtered TiN+MoS_x??coating with Ti-TiN graded interlayer. Surface and Coatings Technology, 2005, 200 (1-4): 1071-1075.
    
    109. M. Rahman, J. Haider, D. P. Dowling, et al. Investigation of mechanical properties of TiN+MoS_x coating on plasma-nitrided substrate. Surface and Coatings Technology, 2005, 200 (5-6): 1451-1457.
    
    110. S. K. Kim, B. C. Cha. Deposition of CrN-MoS_2 thin films by DC magnetron sputtering. Surface and Coatings Technology, 2004,188-189: 174-178.
    
    111. M. Steinmann, A. Mullet, H. Meerkamm. A new type of tribological coating for machine elements based on carbon, molybdenum disulphide and titanium diboride. Tribology International, 2004, 37 (11-12): 879-885.
    
    112.X. Z. Ding, X. T. Zeng, T. Goto. Unbalanced magnetron sputtered Ti-Si-N:MoSx composite coatings for improvement of tribological properties. Surface and Coatings Technology, 2005, 198 (1-3): 432-436.
    
    113.关振铎,张中太,焦金生.无机材料物理机械性能.北京:清华大学出版社,1992.
    
    114.叶大伦,胡建华.实用无机物热力学数据手册.北京:冶金工业出版社,2002.
    
    115.潘金生,仝健民,田民波.材料科学基础.北京:清华大学出版社,1998.
    
    116.邓建新.添加TiB_2的新型陶瓷刀具材料的开发及其摩擦磨损行为和应用研究.博士学位 论文.山东工业大学,1995.
    
    117.李志华,李焕喜,徐惠彬等.热障涂层的残余应力分析.北京航空航天大学学报,2004,30 (3):256-260.
    
    118.杨定富,韩树,袁伟.基体预热温度对热障涂层热残余应力影响的研究.表面技术,2004, 33(2):253-259.
    
    119.张显程,徐滨士,王海斗等.ZrO_2/NiCoCrAlY功能梯度涂层残余应力分析.材料热处理学 报,2005,26(2):173-178.
    
    120.张显程,徐滨士,王海斗等.功能梯度涂层热残余应力.机械工程学报,2006,42(1): 49-53.
    
    121.张国祥,陈光南,张坤.基体界面屈服强度和残余应力失配对界面裂纹扩展的影响.吉林 大学学报(工学版),2006,36(3):294-297.
    
    122.王丹,徐滨士,董世运.涂层残余应力实用检测技术的研究进展.金属热处理,2006,31(5): 48-53.
    
    123.唐伟忠.薄膜材料制备原理、技术及应用.第一版.北京:冶金工业出版社,1998.119-146.
    
    124. J. Men(?)ík. Mechanics of components with treated or coated surfaces. London: Kluwer Academic Publishers, 1995.
    
    125.王洪,张坤,陈光南.界面形貌对热障涂层界面残余应力影响的数值模拟.金属热处理, 2001,9:44-46.
    
    126.马壮,王全胜,王富耻等.涂层基体条件对梯度涂层残余应力影响研究.材料工程,2002, (4):25-28.
    
    127. K. J. Cheng, S. Y. Cheng. Analysis and computation of the internal stress in thin films. Progress in Natural Science, 1998, 8 (6): 679-689.
    
    128.曲喜善.薄膜物理.上海:上海科学技术出版社,1986.
    
    129.曾庆东,肖金生,覃峰等.陶瓷梯度耐磨涂层中残余热应力的有限元分析.武汉理工大学 学报,2003,25(1):34-36.
    
    130. Y. C. Tsui. An analytical model for predicting residual stresses in progressively deposited coatings Part 1: Planar geometry. Thin Solid Films, 1997, 306 (1): 23-33.
    
    131.刘建华,邓建新,牛敏.ZrN涂层刀具的基体材料优选及性能研究.北京科技大学学报, 2006,28(1):271-273.
    
    132. E. O. Hall. The deformation and ageing of mild steel:Ⅲ discussion of results. Proceedings of the Physical Society, Section B, 1951, 64: 747-753.
    
    133. N. J. Petch. The cleavage strength of polycrystals. Journal of the Iron and Steel Institute, 1953, 174(1): 25-28.
    
    134. W. C. Oliver, G M. Pharr. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiment. Journal of Materials Research, 1992,7:1564-1583.
    
    135.T.S.Sudarshan著,范玉殿译.表面改性技术.北京:清华大学出版社,1992.
    
    136.张晓玲,胡奈赛,何家文.提高溅射沉积MoS_2膜耐磨性的途径及分析.材料工程,1999, (10):44-47.
    
    137. A. Aubert, J. P. Nabot, J. Ernoult, et al. Preparation and properties of MoS_2 films grown by DC magnetron sputtering. Surface and Coatings Technology, 1990,41: 127-134.
    
    138. F. Levy, J. Moser. High-resolution cross-sectional studies and properties of molybdenite coatings. Surface and Coatings Technology, 1994,68-69: 433-438.
    
    139.赵亚凡.钛合金表面脉冲激光沉积生物玻璃薄膜的研究.博士学位论文.山东大学,2007.
    
    140.黄锡森.金属真空表面强化的原理与应用.上海:上海交通大学出版社,1989.
    
    141.张九渊.表面工程与失效分析.浙江:浙江大学出版社,2005.
    
    142.李恒德,肖纪美.涂层表面与界面.北京:清华大学出版社,1990.
    
    143. K. J. Wahl, I. L. Singer. Quantification of a lubricant transfer process that enhances the sliding life of a MoS_2 Coating. Tribology Letters, 1995, 1: 59-66.
    
    144. M. R. Hilton, R. Bauer, P. D. Fleischauer. Tribological performance and deformation of sputter-deposited MoS_2 solid lubricant films during sliding wear and indentation contact. Thin Solid Films, 1990,188:219.
    
    145.陈日曜.金属切削原理.北京:机械工业出版社,1992.
    
    146.A.D.Sarkar.邵荷生译.金属磨损原理.北京:煤炭工业出版社.1980.
    
    147. A. W. Batchelor, G.W. Stachowiak. Tribology in materials processing. Journal of Materials Processing Technology, 1995,145 (2): 503-515.
    
    148. J. P. Hirth, D.A. Rigney. Plastic deformation and sliding friction of metal. Wear, 1979, 53 (3): 345-370.
    
    149. F. P. Bowden, D. Tabor. The Friction and Lubrication of Solid. Oxford: Clarenden Press, 1964.
    
    150.温诗铸.摩擦学原理.北京:清华大学出版社,1990.
    
    151.肖继明,李言,自力静等.CrAlTiN梯度涂层高速钢刀具的切削性能研究.机械科学与技术, 2005,24(11):1346-1349.
    
    152.肖继明,李言,自力静等.CrAlTiN涂层高速钢刀具的钻削性能和磨损性能.材料热处理 学报,2005,26(6):117-121.
    
    153.赵金龙,邓建新,宋文龙.MoS_2软涂层刀具的基体材料优选及涂层制备.材料工程,2007, (12):30-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700