钛合金表面纳米热障涂层的制备与组织性能及其表面激光重熔的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金是重要的结构材料和功能材料,具有低密度、高比强度、较宽的工作温度范围和优异的耐腐蚀性能等特性。受高温氧化的影响,钛合金最高使用温度范围只有600℃左右。热障涂层是先进的高温防护涂层,在航空航天、轮船、能源等领域有着广泛的研究与应用背景。在钛合金表面制备热障涂层,不仅可以使零件轻型化,而且可以通过热障涂层的有效隔热和抗氧化保护,在高温下阻止钛合金表面的氧化和氧、氮元素向钛合金内部的扩散,从而提高钛合金抗氧化能力,阻挡高温侵袭,显著提高钛合金短期的使用温度和组织稳定性。
     本论文从这一角度出发,针对钛合金表面纳米热障涂层的制备和组织性能进行了系统的实验研究与分析,并以常规热障涂层为参照进行了对比。对等离子喷涂后纳米热障涂层系统的微观组织与性能、钛合金表面纳米热障涂层的隔热效果,热震失效形式与机制,残余应力分布以及激光重熔技术对纳米陶瓷层的影响等方面进行了深入的研究与分析。
     采用大气等离子喷涂技术在TC11钛合金表面制备了纳米热障涂层,并对其微观组织和性能进行了表征。研究表明:等离子喷涂后,TC11钛合金内部组织没有产生明显变化。基体/粘结层/陶瓷层之间主要以机械物理形式结合。与常规陶瓷层相比,纳米陶瓷层的层片较薄,层片间结合紧密。纳米陶瓷层中的纳米结构来自未熔的纳米喷涂粉末以及熔融颗粒快速冷却重结晶析出的纳米柱状晶。纳米和常规陶瓷层均表现出双态孔隙大小分布,纳米陶瓷层的孔隙率较低,并且孔隙更加细小,分布均匀。力学性能上,等离子喷涂陶瓷层表现出明显的各向异性,截面显微硬度平均值高于表面;纳米陶瓷层的显微硬度高于常规陶瓷层,两者截面的Weibull分布均呈现双态分布,纳米陶瓷层中显微硬度的分散性低于常规陶瓷层。钛合金表面纳米热障涂层结合强度高于常规涂层。粘结层与钛合金基体的结合强度好于陶瓷层与粘结层之间的结合。
     对等离子喷涂纳米陶瓷层的热物理性能和隔热效果进行了测试与分析。常规陶瓷层的热膨胀系数约为10.4×10-6 K-1;纳米陶瓷层的热膨胀系数约为11.3×10-6 K-1,提高了约9%。纳米陶瓷层的导热系数低于常规陶瓷层。两者导热系数均随着温度的上升,略有升高。隔热实验表明:各试样均在约180 s达到了稳定热流状态;纳米涂层试样表现出良好的隔热性能,其最大的隔热效果达到了约130℃;而常规涂层试样的最大隔热效果不到80℃。隔热效果与陶瓷层厚度基本呈线性比例增长关系。
     基于力平衡、弯矩平衡和梁的弯曲理论,采用逐层模式对钛合金表面等离子喷涂后的热障涂层系统残余应力进行了分析,并与实际测试结果相比较。综合考虑淬火效应与热物理性能失配导致残余应力的计算结果更接近测试值。热失配产生的压应力在陶瓷层残余应力中占优势地位;而淬火拉应力则由于陶瓷层中微裂纹的产生得到了有效的释放。相对于常规陶瓷层,纳米陶瓷层具有更低的残余压应力;陶瓷涂层表面的残余压应力绝对值随着厚度的减薄而增加。
     分析了钛合金表面纳米热障涂层的热震失效形式与机制。钛合金表面纳米热障涂层的失效以陶瓷层表面出现剥落或大块凸起为特征,薄弱环节存在于粘结层与陶瓷层界面。随着热震循环的进行,在粘结层界面的钛合金基体也会因热膨胀系数失配而形成孔洞等缺陷,降低了界面强度。纳米涂层试样的抗热震性优于常规涂层试样。热震循环过程中,因热膨胀系数失配首先在陶瓷层/粘结层界面形成垂直界面的内部微裂纹。随着热震的进行,垂直裂纹不断扩展,粘结层的波动振幅逐渐加剧,在陶瓷层/粘结层界面附近形成水平微裂纹。陶瓷层内靠近粘结层界面的水平微裂纹扩展与合并,并沿着平行于陶瓷层/粘结层界面在陶瓷层中传播,最终导致了陶瓷层的剥落失效。随着热震温度的升高,常规和纳米涂层试样的热震循环次数显著减少;不同热震温度下,纳米涂层试样的热震循环次数始终高于常规涂层试样;钛合金表面热障涂层的热震寿命与陶瓷层厚度呈负向变化。热震后,钛合金基体与粘结层界面形成扩散反应层。扩散层主要由Ti和Ni元素组成。由于Ni、Ti元素的扩散与反应,从与钛合金基体的接触界面开始,扩散层中依次生成了Ti2Ni,TiNi,AlNi2Ti和Ni3(Al,Ti)等新相。
     对等离子喷涂纳米陶瓷层表面进行了激光重熔以及激光重熔试样的抗热震性能研究。研究表明:激光重熔后,陶瓷层表面形成网状微裂纹与凹坑,表面粗糙度明显下降。随着激光扫描速度的减小,陶瓷层的网状微裂纹分布逐渐稀疏,龟裂程度逐渐变大,表面凹坑呈增加和增大的趋势,表面粗糙度上升。激光重熔区域中心处熔深随着激光平均能量的增加而近似线性比例增加,熔宽也随着激光平均能量的增加而增加,在相同工艺条件下,纳米陶瓷层的熔深和熔宽始终大于常规陶瓷层。陶瓷层重熔区形成致密的柱状晶组织,消除了等离子喷涂层中常见的孔隙、未熔颗粒等缺陷。与常规陶瓷层比较,纳米陶瓷层中柱状晶粒直径稍大。激光工艺参数对重熔层组织形貌影响较为显著。扫描速度高时,陶瓷层重熔组织为单一的柱状晶结构;扫描速度降低后,则得到表面等轴晶+柱状晶双层结构的重熔层。激光重熔导致纳米和常规陶瓷层内出现分割裂纹。分割裂纹始于重熔层,向涂层内部延伸,但并没有全部贯穿整个陶瓷涂层。随着激光扫描速度的增加,陶瓷涂层内分割裂纹密度近似线性比例提高。激光重熔后的纳米陶瓷层更易获得垂直表面的分割裂纹,其密度高于常规陶瓷层。激光重熔对纳米试样热震性能的影响是双重的。在较高扫描速度下,激光重熔试样的热震寿命高于等离子喷涂态涂层试样;但在较低扫描速度下,激光重熔试样的热震寿命反而低于等离子喷涂态试样。激光重熔纳米试样的热震次数随着扫描速度的降低而降低。
Titanium and its alloys play important roles in new structural materials. The applications of titanium are mainly focused on its high specific strength at room and elevated temperatures, unique corrosion resistance and nonmagnetic properties. This fact has predetermined the wide use of its alloys in aircraft and space industries. However, poor oxidation resistance and oxygen induced embrittlement deteriorate the application of titanium alloy at high temperatures. This poor oxidation resistance results from the formation of a non-protective oxide scale consisting of a heterogeneous mixture of alumina and titania on high temperature exposure. Deposition of protective and thermally insulating coatings is considered as an effective means to reduce the substrate temperature and suppress both oxidation and oxygen induced embrittlement.
     Thermal barrier coatings (TBCs) have been widely used to provide thermal protection to metallic components from the hot gas stream in gas-turbine engines due to their low thermal conductivity and thermal diffusivity combined with proper chemical stability at high temperatures. The TBC system allows conventional metals to be reliably used at high temperatures because the ceramic layer provides thermal stability to the base metal due to insulation from the heat, while the metallic bond coat provides oxidation resistance, and sufficient toughness. Consequently, plasma spraying thermal barrier coatings on titanium alloy substrates is a shortcut to improve the short-term properties of the titanium alloy at high temperatures.
     Based on this, a systematic study of nanostructured TBCs on titanium alloy has been carried out. The characterization of nanostructured TBC, the mechanical and thermophysical properties of nanostructured TBCs, heat insulating effect, residual stress in the coating system after plasma spraying, thermal shock behavior and failure mechanism, and surface lazer-glazing have been investigated.
     Nanostructured TBCs were applied on the titanium alloy by air plasma spraying. Conventional counterparts which were used for comparison were fabricated as well. The microstructure of the titanium alloy inside the substrate keeps unchanged after plasma spraying. Neither interaction nor atomic diffusion evidently takes place at the bond coat/substrate interface. However, there exists a thin layer of plastic deformation zone in the substrate beneath the bond coat/substrate interface and its thickness is non-uniform. The as-sprayed ceramic coatings show a typical lamellar structure in an overlapping and interlocking fashion. Compared to the conventional ceramic coatings, the nanostructured ones have thinner laminas, and which are banded together more tightly. The nanostructure in the ceramic coating is originated from the unmelted powders and the nanostructured columnar grains derived from the melted powders after cooling rapidly. The surface connected porosities in both conventional and nanostructured ceramic coatings present a typical bimodal pore size distribution. The porosity in the nanostructured coating has a lower value than the conventional one. The micropores in the nanostructured coating are smaller and distributed evenly as well. Micro-mechanical property results show that anisotropy in microhardness between the cross section and the top surface of the ceramic coating is examined because of the lamellar structure. The nanostructured ceramic coatings have higher microhardness and adhesive strength compared to the conventional one. Both coatings demonstrate a bimodal distribution of microhardness values, as evidenced by their weibull plots. The nanostructured coating presents a better adhesive strength than the conventional one.
     Thermophysical properties and heat insulating test are measured. Coefficient of thermal expansion (CTE) for the conventional ceramic coating is 10.4×10~(-6) K~(-1), while it is 11.3~(-6) K~(-1) for the nanostructured one. The conventional ceramic coating has the higher thermal conductivity. In general, the thermal conductivities of all the coatings increase slightly with increasing temperatures. The heat insulation test results reveal that all samples reach a state of thermal stability within 180 s, and the nanostructured TBC with smaller micropores presents a better heat insulation effect with a temperature drop of about 130℃. The heat insulation is proportional to the TBC’s thickness.
     An analytical model of distribution of thermal stress in TBCs on the substrate of titanium alloys has been derived based on force, moment balances and classical beam bending theory. The quenching stresses set up due to the progressive deposition process are considered, followed by those due to CTE mismatch during final cooling to room temperature. The calculated values are compared with the measured residual stresses at the ceramic surface, which shows a reasonable agreement. The stresses due to the mismatch of CTE are dominant since the quenching stresses are released largely by generating microcracks. The nanostructured ceramic coatings present lower residual stresses than the conventional counterparts. The absolute values of residual stress at the ceramic surface are increased with the decrease of ceramic coating thickness.
     The behaviors of the resistance of TBCs on titanium alloy to thermal shock have been studied, and the corresponding failure modes have been put forward. The failure of TBCs on titanium alloy is characterized by spallation and delamination at the ceramic coatings. The weak link exist at the ceramic coating/bond coat interface. During thermal shock cycles, some pores also appear at the substrate/bond coat interface due to the mismatch of CTE. The vertical microcracks are formed firstly near the bond coat, and then propagating in the ceramic coatings. During thermal shock cycling, the undulation of bond coat get amplified, and the horizontal microcracks are generated at the ceramic coating/bond coat interface as well. The horizontal microcracks propagate parallel to the interface in the ceramic coating, and coalesce, which result in the failure of TBCs on titanium alloy. The nanostructured samples have exhibited promising lifetime than the conventional ones. With the increase of temperature, the numbers of thermal shock cycling for both kinds of sample decrease obviously. The lifetime of samples is proportional adversely to the ceramic coating thickness during thermal shock test. After thermal shock test, a diffusion area is developed near the bond coat/substrate interface in the substrate. The diffusion area is concentrated of Ni and Ti elements. Because of the reaction of Ni and Ti, new compounds such as Ti2Ni,TiNi,AlNi2Ti, and Ni3(Al,Ti) have been come into being along the thickness of the diffusion area.
     Plasma-sprayed conventional and nanostructured ceramic coatings have been subjected to laser-glazing processes which provide a remelting and subsequent solidification of the surface. The results revealed that laser-glazing carried out on plasma-sprayed zirconia coatings has brought in a smooth and dense glazed surface with craters and a network of microcracks. The microcrack network in the conventional coating is sparser than that in the nanostructured coating. For both kinds of ceramic coatings, with the decrease of laser scanning speeds, the microcrack networks turn sparser, and the craters at the surfaces increase. A reduction on surface roughness is achieved after laser processing. The surface roughness increases with the decrease of laser scanning speed for both kinds of coatings. The nanostructured coatings have a deeper and wider molten region than the conventional coatings at the same laser processing conditions. For both kinds of ceramic coatings, the track depths increase with increasing the mean laser energy density in an approximately linearly proportional way; the track widths increase with the increase of mean laser energy density as well. The laser-glazed regions consist of a columnar microstructure. The columnar grain sizes in the nanostructured coating are bigger slightly than that in the conventional coating. With the decrease of scanning speed, for both kinds of coatings, the columnar grain sizes increase, and pores within the column grains is diminished. There are segmentation microcracks in the laser-glazed ceramic coatings. Most of segmentation microcracks don’t run through the coatings along thickness. Some of the segmentation microcracks across the densified layers are perpendicular to the surface and start to deviate from the vertical direction within the porous plasma-sprayed coating. The segmentation microcrack density is more dependent on the laser scanning speed, resulting in higher densities of segmentation microcrack with the increase of the scanning speed. The laser-glazed conventional ceramic coatings have lower Ds values than the nanostructured one. The thermal shock resistance of laser-glazed nanostructured ceramic coating under high laser scanning is improved, which has more thermal shock cycling times than that of the plasma–sprayed TBCs on titanium alloy. However, for the samples which are laser-treated at low scanning speed, their thermal shock resistances are deteriorated.
引文
[1] C. Leyens, M. Peters.钛与钛合金.北京:化学工业出版社,2005.3.
    [2]陶春虎,刘庆瑔,曹春晓,张卫方.航空用钛合金的失效及其预防.北京:国防科技出版社, 2002.9.
    [3]王金友,葛志明,周彦邦.航空用钛合金.上海:上海科技出版社, 1985.7.
    [4] R. Boyer, G. Welsch, E. Collings. Materials properties handbook: Titanium alloys. ASM international, Metals Park, OH, USA, 1994.
    [5] R. Boyer. An overview on the use of titanium in aerospace industry. Materials science and engineering, 1996, A213: 103-114.
    [6] M. Peters. Titanium alloys for aerospace applications. Titanium world, 1995, 2: 15-17.
    [7] J. C. Williams. Alternative materials choices-some challenges to the increased use of Ti alloys. Materials Science and Engineering, 1999, A163: 107-111.
    [8] R. Boyer. Titanium for aerospace: Rationale and applications. Advanced performance Materials, 1995, 2: 349-368.
    [9]江泽民.对中国能源问题的思考.上海交通大学学报, 2008, 42(3):1-15.
    [10] R. Martin, D.Evans. Reducing coast in aircraft. Journal of Metals, 2000, 52: 24-29.
    [11] K. Faller, F. Froes. The use of titanium in family automobiles: current trends. J. materials science, 2001, 54(4): 27-28.
    [12] W. Bramer. Biocompatibility of dental alloys. Advanced engineering materials, 2001, 3(10): 753-761.
    [13] F. Froes. Will the titanium golf club be tomorrow’s mashy niblick. Journal of metals, 1999, 51: 18-20.
    [14] C. Leyens, R. Braun, M. Frohlich, P. Hovsepian. Recent progress in the coating protection of gamma titanium aluminides. Journal of metals. 2006, 58(1): 17-21.
    [15] S. Yamaguchi. Interstitial order-disorder transformation in the Ti-O solid solution. I. ordered arrangement of oxygen. Journal of Physical Soc. Japan, 1969: 155-163.
    [16] S. Yamaguchi, T. Shibata, S. Itoh. Oxidation behavior of TiAl at high temperature in purified oxygen. Materials transaction, 1991, 32(2): 151-156.
    [17] T. A. Wallance, R. K. Clark, K. Wiedemann, S. Sankaran. Oxidation characteristics of Ti-25Al-10Nb-3V-1Mo. Oxidation of metals, 1992, 37: 111-124.
    [18] T. Shimizu, T. Ikubo, Isobe. Cyclic oxidation resistance of an intermetallic compound TiAl. Materials science and engineering, 1992, A153: 602-607.
    [19] C. Wagner. Formation of composite scales consisting of oxides of different metals. Journal of the Electrochemical Society, 1956, 103(11): 627-633.
    [20] D. Douglass. A critique of internal oxidation in alloys during the post-Wagner era. Oxidation of metals, 1955. 44(1/2): 81-111.
    [21] J. P. Bar, D. David, E. Etchessahar, J. Debuigne. Titanium alpha Nitrogen solid solution formed by high temperature nitriding: diffusion of Nitrogen, hardness and crystallographic parameters. Metallurgical transactions A, 1983, 14A: 1537-1543.
    [22] J. Smilek, J. Nesbitt, W. Brindley, M. Brady, J. Doychak. Service limitations for oxidation resistant intermetallic compounds. In Mat. Res. Soc. Symp. Proc., 1995, Materials research society.
    [23]徐杰,张春华,张松,康煜平,朱圣龙,王福会,才庆魁.钛合金表面防护技术及发展.钛工业进展, 2003, 20(3):17-21.
    [24]刘凤岭,李金桂,冯自修.钛合金表面技术的进展.腐蚀与防护, 2001, 22(2): 54-57.
    [25]何利舰,张小农.钛及钛合金的表面处理技术新进展.上海金属, 2005, 27(3): 39-45.
    [26] Y. Shida, A. Amada. The effect of various ternary additives on the oxidation behavior of TiAl in high temperature air. Oxidation of metals, 1996, 45(1-2): 197-218.
    [27] Y. Shida, A. Amada. Role of W, Mo, Nb and Si on oxidation of TiAl on air at high temperature. Materials transactions, 1994, 35(9): 623-631.
    [28] C. Leyens, H. Gedanitz. Long term oxidation of orthorhombic alloy Ti-22Al-25Nb in air between 650 and 800℃. Scripta Materialia, 1999, 41(8): 901-906.
    [29] C. Leyens, J. W. Vanliere. Mangnetron-Sputtered Ti-Cr-Al coating for oxidation protection of titanium alloy. Surf. Coat. Technol., 1998, 108: 30-35.
    [30]熊玉明,王福会.搪瓷涂层对Ti60合金氧化腐蚀性能的影响.金属学报, 1999, 35 (Sup.):215-219.
    [31] D. Xie, Y. Xiong, F. Wang. Effect of an Enamel Coating on the Oxidation and Hot Corrosion Behavior of an HVOF Sprayed Co-Ni-Cr-AI-Y Coating. Oxidation ofMetals, 2003, 59(5): 503-516.
    [32]王福会,李东,吴维涛.涂层对高温钛合金抗氧化性能的影响.金属学报, 1995, 31(S1): 602-605.
    [33]刘海平,汪晓红,郝杉杉,冯自修,郝孟一. Ti60合金在空气中的高温氧化行为及涂层防护.材料工程, 1998, 7:18-20.
    [34]汪晓红,刘海平,郝杉杉,冯自修,李金桂. Ti3Al基体/NiCoCrAlY涂层体系界面固态反应行为研究.航空材料学报, 1997, 17(4):8-14.
    [35] Haiping Liu, Shanshan Hao, Xiaohong Wang. Interaction of a nearαtype titanium alloy with NiCrAlY protective coating at high temperatures. Scripta Materialia, 1998, 39: 1443-1450.
    [36] R. Clark, J. Unnam, K. Wiedeman. Effect of coatings on oxidation of Ti- 6Al- 2Sn- 4Zr- 2Mo foil. Oxid. Met., 1987, 28(5-6): 391-405.
    [37] D.W. Mckee, K.L. Luthra. Plasma sprayed coatings for titanium alloy oxidation protection. surface and coatings technology, 1993, 56: 109-117.
    [38]崔文芳,罗国珍,周廉,洪权.高温合金溅射NiCrAlY涂层氧化行为的研究.稀有金属材料与工程,1998,27(6):348-351.
    [39]向兴华,全成军,朱景川,尹钟大.钛合金表面等离子喷涂ZrO2-NiCoCrAlY梯度涂层的抗热震行为.宇航学报,1998,19(2):15-20.
    [40]尹钟大,向兴华,朱景川,来忠红.钛合金表面等离子喷涂制备ZrO2-Ti系功能梯度涂层.中国有色金属学报,1996,6(3):63-66.
    [41]向兴华,刘正义,李尚周,尹钟大,朱景川.等离子喷涂ZrO2-N iCoCrAlY梯度涂层的界面强化热处理工艺.中国有色金属学报, 1999, 9(3):14-18.
    [42] R. Braun, C. Leyens, M. Frohlich. Performance of thermal barrier coatings onγ-TiAl. Materials and corrosion, 2005, 56 (12): 930-936.
    [43] N.P. Padture, M. Gell, E. H. Jordan, Thermal barrier coatings for Gas-turbine engine application. Science, 2002, 296: 280-284.
    [44] R. A. Miller. Thermal barrier coatings for aircraft engines: History and Directions. J. Thermal Spray Technology, 1997, 6: 35~42.
    [45] R. A. Miller. Current status of the thermal barrier coatings—an overview. Surface andCoatings Technology, 1987, 30:1~11.
    [46]李建葆,周益春.新材料科学及其实用技术.北京:清华大学出版社,2004: 464-521.
    [47] G W Goward. Progress in coatings for gas turbine airfoils. Surface and Coatings Technology, 108-109(1998): 73-79.
    [48]周洪,李飞,何博,王俊,孙宝德.热障涂层材料研究进展.材料导报, 2006,20(10):40-43.
    [49]周宏明,易丹青,余志明,肖来荣.热障涂层的研究现状与发展方向.材料导报, 2006, 20(3): 4-7.
    [50] S. Uwe, L. Christoph, F. Klaus. Some recent trends in research and technology of advanced thermal barrier coatings. Aerospace Sci. Techn., 2003, 7: 7-12.
    [51]张玉娟,张玉驰,孙晓峰.热障涂层的发展现状.材料保护, 2004, 37(6): 26-30.
    [52] I. Kverns, E. Lugscheider. Thick thermal barrier coatings for diesel engines. Surf. Eng., 1995, 11(4): 296-300.
    [53]田永生,陈传忠,刘军红. ZrO2热障涂层研究进展.中国机械工程,2005,16(16):1499-1503.
    [54]林锋,蒋显亮.热障涂层的研究进展.功能材料,2003,34(3):254-257.
    [55]李晓海,陈贵清,孟松鹤等.热障涂层的研究进展.宇航材料工艺,2004,(1):1~6.
    [56]邓世均.高性能陶瓷涂层,北京:化学工业出版社,2003.8
    [57]徐惠彬,宫声凯,刘福顺.航空发动机热障涂层材料体系的研究.航空学报,2000,21(1):7~12.
    [58] X. Cao, R.Vassen, D. Stoever. Ceramic materials for thermal barrier coatings. Journal of the European Ceramic Society, 2004, 24 : 1–10.
    [59] S. Stecura, S. Stephan, New ZrO2-Y2O3 Plasma-sprayed coatings for thermal barrier applications. Thin solid films, 1987, 150:15-40.
    [60] S. Stecura, G. Liebert. Thermal barrier coating for high temperature components. Am. Ceram. Soc. Bull, 1977, 56: 1082-1085.
    [61] R. Mcpherson. A review of microstructure and properties of plasma sprayed ceramic coatings. Surf. Coat. Tech., 1989, 39/40(1-3):173-181.
    [62]周玉.陶瓷材料学,哈尔滨:哈尔滨工业大学出版社,1995.
    [63] R. Taylor, J. Brandon, P. Morrell, Microstructure composition and property relationships of plasma sprayed thermal barrier coatings. Surf. Coat. Technol., 1992, 50: 141-146.
    [64] J. Brandon, R. Taylor. Phase stability of zirconia based thermal barrier coatings: part I. zirconia-yttria alloys. Surface and Coatings Technology, 1992, 46: 75-80.
    [65] W. Brindley, R. Miller. Thermal barrier coating life and isothermal oxidation of low pressure plasma-sprayed bond coat alloys. Surf. Coat. Technol., 1990, 43-44: 446-457.
    [66] T. A. Talor, P. N. Walsh. Thermal expansion of MCrAlY alloys, Surf. Coat. Tech., 2004, 177-178:24-31.
    [67]武颖娜,柯培玲,孙超等.爆炸喷涂制备NiCrAlY/NiAl/YSZ体系热障涂层.金属学报,2005,40(5):541-545.
    [68] Y. Longa, M. Takemoto. IR-laser treatment of thermal sprayed MCrAlY coatings and their high temperature corrosion behavior. Mater. Manu. Proc., 1995, 10(2): 217-222.
    [69] N. Czech, F. Schmitz, W. Stamm. Improvement of MCrAlY Coatings by addition of rhenium. Surf. Coat. Technol. 1994, 68-69: 17~21.
    [70] R. Va?en, M. Dietrich, H. Lehmann. Development of oxide ceramic for an application as TBCs. Material Sci. Technol., 2001, 32(8): 673-677.
    [71] Schmitt-Thomas, Kh.G., U. Dietl. Thermal barrier coatings with improved oxidation resistance. Surface and Coatings Technology, 1994, 68-69: 113-115.
    [72] B. Movchan. Functional graded EB-PVD coatings. Surface and Coatings Technology, 2002, 149: 252~300.
    [73] J. H. Kim, M. C. Kim, C. G. Park. Evaluation of functionally graded thermal barrier coatings fabricated by detonation gun spray technique. Surf. Coat. Technol., 2003, 168(2-3): 275-280.
    [74]郭洪波.电子束物理气相沉积梯度热障涂层热疲劳行为及失效机制, [博士论文].北京:北京航空航天大学,2001.8
    [75] K. Landes, Diagnostics in plasma spraying techniques. Surf. Coat. Technol., 2006, 205(5): 1948-1954.
    [76] J. Clare, D. Crawmer. Thermal spraying coating. ASM Handbook, 1994, 5: 361-374.
    [77] A. Kulkarni, A. Vaidya, A. Goland, et al. Processing effects on porosity property correlations in plasma sprayed yttria stabilized zirconia coatings. Mater. Sci. Eng., 2003, A359 (1/2):100-111.
    [78] J. Cizek, K. Khor, Z. Prochaza. Influence of spraying conditions on thermal and velocity properties of plasma sprayed hydroxyapatite. Mater. Sci. Eng., 2007, C27 (2):340-344.
    [79] J. Madejski. Solidification of droplet on a clod surface. Int. J. heat Mass Transfer, 1976, 19(9): 1009-1013.
    [80] A. Ohmori, C. Li. Quantitative characterization of the structure of plasma sprayed Al2O3 coating by using copper electroplating. Thin solid film, 1991, 201(2): 241-252.
    [81] S.Meier, D. Gupta, at al. Ceramic thermal barrier coatings for commercial gas turbine engines. JOM, 1985, 15:378-382.
    [82] B. Movchan. EB-PVD technology in the gas turbine industry-present and future. JOM, 1996, 48(11): 40-45.
    [83] U. Schulz, K. Fritscher. Thermal cyclic behavior of microstructurally modified EB-PVD thermal barrier coatings. Mat. Sci. Forum, 1997, 251-254: 957-964.
    [84] G. George, C. Chang, W. Phucharoen. Behavior of thermal barrier coatings for advanced gas turbine blades. Surf. Coat. Technol. 1987, 30: 13-28.
    [85] George, C. Chang, W. Phucharoen, R. Miller. Finite element thermal stress for thermal barrier coatings. Surf. Coat. Technol. 1987, 32: 307-312.
    [86] T. Cruse. Thermal barrier coatings life prediction model development. J. Engine for gas turbine and power, 1988, 110: 610-616.
    [87] K. Schneider, H. Grunling. Oxidation behaviors of MCrAlY coatings. Thin solid films, 1980, 73:455-459.
    [88] J. Haynes, E. Rigney, M. Ferber, W. Porter. Oxidation and degradation of a plasma sprayed thermal barrier coating system. Surf. Coat. Technol., 1996, 86-87:102-108.
    [89] P. Scardi, M. Leoni, L. Nertamini, M. Marchese. Residual stress in plasma sprayed YPSZ coatings on piston heads. Surf. Coat. Technol., 1996, 86-87:109-115.
    [90] S. Tjong, Haydn Chen. Nanocrystalline materials and coatings. Materials Science and Engineering, R45 (2004):1–88.
    [91] J. He, J. Schoenung. Nanostructured coatings. Materials Science and Engineering, A336 (2002): 274–319
    [92] H. Gleiter. Nanocrystalline materials. Process in Materials Science, 1989, 33 (4):223-315.
    [93] H. Jiang, M. Lau, E. Lavernia. Grain growth behavior of nanocrystalline inconel 718 and Ni powders and coatings. Nanostructured Materials, 1998, 10(2-8): 169-178.
    [94] J. L. Shi, Z. L. Lu, J. H. Gao, et al. Microstructure and micro-mechanical properties of Y-TZP and Y-TZP/Al2O3 composite after superplastic deformation. Acta. Mater. 1998, 46 (6): 1923-1932.
    [95] H. Chen, Y. Zhang, C. Ding, Tribological properties of nanostructured zirconia coatings deposited by plasma spraying. Wear, 2002, 253: 885–893.
    [96] H. Chen, C. Ding. Nanostructured zirconia coating prepared by atmospheric plasma spraying. Surf. Coat Technol. 150(2002):31-36.
    [97] H. Chen, X. Zhou, C. Ding. Investigation of the thermomechanical properties of a plasma sprayed nanostructured zirconia coating. J. Eur. Ceram Soc., 2003, 23: 1449-1455.
    [98] B. Liang, C. Ding, H. Liao. Phase composition and stability of nanostructured 4.7 wt. % yttria-stabilized zirconia coatings deposited by atmospheric plasma spraying. Surf. Coat. Technol., 2006, 200: 4549– 4556.
    [99] I. Ahmed, T. Bergman. Thermal modeling of plasma spray deposition of nanostructured ceramics. J. thermal spray technology, 1999, 8(3): 315-322.
    [100] R. Lima. Microstructural characteristics of plasma sprayed nanostructured partially stabilized zirconia. Ph.D dissertation, State University of New York at Stony Brook, 2001.
    [101] R. Lima, A. Kucuk, C.C. Berndt. Evaluation of microhardness and elastic modulus of thermally sprayed nanostructured zirconia coatings. Surface and Coatings Technology, 2001, 135:166-172.
    [102] R.S. Lima, A. Kucuk, C.C. Berndt. Integrity of nanostructured partially stabilized zirconia after plasma spray processing. Materials Science and Engineering, 2001, A313: 75–82.
    [103] J. Li, X. Wang. Improvement in wear resistance of plasma sprayed yttria stabilized zirconia coating using nanostructured powder. Tribology international, 2004, 37:77-84.
    [104] A. Jadhav, N. PAdture, F. Wu, E. Jordan, M. Gell. Thick ceramic thermal barrier coatings with high durability deposited using solution precursor plasma spray. Materials Science and Engineering, 2005, A405:313-320.
    [105] N. Iwamote, N. Umesaki. Surface treatment of plasma sprayed ceramic coatings by a laser beam. Surface and Coatings Technology, 1988, 34: 59-67.
    [106] M. Boas, M. Bambergerm, G. Revez. Laser alloying of plasma sprayed WC/Co layer to enhance wear properties. Surface and Coatings Technology, 1990, 42: 175-186.
    [107]张罡,梁勇.激光制备陶瓷热障涂层的研究和发展.沈阳工业大学学报,2000,19(1):1-7.
    [108]陈国锋,冯钟潮,梁勇.激光重熔处理工艺对等离子喷涂热障涂层组织的影响.激光杂志,1999, 20(6): 235-236.
    [109]张罡,武颖娜,梁勇等.矩形光束激光重熔等离子喷涂热障涂层热震试验研究.激光杂志, 2001, 22(6): 65-67.
    [110]张罡,武颖娜,梁勇等.激光重熔工艺参数对热障涂层热震性能的影响.激光技术,2002, 26(5): 730-735.
    [111] K.M. Jasim, R. Dawtings, D. West. Stability of ZrO2 - Y2O3 t’Phase formed during laser sealing. Mater. Sci. Technol., 1992, 8(1): 83~91.
    [112] K.M. Jasim, R. Dawtings, D. West. Characterization of plasma sprayed layers of fully ytteria stablized zirconia modified by laser sealing. Surf. Coat. Technol., 1992, 53: 75-86.
    [113] K.M. Jasim, R. Dawtings, D. West. Pulsed laser sealing of plasma sprayed layers of 8wt. % yttria stabilized zircon. J. Mater. Sci., 1992, 27: 3903-3910.
    [114] A. Petitbon, L. Boquet. Laser surface scaling and strengthening of zirconia coatings. Surface and coatings technology, 1991, 49: 57-61.
    [115] A. Petitbon, D. Guignot, U. Fischer. Laser surface treatment of ceramic coating. Mater. Sci. Eng., 1989, A121: 545-548.
    [116] R. A. Miller, C. C. Berndt. Thin Solid Films, 1984, 119: 195-201.
    [117] H. L. Tsai, P. C. Tsai. Performace of laser glazed plasma sprayed thermal barrier coatings in cyclic oxidation tests, Surf. Coat. Technol., 1995, 71: 53-59.
    [118] P. C. Tsai, C. S. Hsu. High temperature corrosion resistance and microstructuralevaluation of laser-glazed plasma-sprayed zirconia/MCrAlY thermal barrier coatings, Surf. Coat. Technol., 2004, 183: 29-34.
    [119] P. C. Tsai, J. H. Lee,C. S. Hsu. Hot corrosion behavior of laser glazed plasma sprayed yttria stabilized zirconia thermal barrier coatings in the presence of V2O5. Surf. Coat. Technol., 2007, 201: 5143-5147.
    [1]编委会编.工程材料实用手册.北京:机械工业出版社, 1989: 652-669.
    [2]王金友,葛志明,周彦邦.航空用钛合金,上海:上海科技出版社,1985.7.
    [3] N.P. Padture, Maurice Gell, E. H. Jordan, Thermal barrier coatings for Gas-turbine engine application, Science, 296(2002):280-284.
    [4] Miller R A. Thermal barrier coatings for aircraft engines: History and Directions. J. Thermal Spray Technology, 6(1997): 35~42.
    [5] S C Tjong, Haydn Chen, Nanocrystalline materials and coatings. Materials Science and Engineering, R45 (2004):1–88
    [6] J. H. He, J. M. Schoenung, Nanostructured coatings. Materials Science and Engineering, A336 (2002):274–319
    [7]李美姮,胡望宇,孙晓峰等. EB-PVD热障涂层的弹性模量和断裂韧性研究.稀有金属材料与过程, 2006, 35(4): 577-580.
    [8] D. B. Marshall, Tatsuo Noma, A. G. Evans. A Simple Method For Determining Elastic-Modulus-To-Hardness Ratios Using Knoop Indentation Measurements. Journal of the American Ceramic Society, 1982, 65C: 175.
    [9]陶春虎,刘庆瑔,曹春晓,张卫方.航空用钛合金的失效及其预防,北京:国防工业出版社,2002:208-209.
    [10] A. Ohmori, C. Li. Quantitative characterization of the structure of plasma sprayed Al2O3 coating by using copper electroplating. Thin solid film, 1991, 201(2): 241-252.
    [11] R. Mcpherson, Relationship between the mechanism of formation, microstructure and properties of plasma sprayed coatings. Thin solid film, 83(1981):297-310
    [12]邓世均.高性能陶瓷涂层,北京:化学工业出版社,2003.8
    [13] Z. Wang, A. Kulkarni, S. Deshpande. Effects of pores and interfaces on effective properties of plasma sprayed zirconia coatings. Acta. Mater., 2003, 51(18): 5319-5334.
    [14] T. Makamura, G. Qian, C. Bernt. Effects of pores on mechanical properties of plasma sprayed ceramic coatings. J. Am. Ceramic Soc., 2000, 83(3): 578-584.
    [15] R.S. Lima, A. Kucuk, C.C. Berndt, Integrity of nanostructured partially stabilized zirconia after plasma spray processing. Materials Science and Engineering, 2001, A313: 75–82.
    [16] H. Guo, R. Vaben, D. Stover, Thermophysical properties and thermal cycling behavior of plasma sprayed thick thermal barrier coatings. Surface and Coatings Technology,2005,192:48-56.
    [17] M. Gell, E.H. Jordan, Y.H. Sohn, Development and implementation of plasma sprayednanostructured ceramic coatings. Surface and Coatings Technology, 2001, 146 /147: 48–54.
    [18] M. Gell, Potential for nanostructured materials in gas turbine engines. Nano. Mater., 1995, 6 (5-8): 997-1000.
    [19] H. Chen, C.X. Ding, Nanostructured zirconia coating prepared by atmospheric plasma spraying. Surf. Coat Technol. 2002, 150: 31-36.
    [20] H. Chen, X.M. Zhou, C.X. Ding, Investigation of the thermomechanical properties of a plasma-sprayed nanostructured zirconia coating. J. Eur. Ceram Soc., 2003, 23: 1449-1455.
    [21]周玉.陶瓷材料学,哈尔滨:哈尔滨工业大学出版社,1995.
    [22] R. Taylor, J.R. Brandon, P. Morrell, Microstructure, composition and property relationships of plasma sprayed thermal barrier coatings, Surf. Coat. Technol., 1992, 50:141一149.
    [23] R. A. Miller, R. Garlick, J. L. Smialek. Phase distribution in plasma sprayed zirconia yttria, Ceram. Bull., 1983, 62(2): 1355-1358.
    [24] B. Liang, C. Ding, H. Liao, Phase composition and stability of nanostructured 4.7 wt. % yttria-stabilized zirconia coatings deposited by atmospheric plasma spraying. Surface & Coatings Technology, 2006, 200: 4549– 4556
    [25] R. C. Garvie, J. Phys. Chem., 1965, 69: 1238.
    [26] I. W. Chen, Y. H. Chiao, Acta. Metall., 1983, 31: 1627.
    [27] T. Chraska, PhD thesis, State University of New York at Stony Brook, NY, USA, 1999.
    [28] D. Tabor. Indentation hardness: fifty years on a personal view. Philo Mag. A, 1996, 74(5): 1207-1212.
    [29] S. Matthews, M. hyland, B. James. Microhardness variation in relation to carbide development in heat treated Cr3C2-NiCr thermal spray coatings. Acta Materialia, 2003, 51: 4267-4277.
    [30]龚江宏,关振铎.陶瓷材料压痕韧性的统计性质.无机材料学报, 2002, 17(1): 96-104.
    [31] R.S. Lima, A.Kucuk, C.C.Berndt. Bimodal Distribution Of Mechanical Properties OnPlasma Sprayed Nanostructured Partially Stabilized Zirconia .Materials Science and Engineering. 2002, A327: 224-232.
    [32] R.S.Lima, A.Kucuk, C.C. Berndt. Evaluation of microhardness and elastic modulus of thermally sprayed nanostructured zirconia coatings. Surface and Coatings Technology, 2001, 135: 166-172;
    [33] C. K. Lin, C. C. Lin, C.C. Berndt. Simulation of hardness testing on plasma sprayed coatings. J. Am. Ceram. Soc., 1995, 78(5):1406-1410
    [34] C. K. Lin, C.C. Berndt. Statistical ananlysis of microhardness variations in thermal spray coatings. J. Mater. Sci., 1995, 30:111-117.
    [35] R.E.Walpole, introduction to Statistics, Collier Macmillan, 1982;.
    [36] C. K. Lin, S.H. Leigh, C.C. Berndt. Investigation of plasma sprayed materials by Vickers indentation tests. Proceedings of the 14th International Thermal Spray Conference, Kobe, Japan. 1995: 903-908.
    [37] Lingyan Song, Dongfang Wu, Yongdan Li. Optimal probability estimators for determining Weibull parameters. J Mater. Sci. Letters, 2003, 22: 1651-1653.
    [38] O.M.Jadaan, N.N. Nemeth, J.Bagdahn, et al. Probabilistic Weibull behavior and mechanical properties of MEMS brittle materials. Journal of Materials Science Letters, 2003, 38:4087-4113.
    [39] M.-H.Berger, D.Jeulin. Statistical analysis of the failure stresses of ceramic fibers: Dependence of the Weibull parameters on the gauge length, diameter variation and fluctuation of defect density. J. Materials Science Letters, 2003,38: 2913-2923.
    [1] P.G. Klemens, M.Gell. Thermal conductivity of thermal barrier coatings. Mater. Sci. Eng., 1998, A245: 143-149;
    [2] D. R. Clark. Material selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coat. Technol., 2003, 163/164:67-74]
    [3]宫声凯,邓亮,毕晓方,等.陶瓷热障涂层的隔热效果研究.航空材料学报, 2000,21(Sup. 4):S25-S29.
    [4]朱健,胡传顺,尤国武,等.燃气轮机叶片热障涂层隔热效果计算.石油化工高等学校学报, 2003,16(4): 44-47.
    [5] JieWu, Novel low thermal conductivity ceramics for thermal barrier coating applications. PhD Thesis: University of Connecticut, 2004.
    [6]奚同庚.无机材料热物性学.上海:上海科学技术出版社,1981.
    [7]吴仁清,刘振群.无机功能材料热物理.广州:华南理工大学出版社,2003.
    [8]陈煌.等离子喷涂纳米氧化锆涂层的结构和性能研究.博士论文,中科院上海硅酸盐研究所,上海,2002.
    [9]周春根,王娜,宫声凯.热处理对纳米氧化锆热障涂层热物性的影响.北京航空航天大学学报, 2004, 30(10): 949-952.
    [10] D. Kim, H. Jung, Raman spectroscopy of tetragonal zirconia solid coat. J. Am. Ceram. Soc., 1993, 76(8):2106-2108.
    [11] J. Moon, H. Choi, H. Kim, C. Lee. The effects of heat treatment on the phase transformation behavior of plasma sprayed stabilized ZrO2 coatings. Surf. Coat. Technol., 2002, 155:1-10.
    [12]关振铎,张中太,焦金生.无机材料物理性能.北京:清华大学出版社,1992,p132.
    [13] Y. S. Touloukian, C. Y. Ho, Thermal Properties of Materials, The TPRC Data Series: Vol.5 Specific Heat, Plenum Press, New York, 1970.
    [14] Kingery W D. Property measurement at elevated temperature [M]. New York: John Wiley and Sons, 1959:139.
    [15] J. Francl, W. Kingery. Thrmal conductivity: IX, Experimental investigation of effect of porosity on thermal conductivity. J. Am. Ceram. Soc., 1954, 37(2):99.
    [16] A. Loeb. , Thrmal conductivity: VIII, A theory of thermal conductivity of porous materials. J. Am. Ceram. Soc., 1954, 37(2):96.
    [17] J. Nesbitt, Thermal modeling of various thernak barrier coatings in a high heat flux rocket engine, NASAGleen research center, 1991, OH 44135, USA.
    [1] R A. Miller. Current status of the thermal barrier coatings—an overview. Surface and coatings Technology. 1987, 30:1~11.
    [2] N. T. Padture, M. Gell, E. H. Jordan. Thermal barrier coatings for Gas-turbine engine application, Science, 2003, 296(56): 280-284.
    [3] S. J. Howard, Y. C. Tsui, T. W. Clyne. The effect of residual stresses on the debonding of coatings.–A model for delamination at a biomaterial interface. Acta metal mater, 1994, 42: 2823-2836.
    [4] Y. C. Tsui, T. W. Clyne. An analytical modal for predicting residual stresses in progressively deposited coatings. Part I: planar geometry. Thin solid film, 1997, 306: 23-33.
    [5] Y. C. Tsui, S. J. Howard, T. W. Clyne. The effect of residual stresses on the debonding of coatings: an experimental study of a thermal sprayed system. Acta metal mater, 1994,42: 2837-2844.
    [6] M. Mellali, P. Fauchais, A.Grimaud. Influence of substrate roughness and temperature on the adhesion/cohesion of alumina coating. Surface and coatings technology, 1996, 81: 275-286.
    [7] Y. C. Tsui, T. W. Clyne. An analytical modal for predicting residual stresses in progressively deposited coatings. Part III: Further development and applications. Thin solid film, 1997, 306: 52-61.
    [8] T. W. Clyne, S. C. Gill. Residual stresses in thermally sprayed coatings and their effect on interfacial adhesion: a review of recent work. J. Thermal spray technol., 1996, 5(4): 401-408.
    [9] X. Zhang, B.Xu, H. Wang. An analytical model for predicting thermal residual stresses in multilayer coating systems. Thin solid films, 2005, 488: 274-282.
    [10] X. Zhang, B.Xu, H. Wang. Residual stress distribution within high-temperature coatings. Surface and coating technology, 2007, 201: 6660-6662.
    [11] T. Mura. Mechanical of defects in solids. Hague: Martinus Nijhoff Publishers, The Netherlands, 1982.
    [12] S. Kuroda, T. W.Clyne. The quenching stress in thermally sprayed coatings. Thin solid films, 1991, 200: 49-66.
    [13] H. B. Guo, R. Vaben, D. stover. Thermalphysical properties and thermal cycling behavior of plasma sprayed thick thermal barrier coatings. Surface and Coatings Technology, 2005, 192: 48-56.
    [14]马维,潘文霞,张文宏等.热喷涂涂层中残余应力分析和检测研究进展.力学进展, 2002, 32(1): 41-56.
    [15] S. Suresh, A. E. Giannakopoulos, M. Olsson. Elastoplastic analysis of thermal cycling: layered materials with sharp interfaces. J. Mech. Phy. Solids, 1994, 42: 979-1018
    [16]邓世均.高性能陶瓷涂层[M],北京:化学工业出版社,2003.8.
    [17]周洪,李飞等.热障涂层材料研究进展.材料导报,2006,20(10):40-44.
    [18] R. S. Lima. Microstructural characteristics of plasma sprayed nanostructured partially stabilized zirconia[D]. Ph.D dissertation, State Univer. of New York at Stony Brook, 2001.
    [19] S. P. Timeshenko, J. M. Gere. Mechannics of materials [M]. D Van Nostrand Company, 1972, The Netherlands.
    [20]腾凤恩,王火昱明,姜小龙编. X射线结构分析与材料性能表征[M].北京:科学出版社,1997
    [21]周玉,武高辉编.材料分析测试技术[M].哈尔滨:哈尔滨工业出版社,1998.8
    [22] S.C. Tjong, Haydn Chen. Nanocrystalline materials and coatings. Materials Science and Engineering, 2004, R45:1–88.
    [23] J. H. He, J. M. Schoenung. Nanostructured coatings. Materials Science and Engineering, 2002, A336: 274–319.
    [24] R.S. Lima, A. Kucuk, C Berndt. Integrity of nanostructured partially stabilized zirconia after plasma spray processing. Materials Science and Engineering, 2001, A313: 75–82
    [25] H. Chen, C.X. Ding. Nanostructured zirconia coating prepared by atmospheric plasma spraying. Surf. Coat Technol. 2002, 150: 31-36.
    [26] Y. matsuo, T.Nakamoto, K.Suzuki, et al. Decreasing the number of test specimens by utilizing both fracture stress and fracture location for the estimation of Weibull parameter. Journal of Materials Science Letters, 2004, 39: 271-280.
    [27] Hong Luo, Daniel Goberman, Leon Shaw, et al. Indentation fracture behavior of plasma-sprayed nanostructured Al2O3-13 wt.% TiO2 coatings. Materials science and Engineering, 2003, A346: 237-245.
    [28]翟长生.纳米复合爆炸喷涂层力学性能及强韧化机制研究[D].博士论文,上海:上海交通大学,2006
    [29] H. Chen, S Lee, H Du. Influence of feedstock and spraying parameters on the depositing efficiency and microhardness of plasma sprayed zirconia coatings. Material letters, 2004, 58:1241-1245.
    [30]陈煌,周霞明,黄民辉等.纳米ZrO2等离子涂层的结构,性能和工艺特点.无机材料学报,2003,18(4):911-916.
    [31] Z. L. Wang, J M Petroski, T Green, M Sayed. Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals. J. Phys. Chem. B, 1998, 102(32): 1150 -1155.
    [32] X. Q. Cao, R.Vassen, D. Stoever. Ceramic materials for thermal barrier coatings. Journal of the European Ceramic Society, 2004, 24: 1–10.
    [33] C. Lyence著.钛与钛合金[M].北京:化学工业出版社,2005
    [34]王金友,葛志明,周彦邦.航空用钛合金[M].上海:上海科技出版社,1985
    [35] S. C. Gill, T. W. Clyne. Investigation of residual stress generation during thermal spraying by continuous curvature measurement. Thin solid films, 1994, 250:172-180.
    [36] S. C. Gill, T. W. Clyne. Simulation of the effect creep on the stress fields during thermal spraying onto titanium substrates. Surf. coat technol., 1994, 64:61-68.
    [37] S. C.Gill, T. W. Clyne Monitoring of residual stress generation during thermal sprayingby curvature measurement [C]. In Berndt C, eds. Thermal spray industrial applications, ASM international, 1994: 581-586.
    [38] C. Funke, J. C. Mailand, B. Siebert, R. vaben, D. Stover. Characterization of ZrO2-7% Y2O3 thermal barrier coatings with different porosities and FEM analysis of stress redistribution during thermal cycling of TBCs. Surface and coatings technology 1997, 94-95: 106-111.
    [39] P. H. Townsend, D. M. Barnett, T. A Brunner. Elastic relationships in layered composite media with approximation for the case of thin films on a thick substrate . J. Appl. Phys.1987, 62: 4438-4444.
    [1] U. Schulz, C. Leyens, K. Fritscher,et al. Some recent trends in research and technology of advanced thermal barrier coatings. Aerospace science and technology, 2003, 7:73-80.
    [2] J. DeMasi-Marcin, D. Gupta. Protective coatings in the gas turbine engine. Surf. Coat. Technol., 1994, 68/69: 1-9.
    [3] T. Strangman. Thermal barrier coatings for turbine airfoils. Thin solid films, 1985, 127:93-105.
    [4]周玉著.陶瓷材料学.哈尔滨:哈尔滨工业大学出版社,1995.
    [5] B. Liang, C. Ding. Thermal shock resistances of nanostructured and conventional zirconiacoatings deposited by atmospheric plasma spraying. Surf. Coat. Technol., 2005, 197:185-192.
    [6] I. Ahmed, T. Bergman. Thermal modeling of plasma spray deposition of nanostructured ceramics. J. Thermal Spray Technol., 1999, 8(2): 315-322.
    [7] Y. Zhou, Y. Wu, E. J. Lavernia. Process Modeling in Spray Deposition:A Review. Int. J. Non-Equilib. Proc., 1997, 10: 95-183.
    [8] P. Wright, A. G. Evans. Mechanism governing the performance of thermal barrier coatings. Current opinion in solid state and materials science, 1999, 4:255-265.
    [9] J. W. Hutchinson, Z. Suo. Mixed mode cracking in layered materials. Adv. Appl. Mech. 1991, 29:63-191.
    [10] A. Evans, M. drory, M. Wu. The cracking and decohesion of thin film. J. Mater. Res. 1988, 3:1043-1049.
    [11] A. G. Evans, D. Mumm, J. Hutchinson et al. Mechanism controlling the durability of thermal barrier coatings. Progress in materials science, 2001, 46, 505-555.
    [12] R. Miller. Oxidation-based model for thermal barrier coating life. J. Amer. Ceram. Soc. 1984, 67:517-521.
    [13] D. Mumm, A. G. Evans, I. Spitsberg. Characterization of cyclic displacement instability for a thermally grown oxide in a thermal barrier system. Acta Mater, 2001, 49: 2329-2340.
    [14] W. Zhu, M. Yan. Effect of grain size on the kinetics of isothermal tetragonal to monoclinic transformation in ZrO2 ceramics. J. Euro. Ceram. Soc., 1997, 17(14): 1729-1739.
    [15]马维,潘文霞,吴承康.热障涂层材料性能和失效机理研究进展.力学进展. 2003, 33(4):548-559.
    [16] J. Balmain, M. Loudjani, A. Huntz. Microstructure and diffusional aspects of the growth of alumina. Materials Science and Engineering, 1997, A224: 87-100.
    [17] X. Gong, D. Clark. On the measurement of strain in coatings formed on a wrinkled elastic substrate. Oxid. Metals, 1998, 50: 355-365.
    [18] D. Clark,W. Pompe Critical radius for interface separation of a compressively stressed film from a rough surface. Acta. Mater. 1999, 47, 1749-1756.
    [19] J. Hutchinson, M. He, A. G. Evans. The influence of imperfection on the nucleation and propagation of buckling driven delaminations. J. Mech. Phys. Solids, 2000, 48,709-734.
    [20] M. He, J. Hutchinson, A. G. Evans. Simulation of stresses and delamination in a plasma sprayed thermal barrier system upon thermal cycling. Mater. Sci. Eng., 2003, A345: 172-178.
    [21] M. He, A. Evans,J. Hutchinson. Effect of morphology on decohesion of compressed thin film. Mat. Sci. Eng., 1998, A245: 168-181.
    [22] S. Surash, Fatigue of materials, 2nd edition, Cambridge University Press, 1998.
    [23] A. Evans, R. Cannon. Stress in oxide films and relationship with cracking and spalling. Mater. Sci. Forum, 1989, 43: 243-368.
    [24] A. Rabiei, A. Evans. Failure mechanism associated with the thermally grown oxide in plasma sprayed thermal barrier coatings. Acta Mater., 2000, 48: 3963-3976.
    [25] E. Busso, J. Lin, S. Sakurai, M. Nakayama. A mechanistic study of oxidation induced degradation in a plasma sprayed thermal barrier coating system. Acta Mater. 2001, 49, 1515-1528.
    [26] F. Rhines, J. Wolf. The role of oxide microstructure and growth in the high temperature scaling of nickel. Met. Trans., 1970, 1: 1701-1710.
    [27] D. Mumm, A. G. Evans. On the role of imperfection in the failure of a thermal barrier coatings. Acta Mater, 2000, 48:1815-1827.
    [28] M. He, A. Evans, J. Hutchinson. The ratcheting of compressed thermally grown thin films on ductile substrates. Acta. Mater, 2000, 48: 2593-2601.
    [29] W. D. Kingery. Surface Tension of Some Liquid Oxides and Their Temperature Coefficients. J Am.Ceram.Soc., 1955,38:3-15.
    [30] D. Hasselman. Strength behavior of polycrystalline of alumina subjected to thermal shock. J. Am. Ceram. Soc., 1970, 53:490-495.
    [31] D. Hasselman. Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics. J. Am. Ceram. Soc., 52 (11): 600-604.
    [32] D. Rickerby. A review of the methods for measurement of coating-substrate adhesion. Surf. Coat. Technol., 1988, 36:541-557.
    [33] J. Rice. Elastic fracture mechanics concepts for interfacial cracks. J. Appl. Mech., 1988, 55: 98-103.
    [34] M. He, J. Hutchinson. Kinking of a crack out of an interface. J. Appl. Mech., 1989, 56: 270-278.
    [35] Z. Suo, J. Hutchinson. Interface crack between two elastic layer. Int. J. fracture, 1990, 43: 1-18.
    [36]马维,潘文霞,吴承康.热障涂层材料性能和失效机理研究进展.力学进展. 2002, 32(1):41-56.
    [37] H. Liu, S. Hao, X. Wang. Interaction of a near-a type titanium alloy with NiCrAlY protective coating at high temperature. Scripta Materialia, 1998, 39(10):1443-1450.
    [38] M. Brady, W. Brindley, J. Smialek. The oxidation and protection of gamma titanium aluminide. JOM, 1996, 46: 28-36.
    [39]夏长青,李佳,古一,彭小敏. NiCrAlY涂层/TC4基体界面反应机理.中南大学学报, 2005, 36(4): 550-554.
    [40]汪晓红,刘海平,郝杉杉. Ti3Al基体/NiCrAlY涂层体系界面固态反应行为研究.航空材料学报, 1997, 17(4):8-14.
    [41] S. Becker, A. Rahmel, M. Schorr, M. Schutze. Mechanism of isothermal oxidation of the intermetallic TiAl and of TiAl alloys, Oxidation of Metals, 38(1992), 425-464.
    [42] C. Leyens, R. Braun, M. Fr?hlich, P. Hovsepian. Recent Progress in the Coating Protection of Gamma Titanium-Aluminides. JOM, 58(2006): 17-21
    [43] D.W. Mckee, K.L. Luthra. Plasma sprayed coatings for titanium alloy oxidation protection, Surface and coatings technology, 56(1993):109-117.
    [1] N.P. Padture, Maurice Gell, E. H. Jordan. Thermal barrier coatings for Gas-turbine engine application. Science, 2002, 296:280-284.
    [2] R. Mcpherson. A review of microstructure and properties of plasma sprayed ceramic coatings. Surf. Coat. Technol., 1989, 39/40:173–181.
    [3] M. Lugovy, V. Slyunyayev, V. Teixeira. Residual stress relaxation processes inthermal barrier coatings under tension at high temperatures. Surf. Coat. Technol., 2004, 184:331-337.
    [4] G. Antou, G. Montavon, F. Hlawka, A. Cornet, C. Coddet, F. Machi. Modification of ceramic thermal spray deposit microstructures implementing in-situ laser remelting, Surf. Coat. Technol., 2003, 172:279–290.
    [5]董允,张延森,林晓娉.现代表面工程技术.北京:机械工业出版社,2003: 300-309
    [6]张罡,梁勇.激光制备陶瓷热障涂层的研究和发展.沈阳工业学报,2000,19(1):1-7
    [7]陈传忠,雷廷权,包全合,姚书山.等离子喷涂-激光重熔陶瓷涂层存在问题及改进措施.材料科学与工艺,2002,10(4):431-435
    [8] H.L. Tsai, P.C. Tsai. Performace of laser glazed plasma sprayed thermal barrier coatings in cyclic oxidation tests, Surf. Coat. Technol., 1995, 71:53-59.
    [9] P.C. Tsai, C.S. Hsu. High temperature corrosion resistance and microstructural evaluation of laser-glazed plasma-sprayed zirconia/MCrAlY thermal barrier coatings, Surf. Coat. Technol., 2004, 183: 29-34.
    [10] P.C. Tsai, J.H. Lee,C.S. Hsu. Hot corrosion behavior of laser glazed plasma sprayed yttria stabilized zirconia thermal barrier coatings in the presence of V2O5. Surf. Coat. Technol., 2007, 201:5143-5147.
    [11] K.M. Jasim, R. Dawtings, D. West. Stability of ZrO2 - Y2O3 t’Phase formed during laser sealing. Mater. Sci. Technol., 1992, 8(1): 83~91.
    [12] K.M. Jasim, R. Dawtings, D. West. Surf. Coat. Technol., Characterization of plasma sprayed layers of fully ytteria stablized zirconia modified by laser sealing, 1992, 53:75-86.
    [13] K.M. Jasim, R. Dawtings, D. West. Pulsed laser sealing of plasma sprayed layers of 8wt. % yttria stabilized zircon, J. Mater. Sci., 1992, 27: 3903-3910.
    [14] A.Petitbon, L. Boquet. Laser surface scaling and strengthening of zirconia coatings. Surface and coatings technology, 1991, 49: 57-61.
    [15] A. Petitbon, D. Guignot, U. Fischer. Laser surface treatment of ceramic coating, Mater. Sci. Eng., 1989, A121: 545-548.
    [16] R.A. Miller, C.C. Berndt. Thin Solid Films, 1984, 119: 195.
    [17] S.C. Tjong, H. Chen. Nanostructured materials and coatings. Materials Science and Engineering, 2004, R45: 1-86
    [18] C. Batista, A. Portinha, R.M. Rebeiro, V. Teixeira, M. Costa, C. Oliveira.Morphological and microstructure characterization of laser glazed plasma sprayed thermal barrier coatings, Surf. Coat. Technol., 2006, 200: 2929-2937.
    [19] C. Batista, A. Portinha, R.M. Rebeiro, V. Teixeira, M. Costa, C. Oliveira. Surface laser glazing of plasma sprayed thermal barrier coatings, applied surface science, 2005, 247: 313-319.
    [20] C. Batista, A. Portinha, R.M. Rebeiro, V. Teixeira, M. Costa, C. Oliveira. Evaluation of laser glazed plasma sprayed thermal barrier coatings under high temperature exposure to molten salts, 2006, 200: 6783-6791.
    [21] K. Khor, S. Jana. Pulsed laser processing of plasma sprayed thermal barrier coatings, J. Mater. Proc. Technol., 1997, 66: 4-8.
    [22]李力钧.现代激光加工及其装备,北京:北京理工大学出版社, 1993
    [23] M.C. Flemings. Fluid flow, in: Solidification processing, Materials science and engineering series, McGraw-Hill, Inc, USA, 1974, p214.
    [24] X. Wang, P. Xiao, M. Schmidt. Laser processing of yttria stabilized zirconia/alumina coatings on fecralloy substrates, Surf. Coat. Technol., 2004, 187: 370-376.
    [25] G.Montavon, Coddet. Modification of ceramic thermal spray deposit microstructure implementing laser treatment. In Proceedings of Thermal Spray 2001: New Surfaces for a New Millennium, ed. C. C. Berndt, K.A. Kohr and E. Lugscheider. Pub. ASM International, Materials Park, OH, USA, 2001, pp. 1195–1202.
    [26] L. Pawlowski. Thick laser coatings: a review. J. Thermal Spray Technol., 1999, 8(2): 279–295.
    [27] S. Chwa, A. Ohmori. The influence of surface roughness of sprayed zirconia coatings on laser treatment. Surf. Coat. Technol., 2001, 148: 88–95.
    [28]陈传忠,于慧君,侯勇. W18Cr4V钢表面激光熔覆Al2O3陶瓷涂层的组织结构,陶瓷学报,1998,19(1):12-16
    [29]吴秋红,陶曾毅,崔昆.激光重熔陶瓷层的显微组织和相结构,金属学报,1995,31(11):A508-512.
    [30] R.McPherson. Model for the thermal conductivity of plasma sprayed ceramic coaings. Thin Solid films, 1984, 112:89-95.
    [31] H. Guo, S. Kuroda, H. Murakami. Segmented thermal barrier coatings produced by atmospheric plasma spraying hollow powders, thin solid films, 2006, 506-507: 136-139.
    [32] H. Guo, S. Kuroda, H. Murakami. Microstructure and properties of plasma sprayed segmented thermal barrier coatings, J. Am. Ceram, Soc., 2006, 89(4):1432-1439.
    [33] M. Vardelle, A. Vardelle, A. Leger, P. Fauchais. Dynamics of splat dormaiton and solidification in thermal spraying process. In Proceedings of Thermal Spray 1994. edited by . C. C. Berndt and S. Sampath. ASM International, Materials Park, OH, USA, 1994, pp. 555-562.
    [34] G. Trapaga, E. matthys, J. Valencia, J. szekely, Fluid-flow, heat transfer and solidification of molten metal droplets impinging on substrates-comparison of numerical and experimental results, Metall. Trans., 1992, B23(6): 701-718
    [35] R. Mcpherson. On the formation of thermally sprayed alumina coatings, J. Mater. Sci. 1980, 15(12): 3141-3149.
    [36] R. Mcpherson. Relationship between the mechanism of formation, microstructure and properties of plasma sprayed coatings. Thin solid film, 1981, 83:297-310
    [37]范雄,金属X射线学,北京:机械工业出版社,1989:53
    [38] L .N .Hjelm, B .R .Bomhorst. Development of improved ceramic coatings to increase the life of XLR99 thrust chamber, Research airplane-committee. Report on Conf. on progress of the X-15 project, NASA TMX-57-72,1961:p27-53;
    [39] S. Ahmaniemi, P. Vuoristo, T. Mantyla. Thermal cycling of modified thick thermal barrier coatings, Surf. Coat. Technol., 2005, 190: 378-387.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700