铜胺氧化酶催化产生的过氧化氢参与乙烯诱导蚕豆气孔关闭
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气孔是植物叶片与外界进行气体交换的主要通道,气孔运动受各种环境因素和内源因子包括植物激素乙烯和重要信号分子过氧化氢(H2O2)的调节。研究发现铜胺氧化酶(CuAO)催化产生的H2O2参与脱落酸(ABA)诱导的气孔关闭,乙烯诱导气孔关闭依赖于NADPH(还原型烟酰胺腺嘌呤二核苷酸磷酸)氧化酶催化产生的H2O2。然而时至今日,CuAO催化产生的H2O2是否参与乙烯诱导的气孔关闭还未见报道。本文以蚕豆为材料,借助药理学实验、激光扫描共聚焦显微镜技术和CuAO酶活性测定研究了CuAO及其催化产物H2O2在乙烯诱导气孔关闭中的作用。所得主要结果如下:
     1.乙烯释放剂乙烯利、乙烯合成前体1-氨基环丙烷-1-羧酸(ACC)和乙烯均显著诱导气孔关闭。
     2.CuAO专一性抑制剂氨基胍(Aminoguanidine. AG)、2-溴乙胺(2-Bromoethylamine. BEA)均显著抑制乙烯利、ACC和乙烯诱导气孔关闭。
     3.CuAO的四种催化产物中仅H2O2能够显著逆转AG、BEA阻止乙烯利、ACC、乙烯诱导气孔关闭的效应。
     4. CuAO催化底物腐胺(putrescine. Put)不影响乙烯利、ACC和乙烯诱导气孔关闭。
     5.乙烯利、ACC和乙烯显著提高质外体CuAO活性,AG、BEA显著抑制乙烯利、ACC和乙烯提高质外体CuAO活性的效应。
     6.乙烯利、ACC和乙烯显著增加保卫细胞H2O2水平,AG、BEA显著抑制乙烯利、ACC和乙烯增加保卫细胞H2O2水平的效应。
     上述结果表明,乙烯通过提高质外体CuAO活性和H2O2水平诱导气孔关闭。
Stomatal is the main channel in plant leaves for gas exchange with the outside world, stomatal movement is regulated by multiple environment factors and internal cues including phytohormone ethylene and important signal molecule hydrogen peroxide (H2O2). Previous study has indicated that copper amine oxidase (CuAO) in Vicia faba guard cells is an essential enzymatic source for H2O2 production in ABA-induced stomatal closure via the degradation of putrescine, and ethylene-induced stomatal closure has also been shown to be dependent on H2O2 generated by the nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase. However, up to data, it is unclear whether H2O2 generated by CuAO participates in ethylene-induced stomatal closure. In the present study, using the abaxial epidermis of Vicia faba as materials, by means of the epidermal strip bioassay. laser scanning confocal microscopy (LSCM) and determination of CuAO activity, the role of H2O2 generated by CuAO in ethylene-induced stomatal closure was investigated. The main conclusions are as follows:
     1. Ethylene release agent ethephon. ethylene precursor 1-aminocyclopropane-l-carboxylic acid (ACC) and ethylene induced stomatal closure significantly.
     2. Aminoguanidine (Aminoguanidine. AG) and 2-bromine ethylamine (2-Bromoethylamine. BEA), two specific inhibitor of CuAO. obviously inhibited ethephon-, ACC-and ethylene-induced stomatal closure.
     3. Among four catalytic products of CuAO. only H2O2 significantly reversed the inhibitory effects of AG and BEA on ethephon-, ACC-and ethylene-induced stomatal closure.
     4. Putrescine (Put), a substrate of CuAO, had no significant effect on ethephon-, ACC-and ethylene-induced stomatal aperture.
     5. Ethephon, ACC and ethylene induced increase in apoplastic CuAO activity, and the effects of ethephon, ACC and ethylene on CuAO activity were significantly prevented.
     6. Ethephon. ACC and ethylene induced H2O2 production in guard cells, and the effects of ethephon. ACC and ethylene on H2O2 production in guard cells were significantly suppressed.
     In summary, our results demonstrate that ethylene-induce stomatal closure is associated with CuAO-dependent H2O2 production.
引文
[1]Gray JE, Hetherington AM. Plant development:YODA the stomatal switch[J]. Curr Biol,2004,14:488-490.
    [2]Buckley T N. The control of stomata by water balance [J]. New Phytologist,2005, 168(2):275-292.
    [3]Blatt MR, Grabov A. Signal redundancy, gates and the integration in the control of ion channels for stomatal movement[J].1997,48:529-537.
    [4]Schroeder J I, Allen G J, Hugouvieux V, et al. Guard cell signal transduction [J]. Annual Review of Plant Physiology and Plant Molecule Biology,2001,52:627-658.
    [5]Allen G J,Kuchitsu K,Chu S P,Murate Y,Schroeder J I.Arabidopsis abi1-1 and abi2-1 Phosphatase mutations Reduce abscisic acid-induced cytoplasmic calcium rises in guard cells[J].The Plant Cell,1999,11:1785-1798.
    [6]Tallman G.Are diurnal patterns of stomatal movement the result of alternating metabolism of endogenous guard cell ABA and accumulation of ABA delivered to the apoplast around guard cells by transpiration[J]? 2004.55 (405):1963-1976.
    [7]Gilroy S, Read N D, Trewavas A J. Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure [J]. Nature,1990. 343:769-771.
    [8]Grabov A, Blatt M R. Membrane voltage initiates Ca2+waves and potentiates Ca2+ increases with abscisic acid in stomatal guard cells [J]. Proceedings of the National Academy of Sciences,1998,95:4778-4783.
    [9]Gonugunta VK, Srivastava N, Puli MR, Raghavendra AS. Nitric oxide production occurs after cytosolic alkalinization during stomatal closure induced by abscisic acid[J]. Plant, Cell&Environment.2008.31:1717-1724.
    [10]Li J, Wang X Q; Watson M B. et al.Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase[J].Science,2000.287: 300-303.
    [11]Yan J. Tsuichihara N. Etoh T. Iwai S. Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening[J]. Plant Cell Environ.2007.30:1320-1325.
    [12]Zeiger E. The biology of stomatal guard cells[J]. Annu Rev Plantphysiol,1983,34: 441-475.
    [13]Kinoshita T, Shimazaki K. Blue light activates the plasma membrane H(+)-ATPase by phosphorylation of the C-terminus in stomatal guard cells[J]. The EMBO Journal1999,18(20):5548-5558.
    [14]Sharkey TD, Ogawa T. Zeiger E, Farquhar G, Cowan I, eds.Stomatal responses to light. In Stomatal Function[M]. Stanford, CA:Stanford University Press.1987, pp. 195-208.
    [15]Roelfsema MR, Hedrich R. In the light of stomatal opening:new insights into'the Watergate' [J]. New Phytol,2005,167:665-691.
    [16]Vavasseur A, Raghavendra AS. Guard cell metabolism and CO2 sensing[J]. New Phytol,2005,165:665-682.
    [17]Blatt M R, Grabov A. Signal redundancy, gates and the integration in the control of ion channels for stomatal movement [J]. Journal of Experimental Botany,1997,48: 529-537.
    [18]Cousson A, Cotelle V, Vavasseur A. Induction of stomatal closure by vanadate or a light/dark transition involves Ca2+-Calmodulin-dependent protein phosphorylations [J]. Plant Physiology,1995,109:491-497.
    [19]SHE Xiao-Ping.SONG Xi-Gui. HE Jun-Min.Role and Relationship of Nitric Oxide and Hydrogen Peroxide in Light/Dark-regulated Stomatal Movement in Viciafaba[J].植物学报,2004,46(11):1292-1300.
    [20]任筠,张蓓,佘小平.蚕豆上、下表皮气孔运动光/暗响应机制[J].陕西师范大学学报(自然科学版),2010,38(5):69-71.
    [21]Zeiger E, Armond P, Melis A. Fluorescence properties of guard cell chloroplasts. Evidence for linear electron transport andlight-harvesting pigments of photosystem I and II [J]. Plant Physiol.1981,67:17-20.
    [22]Outlaw W HJr, Critical examination of the quantitative evidence for and against CO2 fixation by guard cells [J]. Physiologia Plantarum,1989,77:275-281.
    [23]Preiss J. Regulation of the biosynthesis and degradetion of starch[J]. Annu Rev Plant Physiol.1982.33:431-454.
    [24]Messinger SM. Buckley TN. Mott KA. Evidence for involvement of photosynthetic processes in the stomatal response to CO2. Plant Physiol [J].2006,140 (2): 771-778.
    [25]Nilson SE, Assmann SM. The control of transpiration. Insights from Arabidopsis[J]. Plant Physiol,2007,143:19-27.
    [26]Sun Li, Wu ZY, Li XD. et al. Signal Transduction Mechanism of Stomatal Movement in Plants[J].Plant Physiology Communications,2006,42(6):1203-1210.
    [27]Neljubov, D.Uber die horizontale Nutation der Stengel von Pisum sativum und einigerAnderer[J].Pflanzen Beih. Bot. Zentralb.1901.10:128-139.
    [28]Burg, S.P., and Burg, E.A. Ethylene action and the ripening of fruits [J]. Science.1965.28:1190-1196.
    [29]Bleecker, A.B., and Kende, H. Ethylene:a gaseous signal molecule in plants [J]. Annu. Rev. Cell Dev. Biol.,2000,16:1-18.
    [30]Xue-ren Yin. Andrew. Allan,Kun-song Chen and Ian B. Ferguson.Kiwifruit EIL and ERF genes involved in regulating fruit ripening[J].Plant Physiology.2010,153:1280-1292.
    [31]张志安,陈展宇.植物生理学[M].吉林大学出版社,2009.235.
    [32]文啟光,薛红卫.激素的作用与信号转导[M].高等教育出版社.2006,499.
    [33]Guo H, Ecker J R. The ethylene signaling pathyway:new insights [J]. Current Opinion in Plant Biology,2004,7:40-49.
    [34]Lund S T, Stall R E, Klee H J. Ethylene regulates the susceptible response to pathogen infection in tomato [J]. Plant Cell,1998,10:371-382.
    [35]Jones EB. Epinasty promoted by salinityor ethylene is indicator of salt-sensitivity in tomatoes [J]. Plant Cell Environ.1996,19:93-100.
    [36]王弋博,冯虎元,曲颖,程佳强,王勋陵,安黎哲,NO在UV-B诱导的玉米幼苗叶片乙烯合成中的作用[J].草业学报,2006,15(3):70-74.
    [37]安黎哲,徐晓峰,汤红官等,增强的UV-B辐射对番茄叶片乙烯产生和ACC合成酶基因表达的影响[J].植物学报,2006.48(10):1190-1196.
    [38]Jacob Garty, Lior Weissman, Tal Levin, Rachel Garty-Spitz and Haya Lehr, Impact of UV-B.Heat and Chemicals on Ethylene-Production of Lichens[J].Journal of Atmospheric Chemistry,2004,49:1-3.
    [39]Levit t L K, Stein DB, Rubinstein B. Promotion of stomatal opening by indoleacetic acid and ethrel in epidermal strips of Vicia faba L[J].Plant physiology.1987.85:318-321.
    [40]Merritt F, Kemper A. Tallman G. Inhibitors of ethylene biosynthesis inhibit auxin-induced stomatal opening in epidermis detached from leaves of Vicia faba L [J]. Plant and Cell Physiology,2001.42:223-230.
    [41]Madhavan S.Chrominski A,Smith BN. Effect of ethylene on stomatal opening in tomato and carnation leaves [J]. Plant Cell Physiology,1983,24:569-572.
    [42]Tissera P,Ayres PG. Endogenous ethylene affects the behavior of stomata in epidermis isolated from rust infected faba bean (Vicia faba L.) [J] Newphytol, 1986,104:536.
    [43]Desikan R, Last K, Harrett-Williams R, at al. Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis [J]. The Plant Journal,2006.47:907-916.
    [44]Pallas J E, Kays S J. Inhibition of photosynthesis by ethylene——a stomatal effect [J]. Plant Physiology,1982,70:598-601.
    [45]李杰,刘新等.一氧化氮在乙烯诱导蚕豆气孔关闭中的作用[J].植物生理与分子生物学学报,2007,33(4):349-353.
    [46]Tanaka Y,Sano T,Tamaoki M,et al. Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis[J].Plant Physiology,2005,138:2337-2343.
    [47]Tanaka Y, Sano T, Tamaoki M, et al. Cytokinin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in Arabidopsis [J].Journal of Experimental Botany,2006,57(10):2259-2266.
    [48]Frommhold I. Effect of ethephon on stomatal opening in detached epidermal strips of tobacco leaves (Nicotiana tabacum L. cv. Samsun) [J]. BIOLOGIA PLANTARUM (PRAHA),1982,24 (4):303-306.
    [49]LIU Jing, LIU Guo Hua,HOU LiXia & LIU Xin. Ethylene-induced nitric oxide production and stomatal closure in Arabidopsis thaliana depending on changes in cytosolic pH [J]. Plant Physiology,2010,22:2403-2409.
    [50]Imaseki H, Watanabe A, Odawara S. Role of oxygen in auxin-induced ethylene production[J]. Plant Cell Physiol,1977,18:577-586.
    [51]Kelly MO, Bradford KJ. Ethylene synthesis and growth of tomato hypocotyls: induction by auxin and fusicoccin and inhibition by vanadate [J]. Plant Growth Regul,1990,9:43-49.
    [52]Yang S, Hoffinan N. Ethylene biosynthesis and its regulation in higher plants [J]. Annals of Review of Plant Physiology,1984,35:155-189.
    [53]Musgrave A, Waiters J. Ethylene-stimulated growth and auxin-transport in Ranunculus sceleratus petioles [J].New Phytol,1973,72:783-789.
    [54]Beyer EM Jr, Morgan PW. Effect of ethylene on the uptake, distribution, and metabolism of indoleacetic acid-l-14C and-2-14C and naphthaleneacetic acid-l-14C [J]. Plant Physiol,1970,46:157-162.
    [55]Bertell G, Bolander E, Eliasson L. Factors increasing ethylene production enhance the sensitivity of root growth to auxins [J]. Physiol Plant,1990,79:255-258.
    [56]Liu JH, Reid MD. Adventitious rooting in hypocotyls of sunflower (Helianthus annuus) seedlings. Ⅳ.The role of changes in endogenous free and conjugated indole-3-acetic acid [J]. Physiologia Plantarum,1992.86:285-292.
    [57]刘新,张蜀秋.水杨酸、茉莉酸和乙烯在调控蚕豆气孔运动中的相互关系[J].植物生理学报.2000.26(6)487-497.
    [58]王娟,佘小平,郭静.乙烯对ABA和暗诱导气孔关闭的效应及其作用机制研究[D].陕西师范大学.2009.
    [59]Vogel JP, Schuerman P, Woeste K. et al. Isolation and characterization of Arabidopsis mutants defective in the induction of ethylene biosynthesis by cytokinin [J]. Genetics,1998,149:417-427.
    [60]Vogel JP, Woeste KE, Theologis A, et al. Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction respectively [J]. Proc. Natl. Acad. Sci. USA,1998, 95:4766-4771.
    [61]Saibo NJ, Vriezen WH, Beemster GT. Van Der Straeten D.Growth and stomata development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins[J]. Plant J,2003.33(6):989-1000.
    [62]Interactions between Gibberellic Acid, Ethylene, and Abscisic Acid in Control of Amylase Synthesis in Barley Aleurone Layers [J]. Plant Physiol.,1973,51:198-202.
    [63]Subbiah V and Reddy K J. Interactions between ethylene, abscisic acid and cytokinin during germination and seedling establishment in Arabidopsis[J]. Biosci.. 2010.35:451-458.
    [64]Finkelstein RR, Gibson SI. ABA and sugar interactions regulating development: cross-talk or voices in a crowd[J]? Curr Opin Plant Biol,2001,5:26-32.
    [65]Ghassemian M, Nambara E. Cutler S et al. Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis[J]. Plant Cell.2000,12:1117-1126.
    [66]Beaudoin N, Serizet C, Gosti F et al. Interactions between abscisic acid and ethylene signaling cascades[J]. Plant Cell,2000,12,1103-1115.
    [67]曹毅,任吉君,李春梅,王艳.乙烯利和赤霉素对黄瓜性别表现的影响[J].西 南农业大学学报,2002,24(1):42-44.
    [68]Martin-Tanguy J.Metabolism and function of polyamines in plants:recent development (new approaches) [J]. Plant Growth Regulation,2001,34:135-148.
    [69]Smith TA. Plant amines. In Secondary Plant Products:In Bell E.A.&Charlwood B.V.(eds):B.V.Encyclopedia of Plant Phsiology,1980,443-460.
    [70]Kusano K, Berberich T, Tabeda C, Takahashi Y. Polyamine:essential factors for growth and survival [J]. Planta,2008.228:367-381.
    [71]BORRELL A,CULIANEZ—MACIA F A, ALTABELLA T, et al.Arginine decarboxylase is localized in chloroplasts[J].Plant Physiol,1995,109:771-776.
    [72]Martin-Tanguy J, Carre M. Polyamines in gravepine microcuttings cultivated in-vitro-effects of amines and inhibitors of polyamine biosynthesis on polyamine levels and microcutting growth and development [J]. Plant Growth Regulation,1993,13:269-280.
    [73]EVANS P T,MALMBERG R L.Do polyamines have roles in plant development[J].Annual Review of Plant Physiology and Plant Molecular Biology,1989,40:235-269.
    [74]Federico R, Angelini R. Polyamine catabolism in plants.in:Slocum R D, Flores H.E, Eds. Biochemistry and Physiology of Polyamines in Plants [M]. CRC Press,Boca Raton,1991,pp:41-56.
    [75]Cona A, Rea G, Angelini R, et al. Function of amine oxidases in plant development and defence [J]. Trends in Plant Science,2006,11:80-88.
    [76]Rea G,de Pinto M C, Tavazza R, et al. Ectopic expression of maize polyamine oxidase and pea copper amine oxidase in the cell wall of tobacco plants [J]. Plant Physiology,2004,134:1414-1426.
    [77]Martin-Tanguy J. Conjugated polyamines and reprodutive development:biochemical.molecular and physiological approaches [J]. Physiol.Plant,1997,100:675-688.
    [78]关军锋,刘海龙,李广敏.干旱胁迫下小麦幼苗根、叶多胺含量和多胺氧化酶活性的变化[J].植物生态学报,2003.27(5):655-660.
    [79]Schwartz M, Altman A, Cohen Y, Arzee T. Localization of ornithine decarboxylase and changes in polyamine content in root meristems of Zea ways[J].Physiol Plantarum,1986.67:485-492.
    [80]魏岳荣,张秋明,郑玉生.特早熟温州蜜柑‘肋山’果实浮皮过程内源游离多 胺含量的变化[J].果树学报,2001,18(6):325-328.
    [81]Fuller DJ, Gerner EW, Russell DH. Polyamine biosynthesis and accumulation during the G1 to S phase transition [J]. Cell Physiololy,1977,93:81-88.
    [82]Rupniak HT, Paul D. Inhibition of spermidine and spermine synthesis leads to growth arrest of rat embryo fibroblast in G1 [J]. Cell Physiology,1978, 94:161-170.
    [83]Bouchereau A, Aziz A, Larher F, et al. Polyamines and environmental challenges: recent development [J]. Plant Sci,1999,140:103-125.
    [84]Fowler MR. Kirby MJ, Scott NW, et al. Polyamine metabolism and gene regulation during the transition of autonomous sugar beet cell in suspension culture from quiescence to division [J]. Physiol. Plant,1996,98:439-446.
    [85]KAUR-SAWHNEY R, LM SHIH, HE FLORES. AW GALSTON 1982 Relation of polyamine synthesis and titer to aging and senescence in oat leaves [J]. Plant Physiol.69:405-410.
    [86]Biond S et al.Polyamines and ethylene in relation to adventitous root formation in Pranus auium shoot cultures [J].Physiol Plant,1990.78(3):474-483.
    [87]王富民,薛应龙.百合小鳞茎离体发生过程中内源多胺水平和多胺氧化酶活性的变化[J].植物生理学报,1988,14(4):350-354.
    [88]曾骤等.金冠苹果短枝和茎片在花芽分化期氨基酸变化的初步研究[[J],北京农业大学学报,1985,11(1):59-67.
    [89]Edwards GR. Ammonia,arginine, polyamines and flower initiation in apple [J].Acta Horticulturae,1986,179:363.
    [90]Liu K, Fu H, Bei Q X, et al. Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements [J]. Plant Physiology, 2000,124:1315-1326.
    [91]Takahashi Y, Berberich T, Yamashita K, Uehara Y, Miyazaki A, Kusano T. Identification of tobacco HIN1 and two closely related genes as spermine-responsive genes and their differential expression during the Tobacco mosaic virus-induced hypersensitive response and during leaf-and flower-senescence [J]. Plant Mol Biol.2004:54:613-622.
    [92]Takahashi Y, Uehara Y, Berberich T, Ito A, Saitoh H. Miyazaki A. Terauchi R. Kusano T. A subset of hypersensitive response marker genes, including HSR203J, is the downstream target of a spermine signal transduction pathway in tobacco[J]. Plant J,2004,40:586-595.
    [93]Hill JM.Diamine oxidase(pea seedings) [J].Methods Enzymol.1971,17:730-735.
    [94]Suzuki Y,Yanagisawa H.Purification and properties of maize polyamine oxidase:a flavprotein.Plant&Cell Physiol,1980,21 (6):1085-1094.
    [95]Kleutz MD.Adamsons K,Flynn JE.Cryonzymology and spectrophotometry of pea seeding diamine oxidase[J].Biochemistry.1980,19:1617-1621.
    [96]Cohen S S. Polyamine oxidases and dehydrogenases, in:Cohen SS(1 Ed).A Guide to the Polyamines [M]. University Press, New York,1998, pp.69-93.
    [97]Angelini R, Federico R, Bonfeute P. Maize polyamine oxidase:antibody production and ultrastructural localization [J]. Journal of Plant Physiology, 1995,145:686-692.
    [98]Laurenzi M, Rea G Federico R, et al. De-etiolation causes a phytochrome-mediated increase of polyamine oxidase expression in outer tissues of the maize mesocotyl:a role in the photomodulation of growth and cell wall differentiation [J].Planta,1999.208:146-154.
    [99]Sebela M, Radova A, Angelini R, Tavladoraki P, Frebort I, Pec P.(2001). FAD-containing polyamine oxidases:a timely challenge for researchers in biochemistry and physiology of plants[J].Plant Sci.160:197-207.
    [100]Smith TA. Polyamine oxidase from barley and oats[J]. Phytochemistry,1976,15: 633-636.
    [101]Kaur-Sawhney R,Flores HE, Galston A W. Polyamine oxidase in oat leaves:a cell wall-localized enzyme[J]. Plant Physiol.,1981,68:494-498.
    [102]Kleutz MD, Adamsons K, Flynn JE. Optimized preparation and determination of pea seedings amine oxidase [J]. Prep Biochem.,1980,10:615-631.
    [103]Cona A, Cenci F. Cervelli M, Federico R, Mariottini P, Moreno S,Angelini R.. Polyamine oxidase, a hydrogen peroxide-producing enzyme, is up-regulated by light and down-regulated by auxin in the outer tissues of the Maize mesocotyl [J]. Plant Physiol.,2003.131:803-813.
    [104]Su GX, An ZF, Zhang WH, Liu YL. Light promotes the synthesis of lignin through the production of H2O2 mediated by diamine oxidases in soybean hypocotyls [J]. J Plant Physiol..2005.162:1297-1303.
    [105]Angelini R. Manes F. Federico R. Spatial and functional correlation between diamine-oxidase and peroxidase activities and their dependence upon de-etiolation and wounding in chick-pea stems [J]. Planta,1990,182:89-96.
    [106]Konstantinos A, Paschalidis, Kalliopi A, et al.Sites and regulation of polyamine catabolism in the tobacco plant. Correlations with cell division/expansion, cell cycle progression, and vascular development[J]. Plant Physiology,2005. 138:2174-2184.
    [107]Rea G, Laurenzib M. et al. Developmentally and wound regulated expression of the gene encoding a cell wall copper amine oxidase in chickpea seedlings [J]. FEBS Letters,1998,437(3):177-182.
    [108]Federico R, Angelini R. Distribution of polyamines and their related catabolic enzyme in etiolated and light-grown leguminosae seedlings [J]. Planta,1988, 173:317-321.
    [109]Marini F, et al. Polyamine metabolism is upregulated in response to tobacco mosaic virus in hypersensitive, but not in susceptible, tobacco [J]. New Phytol.,2001,149:301-309.
    [110]Takahashi Y, Berberich T. Miyazaki A. et al. Spermine signalling in tobacco:activation of mitogen-activated protein kinases by spermine is mediated through mitochondria dysfunction [J]. Plant J.,2003,36:820-829.
    [111]Biondi S, Scaramagli S, Capitani F, Altamura MM. Torrigiani P. Methyl jasmonate upregulates biosynthetic gene expression, oxidation and conjugation of polyamines. and inhibits shoot formation in tobacco thin layers [J]. J Exp Bot. 2001,52:231-242.
    [112]Waiters D, Cowley T. Mitchell A. Methyl jasmonate alters polyamine metabolism and induces systemic protection against powdery mildew infection in barley seedlings [J]. J. Exp. Bot.2002,53:747-756.
    [113]Mukhopadhyay A. Choudhuri MM. Sen K. et al. Changes in polyamines and related enzymes with loss of viability in rice seeds [J].Phytochemistry.1983; 22(7):1547-1551.
    [114]Roy M, Ghosh B.Polyamines. both common and uncommon, under heat stress in rice (Oryza sativa) callus [J]. Physiol. Plant.,1996,98:196-200.
    [115]Asthir B. Duf}us C M. Smith R C, et al. Diamine oxidase is involved in H2O2 production in the chalazal cells during barley grain filling [J]. Joural of Experimental Botany, 2002,53(369):677-682.
    [116]Moller Sq McPherson MJ. Developmental expression and biochemical analysis of the Arabidopsis ataol gene encoding an H2O2-generating diamine oxidase [J]. Plant J.1998,13:781-791.
    [117]蒋振晖,顾振兴.高等植物体内Y-氨基丁酸的合成、代谢及其生理作用[J].植物生理通讯[J].2003,39(3)249-254.
    [118]穆小民,吴显荣.高等植物体内4-氨基丁酸的代谢及生理作用[J].氨基酸和生物资源.1994,4:44-47.
    [119]Satyanarayan V,Nair PM.Metabolism,enzymology and possible roles of 4-aminobutyrate in higher plants[J].Phytochem,1990,29:367-375.
    [120]Streeter JG,Thompson JF.Anaerobic accumulation of γ-aminobutyric acid and alanine in radish leaves(Raphanus sativusL.) [J].Plant Physiol,1972,49:572-578.
    [121]Nag S, Choudhuri MA. Role of endogenous auxin and polyamines in adventitious root formation in mung bean cuttings [J]. Indian Journal of Plant Physiology, 2007,12(3):228-233.
    [122]Kathiresan A, Tung P, Chinnappa CC, et al. γ-aminobutyric acid stimulates ethylene biosythesis in sun flower [J]. Plant Physiology,1997,115:129-135.
    [123]Hammond-Kosack KE, Jones JDG.Resistance gene-dependent plant defense responses [J]. Plant Cell,1996,8:1773-1791.
    [124]Terano S, Suzuki Y. Formation of b-alanine from spermine and spermidine in maize shoots [J]. Phytochemistry,1978,17(1):148-149.
    [125]Kuehn G D, Rodriguez-Garay B. Bagga S. Novel occurrence of uncommon polyamines in higher plants [J]. Plant Phyology,1990,94:855-857.
    [126]Koc E C, Bagga S, Songstad D D, et al. Occurrence of uncommon polyamines in cultured tissues of maize [J]. In Vitro Cellular&Developmental Biology-Plant,1998,34(3):252-255.
    [127]Kaur-Sawhney R, Galston AW. Physiological and biochemical studies on the antisenescence properties of polyamines in plants. In:Slocum RD, Flores HE eds. Biochemistry and Physiology of Polyamines in Plants [J]. CRC Press, Boca Raton FL,1991:201-211.
    [128]Tiburcio AF, Campos JL. Figueras X, et al. Recent advances in the understanding of polyamine functions during plant development [J]. Plant Growth Regulation, 1993,12:331-340.
    [129]Borrell A, Carbonell L. Farras R. Polyamine inhibit lipid peroxidation insenescing oat leaves [J]. Physiologia Plantarum,1997.99:385-390.
    [130]Neill SJ. Desikan R. Clarke A. Hurst RD, Hancock JT. Hydrogen peroxide and nitric oxide as signalling molecules in plants[J]. JExp Bot,2002.53:1237-1347.
    [131]Fridovich I. A quarter century of superoxide dismutase:an exemplar of science triuumplant In Asada K, Yoshikawa T eds. Frontiers of Reactive Oxygen Species in Biology and Medicine [J]. Elsevier. Science BU,1994,1-9.
    [132]Auh CK, Murphy TM. Plasma membrane redox enzyme is involved in the synthesis of O2 and H2O2 by Phytophihora elicitor-stimulated rose cells [J]. Plant Physiol.1995.107:1241-1247.
    [133]Haliiwell B. Lignin synthesis:the generation of hydrogen peroxide and superoxide by horseradish peroxidase and its stimulation by manganese (Ⅱ) and phenols [J]. planta,1978.140:81-88.
    [134]Bolwell GP, Butt VS, Davies DR, et al. The origin of the oxidative burst in plants [J]. Free Radical Research,1995,23(6):517-532.
    [135]Gunz DW. Hoffmann MR. Atmospheric chemistry of peroxides:a review [J]. Alamos Environ,1990,24A:1601-1633.
    [136]Hu X, Bidney DL. Yalpani N, et al. Overexpression of a gene encoding hydrogen Peroxide-generating oxalate oxidase evokes defense responses in sunflower [J]. Plant Physiology,2003,133:170-181.
    [137]郭泽建,李德葆.活性氧与植物抗病性[J].植物学报,2000.42(9):881-891.
    [138]Rea q de Pinto M C, Tavazza R, et al. Ectopic expression of maize polyamine oxidase and pea copper amine oxidase in the cell wall of tobacco plants [J]. Plant Physiology,2004.134:1414-1426.
    [139]Potikha TS, Collins CC. Johnson DI, et al. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers [J]. Plant Physiology, 1999.119:849-858.
    [140]Guo-Xing Su. Wen-Hua Zhang. You-Liang Liu. Involvement of hydrogen peroxide generated by polyamine oxidative degradation in the development of lateral roots in soybean [J]. Journal of Integrative Plant Biology.2006. 48(4):426-432.
    [141]Joo JH, Bae YS. Lee JS. Role of auxin-induced reactive oxygen species in root gravitropism [J]. Plant Physiology,2001,126:1055-1060.
    [142]McInnis SM. Desikan R. Hancock JT. et al. Production of reactive oxygen species and reactive nitrogen species by angiosperm stigmas and pollen:potential signalling crosstalk[J]? New Phytologist,2006,172:221-228.
    [143]Pei ZM, Murata Y, Benning C et al. Calcium channels activated by hydrogen peroxide mediate abscisic signaling in guard cells [J]. Nature,2000,406: 731-734.
    [144]Zhang X, Zhang L, Dong F, et al. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in hcia faba [J]. Plant Physiol, 2001,126:1438-1448.
    [145]Bright J, Desikan R, Hancock JT, et al. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis [J]. Plant J,2006. 45:113-122.
    [146]Alvarez ME, Pennell RI, Meijer PJ, et al. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity [J]. Cell, 1998,92:773-784.
    [147]Melillo MT, Leonetti P, Bongiovanni M. et al. Modulation of reactive oxygen species activities and H2O2 accumulation during compatible arid incompatible tomato-root-knot nematode interactions [J]. New Phytologist,2006,170: 501-512.
    [148]Hung KT, Hsu YT, Kao CH.Hydrogen peroxide is involved in methyl jasmonate-induced senescence of rice leaves [J]. Physiol. Plant.2006. 127:293-303.
    [149]Neill SJ, Desikan R, Hancock JT. Hydrogen peroxide signaling [J]. Current Opinion in Plant Biology,2002,5(5):388-395.
    [150]Mittler R, Vanderauwera S. Gollery M. et al. Reactive oxygen gene network of plants [J]. Trends in Plant Science,2004,9(10):490-498.
    [151]Foreman J, Demidchik V, Bothwell J H F, et al. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth [J]. Nature,2003.422: 442-446.
    [152]白玲,周云等.过氧化氢参与了脱落酸调控的拟南芥根形态发育[J].科技通报,2007.52(5):608-611.
    [153]Li SW, Xue LG, Xu SJ, Feng HY, An LZ. Hydrogen peroxide involvement in formation and development of adventitious roots in cucumber[J]. Plant Growth Regul.2007.52:173-180.
    [154]张司南,高培尧.镉诱导拟南芥根尖过氧化氢积累导致植物根生长抑制 [J].2010,18(1):136-140.
    [155]李刚,徐芳杰等.铝对小麦根尖细胞壁过氧化物酶活性和过氧化氢含量的影响[J].植物营养与肥料学报,2010,16(4):887-892.
    [156]张媛华,宋喜贵,佘小平.外源过氧化氢对蚕豆气孔运动的影响[J].2005,33(2):94-97.
    [157]安国勇,宋纯鹏等.过氧化氢对蚕豆气孔运动和质膜K+通道的影响[J].植物生理学报,Acta Phytophysiologica Sinica 2000,26(5):458-464.
    [158]苗雨晨,宋纯鹏,董发才.ABA诱导蚕豆气孔保卫细胞H202的产生[J].植物生理学报,Acta Phytophysiologica Sinica 2000,26(1):53-58.
    [159]薄惠,王棚涛,董发才,宋纯鹏.拟南芥保卫细胞中茉莉酸甲酯诱导的H2O2产生与MAPK信号转导体系的可能关系[J].植物生理学通讯.2005,4(41):439-443.
    [160]Hernandez JA, Ferrer MA, Jimenez A, Barcelo AR, Sevilla F.. Antioxidant systems and O2/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins [J]. Plant Physiol.2001.127:817-831.
    [161]Li ZC. McClure JW. Polyamine oxidase of primary leaves is apoplastic in oats but symplastic in barley [J]. Phytochemistry.1989.28:2255-2559.
    [162]Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochem.1976.72:248-254.
    [163]LINDA K. LEVIrr, DIANA B. STEIN. AND BERNARD RUBINSTEIN. Promotion of Stomatal Opening by Indoleacetic Acid and Ethrel in Epidermal Strips of Vicia faba L[J]. Plant Physiol.1987,85:318-321.
    [164]ZHANG XIAO, FA CAI DONG,JUN FENG GAO, CHUN PENG SONG. Hydrogen peroxide-induced changes in intracellular pH of guard cells precede stomatal closure[J] Cell Research,2001,11(1):37-43.
    [165]刘国华,侯丽霞等.H2O2介导的NO合成参与乙烯诱导的拟南芥叶片气孔关闭[J].自然科学进展,2009.19(8):841-851
    [166]Veal EA.Day AM,Morgan BA. Hydrogen peroxide sensing and signaling [J]. Mol cell.2007.26(1):1-14.
    [167]Zhenfeng An. Wen Jing, Youliang Liu and Wenhua Zhang.Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba[J]. Journal of Experimental Botany.2008.2(13):1-11.
    [168]Radhika Desikan, Kathryn Last, Rhian Harrett-Williams et al. Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis[J]. The Plant Journal,2006,47:907-916.
    [169]Wagner AM,K.The alternative respiratory pathway in plants:role and regulation[J]. Physiol Plant,1995,95:318-325.
    [170]Ederli L, Morettini R, Borgogni A, Wasternack C, Miersch O, Reale L, Ferranti F,Tosti N, Pasqualini S.Interaction between nitric oxide and ethylene in the induction of alternative oxidase in ozone-treated tobacco plants[J]. Plant Physiol,2006,142:595-608.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700