猪伪狂犬病鉴别诊断研究与猪繁殖与呼吸综合征病毒基因组序列的测定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伪狂犬病(Pseudorabies,PR)是由α疱疹病毒科的伪狂犬病病毒(Pseudorabies Virus,PrV)引起的包括多种家畜和野生动物共患的一种烈性传染病。猪是该病毒的天然宿主和贮存者。该病给我国养猪业造成了巨大的经济损失。预防、控制和最终根除该病是我国当前面临的一项艰巨任务。在欧美等发达国家,伪狂犬病的根除计划多采用gE或gG基因标记疫苗和相应的gE或gG鉴别诊断方法来进行。gG糖蛋白是PrV的一种分泌蛋白,gE糖蛋白在决定病毒的毒力及神经嗜性等方面起着重要作用,但两者都不是PrV增殖所必需的蛋白,因此可作为缺失的候选基因。目前我国已研制成功gE和gG基因标记疫苗。为了建立适合我国国情的gE和gG鉴别诊断方法,开展了以下研究。
     1.PrV gG基因的克隆及其在大肠杆菌中的表达
     依据伪狂犬病病毒(Pseudorabies Virus PRV)Rice株序列,合成针对gG基因的特异性引物,从PRV鄂A株中扩增出gG基因,并将其克隆到pBluescriptⅡ SK+质粒中并测序,用SacⅠ和HindⅢ酶切,将gG基因融合到pET—28a质粒中T_7启动子下游,构建成原核表达质粒pET—28a-gG_1,结果并未获得表达。再用NotⅠ切除gG基因后小半部分片段,构建成原核表达质粒pET—28a-gG_2,使其在E.coli BL21(DE3)中以IPTG诱导表达,经SDS—PAGE分析,表达特异带为47kD,斑点杂交证实表达产物具有抗原性。表达产物主要以可溶性蛋白的形式存在于细菌裂解液的上清之中,上清经饱和硫酸铵溶液沉淀,透析,PEG20000浓缩,ELISA分析表明,经初步纯化的表达产物可与抗PRV猪血清发生特异性免疫反应。
     2.gG-LAT和gG-ELISA的建立
     以PRV gG基因表达提纯产物为抗原分别致敏乳胶和包被酶标板,摸索最佳的致敏和包被条件,建立了gG-LAT和gG-ELISA。方阵滴定确定gG-LAT最佳致敏温度为37℃,最佳致敏时间为30分钟,抗原最佳致敏浓度为1.3mg/ml。以gG-LAT检测各类血清340份,结果表明gG-LAT的特异性及敏感性分别为100%(43/43)和91.4%(96/105),检测192份部分接种TK-/gG-/Laz+弱毒苗的猪血清,gG-LAT检出阳性率为36.5%(70/192)。
     方阵滴定确定gG-ELISA的抗原最佳包被量为1.1μg/孔,血清1:40稀释时P/N值最大,为10.5(1.16/1.1)。故确定1.1μg/孔为抗原最佳包被量,1:40为最佳血清稀释浓度。以gG-ELISA分别检测两PRV清洁猪场gG基因缺失疫苗免疫的猪血清50份与PRV全病毒灭活苗免疫的猪血清50份,结果在gG缺失疫苗免疫猪血清中检出阳性2份,其它为阴性;在PRV全病毒灭活苗免疫猪血清中检出阳性49份,阴性1份。此结果显示,gG-ELISA诊断敏感性为98%(49/50),诊断特异性为96%(48/50)。以5块不同批次的包被抗原的酶标板检测5份血清,结果显示阳性血清
    
    猪伪狂犬病鉴别诊断研究与猪繁殖与呼吸综合征病毒基因组序列的测定
    的变异系数均小于10%,表明该方法重复性好。以gG一EuSA检测69份样本并与
    PRv病理诊断及PRV-PcR诊断结果比较。结果显示gG一EuSA与PRV病理诊断符
    合率为84.0%(58/69)。gG一ELISA与pRv-pCR诊断符合率为94.2%(65/69),以
    gG一EuSA检测842份血清,检出阳性242份,阳性率为28.74%。以上结果表明本
    研究建立的gG一LAT和gG一ELISA特异性强、敏感性高,可用于区分gG基因缺失疫
    苗活苗免疫猪与自然感染野毒的血清学阳性猪。
    3.PrVgE基因的主要抗原表位区在大肠杆菌中的表达
     将伪狂犬病病毒(PRv)Ea株gE基因主要抗原表位区段融合到原核表达载体
    pET28b的”启动子下游,构建成原核表达质粒,经IpTG诱导,SDs一pAGE和western
    blot印迹分析,证实gE基因主要抗原表位区在大肠杆菌中获得了表达,表达产物具
    有抗原性,分子量为38kD,位于包涵体中。
    4.gE.1‘AT和gE一EUsA的建立
     乒基因主要抗原表位区表达的包涵体蛋白经变性、复性处理后,复性产物致敏
    乳胶,并对抗原致敏浓度、致敏时间、致敏温度进行优化,建立了gE乳胶凝集试验
     (薛.LAI,)。该方法不仅能显著区分gE基因缺失疫苗免疫猪血清和野毒感染猪血清,
    而且具有简便、快速等优点。检测360份猪血清,阳性率为57.77%(208/360),比国
    外阻断gE一ELISA的58.05%(209/360)略低,阳性符合率为94.86%(203/214),总符
    合率为%.94%(349/360),两种检测方法结果差异不显著(P>0.05)。
     将经纯化、变性、复性等处理后的gE蛋白作为抗原建立伪狂犬病的gE一EL工SA
    鉴别诊断方法。方阵滴定确定7.5 pg/孔为抗原最佳包被量,1:40为最佳血清稀释
    浓度。以该方法检测115份己知背景猪血清,结果表明,该方法诊断特异性为94.5%,
    诊断敏感性为%.7%。以5块不同批次包被抗原的酶标板检测5份血清,结果显示
    阳性血清的变异系数均小于10%,表明该方法重复性好。对比国外阻断gE一ELISA
    同时检测356份猪血清,两者阳性符合率为87.44%(195/223),总符合率为92.13%
     (328/356)。以上结果表明该gE一LAT和gE一ELISA特异、敏感且重复性好,可用于
    猪伪狂犬病的鉴别诊断。
    5.猪繁殖与呼吸综合征基因组序列的测定
     猪繁殖与呼吸综合征是另一种危害我国养猪业的传染病,它主要以母猪发热、
    厌食、流产、早产、死胎、弱仔等繁殖障碍及各年龄猪的呼吸道症状为主要特征,
Pseudorabies virus (PrV), a member of Alpha Herpesvirus, is the causative agent of Pseudorabies (Aujeszky's disease), one of the most serious infectious diseases of several domestic and wild animals. Swine was the natural host and reservoir of PrV. Pseudorabies was an economically important disease of swine industry in China. Currently it is an important and difficult task to prevent, control and eradicate this disease in China. Use of an effective gE or gG gene-deleted PrV vaccine combined with a differential diagnostic kit for PrV glycoprotein gE or gG has proven successful in several Pseudorabies-eradication. gE and gG are unessential for viral replication in cell culture, however gE played an important role in determining virulence and neurotropism. In order to develope a PrV-gE(or gG) differential diagnostic method for the pseudorabies eradication program in China, the following researches were explored.
    1. The cloning of PrV gG gene and it's expression in E.coli.
    The complete glycoprotein gG gene of pseudoiabies virus Ea strain was amplified by PCR technique and cloned into pBluescriptIISK+. The gG gene was sequenced by sanger's sequencing technique. Then, the gG gene was inserted into downstream of the T7 promoter of an expression vector, pET-28a, to yield the recombinant plasmid pET-28a-gGi, but the expression failed. Then the plasmid-pET-28a-gGi was digested by Not I to delete the short fragment of downstream of gG gene and linked to yield the recombinant pET-28a-gG2. After induced by IPTG, a high expression of fusion protein was obtained. SDS-PAGE analysis showed that the fusion protein was 47kD and the product of expression was specific to antisera against PRV by protein dot blot analysis. The fusion protein existed mainly in form of soluble protein. After be purified by saturated (NH4)2SO4 solution, the product was specific to swine antisera against PRV in indirect ELISA.
    2. The development of gG-LAT and gG-ELISA
    The gG latex agglutination test (LAT) and the gG Enzyme linked Immunosorbent Assay (ELISA) based on recombinant glycoprotein gG for differentiation between infected and vaccinated pigs was developed. gG-LAT can significantly differentiate the infected from vaccinated (gG deleted caccine) pigs. Statistical result of testing 340 serum samples indicated that the diagnosis method has high specificity and sensitivity. The specificity and sensitivity of the developed gG-ELISA were evaluated by testing 100 serum samples. The result of clinical application indicated that there is high coincidence rate between gG-ELISA and other clinical diagnosis methods. 842 serum samples of pigs that were vaccinated by gG- marker vaccines have been tested by gG-ELISA for
    
    epidemiologic investigation, and 242 sera of them were examined to be positive. The positive rate was 28.74%. The above results indicated that the gG-LAT and gG-ELISAcan be used for the differentiation between the pseudorabies virus (PrV) infected and vaccinated (gG' vaccine) pigs.
    3. The expression of the major epitope domain of glycoprotein gE of pseudorabies virus in E.coli.
    A 0.8kb DNA fragment encoding the major epitope domain of glycoprotein gE of pseudorabies virus Ea strain was inserted into the downstream of the T7 promoter of an expression vector, pET-28b, to yield the recombinant plasmid pETgE804. After induced by IPTG, a high level expression of fusion protein was obtained. SDS-PAGE and Western blotting analysis showed that the fusion protein was 38kD and the protein was specific to antisera against PRV Ea strain.
    4. The development of gE-LAT and gE-ELISA
    The gE protein existed mainly in form of inclusion body. After being denatured and renatured, the protein was used to sensitize latex to prepare the latex antigen. Then, the concentration of antigen, times and temperature for sensitization were optimized. The latex agglutination test (LAT) based on recombinant glycoprotein gE for differentiation between infected and vaccinated (gE deleted vaccine) pigs was developed. The specificity and sensitivity of the developed gE-LAT were also
引文
1.于大海,崔砚林主编.中国进出境动物检疫规范.北京:中国农业出版社,1997:363-373
    2.王家富,丁建华,张光道,罗满林,张楚瑜.PCR检测伪狂犬病病毒的研究。武汉大学学报(自然版),1996,42(6):787-790
    3.中国农业科学院,哈尔滨兽医研究所编著.兽医微生物学.北京:中国农业出版社,1998:625-630
    4.方六荣,陈焕春,何启盖,吴斌,金梅林,吴美洲等.应用微量中和试验进行猪伪狂犬病血清学调查.中国畜禽传染病,1998.20(3):151-153
    5.石建平,宣华,卢强,李金中,万遂如,李公民.伪狂犬病病毒PCR检测方法的建立及初步应用.中国畜禽传染病,1996,90(5):16-20
    6.肖少波,陈焕春,方六荣,洪文洲,何启盖.伪狂犬病病毒Ea株gE基因的克隆,序列分析及其表达.畜牧兽医学报。2001a,33(2):174-179
    7.吴平,程由栓,庄向生,林天龙,李怡英,黄宁.应用反向间接血凝(抑制)试验检测购狂犬病.中国兽医科技,1991,21(11):24-25
    8.吴斌,陈焕春,方六荣,李学伍,周复春,洪文洲.三种不同方法检测猪伪狂犬病病毒血清抗体的比较.中国兽医科技,1997,27(5):23-24
    9.吴丹,仇华吉,童光志.几种表达系统的比较.生物技术通报,2002,2:30-34
    10.李健强,张国祥,王品镇,王英珍,刘勤.Dot-ELISA检测猪血清中伪狂犬病病毒抗体方法的建立和评价.中国畜禽传染病.1990,1:27-30
    11.李成,李六金,谷守林等.猪繁殖与呼吸系统综合征病毒形态学特征.畜牧兽医学报,2001,32(6):563-567
    12.李学伍,陈焕春,周复春,方六荣,吴斌.地高辛标记DNA探针检测伪狂犬病的研究.中国畜禽传染病,1997,3:18-20
    13.陈长征,黄华,杨新颖,夏其昌,李伯良,王应睐.利用重组噬茵体诱导表达的大肠杆菌表达系统.生物工程学报1996,12(4):379-384
    14.陈焕春,方六荣,何启盖.猪伪狂犬病病毒鄂A株的分离鉴定.畜牧兽医学报,1998,29(2):156-161
    15.国际兽疫局编.农业部畜牧兽医局译.哺乳动物、禽、蜜蜂A和B类疾病诊断试验和疫苗标准手册,1996:13-21
    16.周锐,陈焕春,周复春.伪狂犬病毒鄂A株糖蛋白gX基因片段的克隆与表达.中国青年农业科学技术年报,1997.B卷:921-924
    17.娄高明,陈志荣,郭万柱,王琴,汪铭书,颜其贵,邹啸环,费恩阁.双抗体夹心ELISA检测伪证犬病病毒的研究.中国畜禽传染病,1998,20(4):236-240
    18.殷震,刘景华主编.动物病毒学.北京:科学出版社,1997:619-625
    19.郭万柱,冯炳芳,曹军,徐重.应用P~(32)标记DNA探针检测伪狂犬病病毒的研究.四川农业大学报.1991,9(1):52-56
    20.徐为燕主编.兽医病毒学.北京:农业出版社,1993:233-243
    21.黄骏明,李亚香,魏良治,杨奇锦,于大海.应用斑点-EIISA检测猪伪狂大病.中国畜禽传染病,1989,49(6):25-29
    22.黄骏明,李亚香,朱庆虎,魏良治,尹训南.应用免疫荧光抗体技术快速检测猪伪狂犬病病毒.中国畜禽传染病,1995,6:38-42
    23.梁雪芽,方维焕.猪生殖与呼吸综合征病毒的分子生物学研究进展.中国兽医科技,2001,
    
    31(8):14-16
    24.程由栓,吴平,林天龙,庄向生,李怡英,黄宁.4种检测伪狂犬病病毒抗原方法的比较.中国兽医杂志,1992,18(1);6-9
    25.程安春,汪铭书,汪开疏,范伟兴.现代禽病诊断和防治全书.成都:四川大学出版社,:1997:84-143
    26.蒋玉雯,黄国安,冯军.应用ELISA检测猪的狂犬病病毒抗体.中国畜禽传染病,1988,40(3):35-36
    27.窦永喜,王云.猪繁殖与呼吸系统综合征病毒的分子生物学研究进展.动物医学进展,2001,21-23
    28.潘乃珍,胡秀芳,吴建坤,罗函禄,唐余华.死胎猪血清中猪细小病毒、猪伪狂犬病病毒和乙型脑炎病毒抗体的检测.中国畜禽传染病,1990,53(4):38-30
    29.D.R.马歇克,J.T.门永,R.R.布格斯,M.W.克努特,W.A.布伦南,S-H林著.朱厚础等译.蛋白质纯化与鉴定实验指南.北京:科学出版社,2002:144-154
    30.J.萨姆布鲁克,EF弗里奇,T曼尼阿蒂斯著.金冬雁,黎孟枫等译.分子克隆实验指南.北京:科学出版社,1989:28-33
    31. Afshar A, Wright P F and Dulac G C. Evluation of an enzyme-linked immunoassay for detection of antibodies to Pseudorabies virus in porcine field sera. Can J Vet Res. 1987, 51:539-541
    32. Ahl R, Pensaert M, Robertson IB, Terpstra C, van der Sande W, Walker KJ, While M, Meredith M. Porcine reproduvtive and respiratory syndrome (PRRS or blue-eared disease). Vet Rec, 1992, 130: 87-89
    33. Allan GM, McNulty MS, McCracken RM, McFerran JB. Rapid diagnosis of Aujeszky's disease in pig by immunofluorescence. Res Vet Scl. 1984,36(2):235-239
    34. Allende R, Lewis TL, Lu Z, Rock DL, Kutish GF, Ali A, Doster AR, Osorio FA. North American and European porcine reproductive and respiratory syndrome viruses differ in non-structural protein coding regions. J Gen Virol, 1999, 80:307-315
    35. Bautista EM, Meulenberg JJM, Choi CS, Molitor TW. Structural polypeptides of the American (VR-2332) strain of porcine reproductive and respiratory syndrome (PRRS) virus. Arch Virol, 1996, 141:1357-1365
    36. Bautista E M, Goyal S M, Collins J M. Serologic survey for Lelystad and VR2332 strains of porcine reproductive and respiratory syndrome (PRRSV) virus in U.S. swine herds. J Vet Diagn. 1993,5:612-614
    37. Belak S, Ballagi-Pordany A, Flensburg J, Virtanen A. Detection of pseudorabies virus DNA sequences by the polymerase chain reaction. Arch Virol. 1989;108(3-4):279-86
    38. Belasco, J. G., and C. F. Higgins. Mechanisms of mRNA decay in bacteria: a perspective. Gene. 1988, 72:15-23
    39. Belasco, J. G. mRNA degradation in prokaryotic cells: an overview in Control of messenger RNA stability. Academic Press, Inc., San Diego, Calif. 1993, p.3-12
    40. Ben-Porat T, DeMarchi J M, Lomnicizi B and Kaplan A S. Role of glycoproteins of pseudorabies virus in eliciting neutralizing antibodies. Virology, 1986, 154:325-334
    41. Benfield DA, Nelson E, Collins JE, Harris L, Goyal SM, Robison D, Christianson WT, Morrison RB, Gorcyca D, Chladek D. Characterization of swine infertility and respiratory syndrome (SIRS) virus (isolate ATCC VR-2332). J Vet Diagn Invest, 1992, 4:127-133
    42. Bentley, W. E., N. Mirjalili, D. C. Andersen, R. H. Davis, and D. S. Kompala. Plasmid-encoded protein: the principal factor in the "metabolicburden" associated with recombinant bacteria.
    
    Biotechnol. Bioeng. 1990, 35:668-681
    43. Bilodeau R, Dea S, Martineau GP, Sauvageau R. Porcine reproductive and respiratory syndrome in Quebec. Vet Rec, 1991, 129:102-103
    44. Blight M A, Holland I B. Heterologous protein secretion and the versatile Escherichia coil haemolysin translocator. Trends in Biotech. 1994,12(11):450-455
    45. Brosius, J., M. Erfle, and J. Storella. Spacing of the 210 and 235 regions in the tac promoter. Effect on its in vivo activity. J. Biol. Chem. 1985, 260:3539-3541
    46. Brown T.T. Laboratory evaluation of selected disinfectants as virucidal agents against porcine parvovirus,pseudorabies virus and transmissible gastroenteritis virus. Am. J.Vet. Res. 1981, 42:1033-1036
    47. Brown, W. C., and J. L. Campbell. A new cloning vector and expression strategy for genes encoding proteins toxic to Escherichia coil Gene.1993a, 127:99-103
    48. Brown, W. C., and J. L. Campbell. new cloning vector and expression strategy for genes encoding proteins toxic to Escherichia coil Gene. 1993b, 127:99-103
    49. Card J P, Whealy M E, Robbins A K and Enquist L W. Pseudorabies virus envelope glycoprotein gⅠ influences both neurotropism and virulence during infection of the rat visual system. J Virol, 1992, 66:3032-3041
    50. Cavanagh D. Nidovirales: a new order comprising Coronaviridae and Arteriviriade. Arch Virol, 1997, 142:629-633
    51. Chen, W., P. T. Kallio, and J. E. Barley. Process characterization of a novel cross-regulation system for cloned protein production in Escherichiacoli. Biotechnol. Prog. 1995, 11:397-402.
    52. Claude Monteilhet, Nicole Lachacinski and Lawrence P. Aggerbeck. Cytoplasmic and periplasmic production of human apolipoprotein E in Escherichia coli using natural and bacterial signal peptides. Gene. 1993, 125:223-228
    53. Cook D, Hill H, Snyder M, McMahon P, Kinker D. The detection of antibodies to the glycoprotein X antigen of pseudorabies virus. J Vet Diagn Invest, 1990,2(1):24-28
    54. Conzelmann KK, Visser N, Van Woensel P, Thiel HJ. Molecular characterization of porcine reproductive and respiratory disease virus, a member of the arterivirus group. Virology, 1993, 193: 329-339
    55. Coutelier JP, Van Snick J. Neutralization and sensitization of lactate dehydrogenase-elevating virus with monoclonal antibodies. J Gen Virol. 1988, 69:2097-2100
    56. Creighton TE. Detection of folding intermediates using urea-gradient electrophoresis. Methods Enzymol. 1986;131:156-172
    57. de Boer, H. A., L. J. Comstock and M. Vasser. The tac promoter: a functional hybrid derived from the trp and lac promoters. Proc. Nail. Acad. Sci. USA 1983, 80:21-25
    58. de Vries AAF, Chirnside ED, Horzinek MC, Rottier PJM. Structural proteins of equine arteritis virus. J Virol. 1992, 66:6294-6303
    59. de Vries AAF, Post SM, Raamsman MJB, Horzinek MC, Rottier PJM. The two major envelope proteins of equine arteritis virus associate into disulfide-linked heterodimers. J Virol, 1995, 69: 4668-4674
    60. Dea S, Gagnon CA, Mardassi H, Milane G. Antigenic variability among North Amerizan and European strains of PRRSV as defined by monoclonal antibodies to the matrix protein. J Clin microbiol, 1996, 34:1488-1493
    61. Dea S, Wilson L, Therrien D. Competitive ELISA for detection of antibodies to porcine
    
    riproductive and respiratory syndrome virus using recombinant E.coli-expressed nucleocapsid protein as antigen. J Virol Methods, 2000, 87:109-122
    62. Denac H, Moser C, Tratschin JD, Hofmann MA. An indirect ELISA for the detection of antibodies against porcine reproductive and respiratory syndrome virus using recombinant nucleoapsid protein as antigen. J Virol Methods, 1997, 65:169-181
    63. Doherty, A. J., B. A. Connolly, and A. F. Worrall. Overproduction of the toxic protein, bovine pancreatic DNaseI, in Escherichia coli using a tightly controlled TT-promoter-based vector. Gene .1993, 136:337-340
    64. Drew T W, Meulenberg J J, Sands J J. Production, characterization and reactivity of monoclonal antibodies to porcine reproductive and respiratory syndrome virus. J Gen Virol,1995,76:1361-1369
    65. Duvoisin, R. M., D. Belin, and H. M. Krisch. A plasmid expression vector that permits stabilization of both mRNAs and proteins encoded by the cloned genes. Gene. 1986, 45:193-201
    66. Eloit M, Fargeaud D, Haridon RL and Toma B. Identification of the pseudorabies virus glycoprotein gp50 as a major target of neutralizing antibodies. Arch. Virol. 1988,99,45-56
    67. Engel M and Wierup M.Eradication of Aujesky's disease virus from a Swedish pig herd using gl-/TK- vaccine [J]. Vet Rec, 1997,140(19):493-495
    68. Favoreel H W, Nauwynck H J, Van Oostueldt P, Mettenleiter T C and Pensaert M B. Antibody-induced and cytoskeleton-mediated redistribution and shedding of viral glycoproteins, expressed on pseudorabies virus-infected ceils. J Virol, 1997, 71:8254-8261
    69. Figge, J., C. Wright, C. J. Collins, T. M. Roberts, and D. M. Livingston. Stringent regulation of stably integrated chloramphenicol acetyl transferase genes by E. coli lac repressor in monkey cells. Cell. 1988, 52:713-722
    70. Gielkens ALJ and Peeters BPH. Function of Aujeszky's disease virus proteins in virus replication and virulence. Acta Vet. Hungarica,1994,42:227-242
    71. Gonin P, Mardassi H, Gagnon CA, Massie B, Dea S. A nonstruetural and antigenic glycoprotein is encoded by ORF3 of the IAF-Klop strain of porcine reproductive and respiratory syndrome virus. Arch virol, 1998, 143:1927-1940
    72. Gorski, K., J.-M. Roch, P. Prentki, and H. M. Krisch. The stability of bacteriophage T4 gene 32 mRNA: a 59 leader sequence that can stabilize mRNA transcripts. Cell. 1985, 43:461-469
    73. Gut M, Jacobs L, Tyborowska J, Szewczyk B, Bienkowska-Szewczy K. A highly specific and sensitive competitive enzyme-linked immunosorbent assay(ELISA) based on baculovirus expressed pseudorabies virus glycoprotein gE and gⅠ complex. Vet Microbiol 1999 69(4):239-249
    74. Gut-Winiarska M, Jacobs L, Kerstens H, Bienkowska-Szewczy K. A highly specific and sensitive sandwich blocking ELISA based on baculovirus expressed pseudorabies virus glycoprotein B. J Virol Methods, 2000,88(1):63-71
    75. Glaser AL, de Vries AAF, Dubovi EJ. Comparison of equine arteritis virus isolates using neutralizing monoclonal antibodies and identification of sequence changes in GL associated with neutralization resistance. J Gen Virol. 1995, 76:2223-2233
    76. Hager DA, 13urgess RR. Elution of proteins from sodium dodeeyl sulfate-polyacrylamide gels, removal of sodium dodecyl sulfate, and renaturation of enzymatic activity: results with sigma subunit of Escherichia coil RNA polymerase, wheat germ DNA topoisomerase, and other enzymes. Anal Biochem. 1980, 109(1):76-86
    77. Hampl H, Ben-Porat T, Ehrlicher L, Habermehl KO and Kaplan AS. Characterization of envelope
    
    proteins of pseudorabies virus. J Virol. 1984,52:583-590
    78. Halbur PG, Paul PS, Frey ML, Landgraf J, Eermisse K, Meng X-J, Lure MA, Andrews JJ, Rathje JA. Comparison of the pathogenicity of two U.S. porcine reproductive and respiratory syndrome virus isolates with that od Lelystad virus. Vet Pathol, 1995, 32:648-660
    79. Hockney R C. Recent developments in heterologous protein production in Escherichia coli, Gene, 1994,12(11): 456-463
    80. Hulst, M.M., D,F.Westra, G.Wensvoort, and R.J.M. Mrormann, Glycoprotein E_1 of hog cholera virus virus expressed in insect cell protects swine from hog cholera. J. Virol, 1993, 67:5435-5442
    81. Itakura K, Hirose T, Crea R, Riggs A D, Heynecker H, Bolivar F and Boyer H W. Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostarin. Science, 1977, 198:1056-1063
    82. Jacobs L, Meloen R H, Gielkens A L J andvan Oirschot J T. Epitope analysis of glycoprotein Ⅰ of pseudorabies virus, J Gen Virol, 1990, 71:881-887
    83. Jacobs L, Mulder WAM, Van Oirschot J T, Gielkens A L J, Kimman TG Deleting two amino acids in glycoprotein gⅠ of pseudorabies virus decreases virulence and neurotropism for pigs, but does not affect immunogenicity. J Gen Virol, 1993a, 74:2201-2206
    84. Jacobs L, Rziha H J, Kimman T G, Gielkens A L J and Van J T. Oirschot. Deleting Valine-125 and cysteine-126 in glycoprotein gⅠ of pseudorabies virus strain NIA-3 decreases plaque size and reduces virulence in mice.Arch Virol. 1993b, 131:264
    85. Jacobs, L. Glycoprotein Ⅰ of pseudorabies virus and homologous proteins in other alphaberpesvirinae.Arch Virol, 1994a, 137:209-228
    86. Jacobs L and Kimman T G. Epitope-specific antibody responses against glycoprotein E of pseudorabies virus. Clin Diagn Lab Immunol, 1994b, 1:500-505
    87. Jns A, Dijkstra JM and Mettenleiter TC. Glycoproteins M and N of pseudorabies virus from a disulfide-linked complex. J. Virol. 1998,72:550-557
    88. Karger A, Saalmuller A, Tnfaro F, Banfield B and Mettenleiter TC. Cell surface proteoglycans are not essential for infection by pseudorabies vires. J.Virol. 1995,69:3482-3489
    89. Karger A, Schmidt J and Mettenleiter TC. Infectivity of a pseudorabies virus mutant lacking attachment giycoproteins C and D. J.Virol. 1998,72:7341-7348
    90. Keffaber KK. Reproductive failure of unknown etiology. American Association of Swine Practitioners Newsletter. 1989,1:1-19
    91. Kit M, Kit S. Sensitive glycoprotein gⅢ blocking ELISA to distinguish between pseudorabies(Aujeszky's disease)-infected and vaccinated pigs. Vet Microbiol, 1991, 28(2):141-155
    92. Kit S, Awaya Y, Otsuka H, Kit M. Blocking ELISA to distinguish between virus-infected pigs from those vaccinated with a glycoprotein gⅢ deletion mutant. J Vet Diagn Invest, 1990 2(1):14-23
    93. Kimman T G, De Wind N, Oei-Lie N, Pol JMA, Bems AJM, Gielkens ALJ. Contribution of single genes within the unique short regiionof Aujeszky's disease virus (suid herpesvirus type 1) to virulence,pathogenesis and immunogenicity. J Gen Virol, 1992,73:243-251
    94. Kimman T G, de Leeum O, Kochan G, Szewczyk B, van Rooij E, Jacobs L, Kramps J A, and Peeters B. An indirect double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) using baculovirus-expressed antigen for the detection of antibodies to glycoprotein E of
    
    pseudorabies virus and comparison of the method with blocking ELISAs. Clinical and Diagnostic Laboratory Immunology, 1996, 3:167-174
    95. Klupp B and Mettenleiter Th. C. Sequence and expression of the glycoprotein gH gene of pseudorabies virus. Virology. 1991, 182:732-741
    96. Klupp B, Visser N and Mettenleiter Th.C. Identification and characterization of pseudorabies virus glycoprotein H. J.Virol. 1992,66:3048-3055
    97. Klupp B, Baumeister J, Visser N and Mettenleiter T.C. Identification and characterization of two noval glycoproteins in pseudorabies virus gK and gL Abstracts 18th Int. Herpescrirus Workshop,Pittsburgh, 1993, C-94
    98. Klupp BG, Baumeister J, Karger A, Visser N and Mettenleiter TC. Identification and characterization of a novel structural glycoprotein in pseudorabies virus, gL. J.Virol.1994,68:3868-3878
    99. Knappik A, Pluckthun A. An improved affinity tag based on the FLAG peptide for the detection and purification of recombinant antibody fragments. Biotechniques. 1994 Oct;17(4):754-761
    100. Liang X, Chow B, Raggo C and Babiuk LA. Bovine herpesvirus 1 UL49.5 homolog gene encodes a novel envelope protein that forms a disulfide-linked complex with a second virion structural protein. J.Virol. 1996,70:1648-1454
    101. Linne T. Diagnosis of pseudorabies virus infection in pigs with specific DNA probes. Res Vet Sci. 1987, 43(2):150-156
    102. L.Michelle.Bennett, James.G.Timmins, Darrell.R.Thomsen, Leonard.E.Post. The processing of pseudorabies vitus glycoprotein gX in infected cell and in an uninfected cell line. Virology. 1986,155:707-715
    103. Lokensgard JR, Thawley DG, Molitor TW. Enzymatic amplification of latent pseudorabies virus nucleic acid sequences. J Virol Methods. 1991, 34(1):45-55
    104. Love CA, Lilley PE, Dixon NE. Stable high-copy-number bacteriophage lambda promoter vectors for overproduction of proteins in Escherichia coli. Gene. 1996 Oct 17;176(1-2):49-53
    105. Lukács N, Thiel HJ, Mettenleiter TC and Rziha HJ. Demonstration of three major species of pseudorabies virus glycoproteins and identification of a disulfide-linked glycoprotein complex. J.Virol. 1985,53:166-173
    106. Makrides SC. Strategies for achieving high-level expression of genes in Escherichia coll. Microbiol Rev. 1996;60(3):512-538
    107. Marchioli CC, Yancey PJ, Petrovskis FA, Timmins JG and Post LE. Evaluation of pseudorabies virus glycoprotein gp50 as a vaccine for Aujeszky's disease in mice and swine:expressing by vaccinia virus and Chinese hamster ovary cells. J.Virol.1987,61:3977-3982
    108. Mardassi H, Mounir S, Wilson L, Dea S. Identification of major differences in thg nucleocapsid protein genes of a Quebec strain and European strains of porcine reproductive and respiratory syndrome virus. J Gen Virol, 1994a,75:681-685
    109. Mardassi H, Mounir S, Wilson L, Dea S. Detection of porcine reproductive and respiratory syndrome virus and efficient differentiation between Canadian and European strains by reverse transcription and PCR amplification. J Clin Microbiol, 1994b, 32:2197-2203
    110. Mardassi H, Mounir S, Dea S. Molecular analysis of the ORF3-7 of porcine reproductive and respiratory syndrome virus, Quebec reference strain. Arch Virol, 1995, 140:1405-1418
    
    
    111. Mardassi H, Massie B, Dea S. Intracellular synthesis, processing, and transport of proteins encoded by ORFs5 to 7 of porcine reproductive and rispiratory syndrome virus. Virology, 1996, 221:98-112
    112. McFarlane RG, Thawley DG, Solorzano RF. Detection of latent pseudorabies virus in porcine tissue, using a DNA hybridization dot-blot assay. Am J Vet Res. 1986 Nov;47(11):2329-2336
    113. Medveczky I. Current epizootiological status of the Eastern Europen countries for Aujeszky's disease. Proceedings of PRRS and Aujeszky's disease. France. 1999,397-398
    114. Meng XJ, Paul PS, Halbur PG, Lum MA. Phylogenetic analyses of the putative M(ORF6) and N(ORF7) genes of porcine reproductive and respiratory syndrome virus (PRRSV): implication for the existence of two genotypes of PRRSV in USA and Europe. Arch Virol, 1995, 140:745-755
    115. Meng XJ, Paul PS, Halbur PG, Morozov Ⅰ. Sequence comparison of open reading frame 2 to 5 of low and high virulence United States isolates of porcine reproductive and respiratory syndrome virus. J Gen Virol, 1995, 76:3181-3188
    116. Mettenleiter T C, Schreurs C, Zuckermann F and Ben-Porat T. Role of pseudorabies virus glycoprotein gl in virus release from infected cells. J. Virol. 1987b, 61:2764-2769
    117. Mettenleiter TC, Lukács N and Thiel HJ. Pseudorabies virus avirulent strains fail to express a major glycoprotein. J.Virol.1985,56:307-311
    118. Mettenleiter TC and Spear PG. Glycoprotein gB(gⅡ) of pseudorabies virus can functionally substitue for glycoprotein gB in herpes simplex virus. J.Virol.1994,68:500-504
    119. Mettenleiter T C. Aujeszky's disease (pseudorabies) virus: the virus and molecular pathogenesis-State of the art, June 1999. Vet Rec, 2000, 31:99-115
    120. Meulenberg JJM, Hulst MM, De Meijer EJ, Moonen PL, Den besten A, De Kluyver EP, Wensvoort G, Moormann RJ. Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV. Virology, 1993a, 192:62-72
    121. Meulenberg JJ, de Meijer EJ, Moormann RJ. Subgenomic RNAs of Lelystad virus contain a conserved leader-body junction sequence. J Gen Virol, 1993b, 74:1697-1701
    122. Meulenberg JJM, Petersen-den Besten A. Identification and characterization of a sixth structural protein of Lelystad Virus: the glycoprotein GP2 encoded by ORF2 is incorporated in virus particle. Virology, 1996, 225:44-51
    123. Meulenberg JJM, Bos-de-Ruijter R, van de Graaf R, Wensvoort G, Moormann RJM. Infectious transcripts from cloned genomic-length cDNA of porcine reproductive and respiratory syndrome virus. J Virol, 1998, 72:380-387
    124. Mertens, N., E. Remaut, and W. Fiers. Tight transcriptional control mechanism ensures stable high-level expression from T7 promoter-based expression plasmids. Bio/Technology. 1995, 13:175-179
    125. Morozov I, Meng XJ, Paul PS. Sequence analysis of open reading frames (ORFs) 2 to 4 of a US isolate of porcine reproductive and respiratory syndrome virus. Arch Virol, 1995, 140:1313-1319
    126. Moutu F, Toma B and fortier B. Application of an enzyme-linked immunoassay for diagnosis of Aujeszky's disease in swine. Vet Rec. 1978, 103(12):264
    127. Murtaugh MP, Wlam MR, Kakach LT. Comparison of the strueturaal protein coding sequences of the VR-2332 and Lelystad virus strains of the PRRs virus. Arch Virol, 1995, 140:1451-1460
    128. Nelson EA, Christopher-Hennings J, Drew T, Wensvoort G, Collins JE, Benfield DA. Differentiation of U.S. and European isolates of porcine reproductive and respiratory syndrome
    
    virus by monoclonal antibodies. J Clin Microbiol, 1993, 31:3184-3189
    129. Paton DJ, Brown IH, Edwards S, Wensvoort G. "Blue ear" disease of pigs. Vet Rec. 1991, 128:617
    130. Peeters B, De Wind N, Hooisma M, Wa genaar F, Gielkens A and Moormann R. Glycoprotein H of pseudorabies virus is essential for entry and cell-to-cell spread of the virus. J. Virol. 1992, 66:3888-3892Petrovskis E, Timmins JG, Armentrout MA, Marchioli CC, Yancy R and Post LE. DNA sequence of the gene for pseudorabies virus gp50, a glycoprotein without N-linked glycosylation. J.Virol. 1986,59:216-223
    131. Peeters B, de Wind N, Broer R, Gielkens A and Moormann R. Pseudorabies virus envelope glycoproteins gp50 and gⅡ are essential for virus penetration, but only gⅡ is involved in membrane fusion. J.Virol.1992, 66:894-905
    132. Peeters B, Pol J, Gielkens A and Moormann R. Envelope glycoprotein gp50 of pseudorabies virus is essential for virus entry but is not required for spread in mice. J.Virol.1993,67:170-177
    133. Pirtle EC, Gutekunst DE. Virus isolation and immune responses in susceptible swine exposed with pseudorabies virus (Shope strain). Am J Vet Res. 1978 Aug;39(8):1367-8
    134. Pirzadeh B, Dea S. Monoclonal antibodies to the ORF5 product of porcine reproductive and respiratory syndrome virus define linear neutralizing determinants. J Gen Virol, 1997, 78: 1867-1873
    135. Pirzadeh B, Gagnon CA, Dea S. Genomic and antigenic variations of porcine reproductive and respiratory syndrome virus major envelope GP5 glycoprotein. Can J Vet Res. 1998, 62:170-177
    136. Pol JM, Wagenaar E Morphogenesis of Lelystad virus in porcine lung alveolar macrophages. AASP Newsletter. 1992, 4:29
    137. Prud'homme I, Zhou EM, Traykova M, Trotter H, Chan M, Afshar A, Harding MJ. Production of a baculovirus-derived gP50 Protein and utilization in a competitive enzyme-linked immunosorbent assay for the serodiagnosis of pseudorabies virus. Can J Vet Res. 1997, 61:286-291
    138. Rauh I and Mettenleiter TC. Pseudorabies virus glycoproteins gⅡ and gp50 are essential for virus penetration. J Virol. 1991,65:5348-5356
    139. Sabo A, Rajcani J. Latent pseudorabies virus infection in pigs. Acta Virol. 1976 Jun;20(3):208-14
    140. Schmidt J, Klupp BG, Karger A and Mettenleiter TC. Adaptability in herpesvirus:glycoprotein D-independent infectivity of pseudorabies virus. J.Virol. 1997,71:17-24
    141. Sharrocks AD. A T7 expression vector for producing N- and C-terminal fusion proteins with glutathione S-transferase. Gene. 1994 138(1-2):105-108
    142. Snijder EJ, Meulenberg JJM. The molecular biology of arteriviruses. J Gen Virol, 1998, 79: 961-979
    143. Spear P.G Entry of alphaherpesviruses into cells. Sem.Virol. 1993, 4:167-180
    144. Stewart WC, Carbrey EA, Kresse JI.. Detection of pseudorabies virus by immunofluorescence. J Am Vet Med Assoc. 1967;151(6):747-751
    145. Stegeman A. Aujesky's disease (Pseudorabies) virus eradication campaign in The Netherlands. Vet Microbiol, 1997,5(1-4):175-180
    146. Suarez P, Diaz-Guerra M, Prieto C, Esteban M, Castro JM, Nieto A, Ortin J. Open reading frame 5 of porcine reproductive and respiratory syndrome virus as a cause of virus-induce apoptosis. J Virol, 1996, 70(5): 2876-2882
    147. Suter-Crazzolara, C. and K. Unsicker. Improved expression of toxic proteins in E. coli.
    
    BioTechniques. 1995, 19:202-204
    148. Takada A and Kida H. Induction of protein antibody responses against pseudorabies vires by intranasal vaccination with glycoprotein B in mice. Arch Virology. 1995,140:1629-1635
    149. Tandon S, Horowitz PM. Detergent-assisted refolding of guanidinium chloride-denatured rhodanese. The effects of the concentration and type of detergent. J Biol Chem. 1987, 5; 262(10): 4486-4491
    150. Thomas C. Mettenleiter, Isabella. Rauh. A glycoprotein gX-β-galactosidase and fusion gene as insertional marker for rapid identification of pseudorabies virus mutants. Journal of Virological methods. 1990, 30:55-66
    151. Thomas J. Rea, James G. Timmins, Graham W. Long, Leonard E. Post. Mapping and sequence of the gene for the pseudorabies virus glycoprotein which accumulates in the medium of infected cells. Journal of Virology. 1985, 54:21-29
    152 Trudel, P., S. Provost, B. Massie, P. Chartrand, and L Wall. pGATA: a positive selection vector based on the toxicity of the transcription factor GATA-1 to bacteria. BioTechniques. 1996, 20:684-693
    153. Van Oirschot J T, Houwers D J, Rziha H J and Moonen P J L M. Development of an ELISA for detection of antibodies to glycoprotein Ⅰ of Aujeszky's disease virus: a method for the serological differentiation between infected and vaccinated pigs. Journal of Viological Methods, 1988, 22: 191-206
    154. Ward, G. A., C. K. Stover, B. Moss, and T. R. Fuerst. Stringent chemical and thermal regulation of recombinant gene expression by vaccinia virus vectors in mammalian cells. Proc. Natl. Acad. Sci. USA. 1995, 92:6773-6777
    155. Weiland E, Wieczorek-Krohmer M, Kohl D, ConzelmannKK, Weiland E Monoclonal antibodies to the GP5 of porcine reproductive and respiratory syndrome virus are more effective in virus neutralization than monoclonal antibodies to the GP4. Vet Microbiol, 1999, 66:171-186
    156. Wensvoort G Lelystad virus and the porcine epidemic abortion and respiratory syndrome. Vet Res. 1993,24:117-124
    157. Wiecorek Krohmer M, Weiland F, Conzelmann K. porcine reproductive and respiratory syndrome virus (PRRSV):monoclonal antibodies detect common epitopes on two viral proteins of European and U.S. isolates. Vet Microbiol. 1996,51:257-266
    158. Whealy ME, Robbins AK and Enquist LM. Pseudorabies virus glycoprotein gⅢ is required for efficient virus growth in tissue culture. J Virol.1988,62:2512-2515
    159. Williams, K. L., K. R. Emslie, and M. B. Slade. Recombinant glycoprotein production in the slime mould Dictyostelium discoideum. Curt. Opin. Biotechnol. 1995, 6:538-542
    160. Williams PP, Coria MF, Pirtle EC, Erickson GA. Comparison of a modified counterimmunoelectrophoresis test and a microimmunodiffusion test for detection of pseudorabies virus antibodies in porcine sera. Can J Comp Med. 1984,48(1):92-96
    161. Witte SB, Chard-Bergstrom C, Loughin TA, Kapil S. Development of a recombinant nucleoprotein-based enzyme-linked immunosorbent assay for quantification of antibodies against porcine reproductive and respiratory syndrome virus. Clin Diagn Lab Immunol. 2000 , 7(4):700-702
    162. Wu¨lfing, C., and A. Plu¨ckthun. A versatile and highly repressible Escherichia coli expression system based on invertible promoters: expressionof a gene encoding a toxic product. Gene. 1993, 136:199-203
    
    
    163. Zhang X, Shin J, Molitor TW, Schook LB, Rutherford MS. Molecular responses of macrophages to porcine reproductive and respiratory syndrome virus infection. Virology. 1999, 262(1): 152-162
    164. Zuckermann F, Zsak L, Mettenleiter T C, Ben-Porat T. Pseudorabies virus glycoprotein gⅢ is a major target antigen for mutine and swine-specific cytotoxic T lymphocytes. J Virol, 1990, 64: 802-812

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700