氯胺酮依赖者和吸烟者的脑结构和功能磁共振研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:了解氯胺酮依赖者、吸烟者和正常对照者的认知功能差异。方法:采用认知功能测试量表(包括:数字符号测验、连线测试A和stroop色词测验)对三组人群进行认知功能测试。结果:氯胺酮依赖者在数字符号测验和stroop色词测验方面得分都明显较吸烟者及正常对照者低,而吸烟者与正常对照没有明显的差异。结论:本测试结果显示氯胺酮依赖者可能存在认知功能损害,进一步支持本研究的神经影像学研究结果,而吸烟者可能没有明显的认知功能损害。
     目的:采用磁共振弥散张量成像技术,探讨氯胺酮依赖者的脑白质改变情况。方法:使用弥散张量成像的方法比较了41例氯胺酮依赖者和44例与之相匹配的无任何物质依赖史的健康志愿者的脑白质的完整性。结果:氯胺酮依赖者双侧额叶区和左侧颞-顶叶区的白质FA值低于正常对照(P<0.05,纠正后,cluster水平),同时还发现氯胺酮成瘾者的FA值与估计的氯胺酮使用总量呈负相关,即氯胺酮依赖者使用氯胺酮越多、脑白质损害越严重。结论:首次发现氯胺酮依赖者存在双侧额叶区和左侧颞-顶叶区脑白质完整性的损害;而且,双侧额叶区的脑白质的损害程度与使用氯胺酮的总量相关,说明使用氯胺酮越频繁、量越大,对脑白质的损害也越大。此外,氯胺酮依赖者的白质损害相似于精神分裂症者的白质损害,进一步支持氯胺酮作为精神分裂症研究模型的观点。
     目的:采用磁共振三维成像技术,研究氯胺酮依赖者脑灰质改变情况。方法:我们采用基本体素的形态学分析方法对41名氯胺酮依赖者和44名未使用任何成瘾物质的健康志愿者进行两组之间的脑灰质体积比较。结果:结果表明,与对照组相比,氯胺酮依赖组的双侧额叶区(左额上回和右额中回)灰质体积下降(p<0.05,纠正后,cluster水平)。此外,我们发现氯胺酮使用的时间(月)与双侧额叶灰质体积呈负相关(使用时间越长,灰质体积越少),而估计的氯胺酮使用总量只和左额上回的灰质体积呈负相关。结论:本研究首次报道了氯胺酮依赖者的双侧额叶灰质体积下降,首次分析了氯胺酮依赖者使用氯胺酮的相关因素与脑灰质体积的关系。氯胺酮依赖者的脑结构损害的研究,为将来氯胺酮成瘾和其他物质成瘾的治疗提供研究方向,也支持了氯胺酮作为模拟精神分裂症模型的研究的可行性和精神分裂症的谷氨酸假设。
     目的:采用功能磁共振(fMRI)磁共振技术,探讨静息状态下氯胺酮依赖者的脑功能活动改变情况。方法:本研究采用局部一致性(ReHo)方法,对41例氯胺酮依赖者和44例与之相匹配的无任何物质依赖的健康志愿者在静息状态下脑功能活动情况进行比较分析。结果:与正常人相比,氯胺酮依赖者静息状态下前扣带回的BOLD信号ReHo降低(P<0.05,纠正后,cluster水平),同时还发现氯胺酮成瘾者静息状态下额叶中央前回的BOLD信号ReHo增强(P<0.05,纠正后)。额叶中央前回的ReHo值增加与总的氯胺酮使用量和对氯胺酮的渴求呈负相关。结论:首次采用ReHo方法分析氯胺酮依赖者静息状态下脑的BOLD信号变化的脑区。此研究提示氯胺酮依赖者额叶区功能活动也存在异常。
     目的:采用磁共振弥散张量成像技术,探讨慢性吸烟者的脑白质损害情况。方法:使用弥散张量成像(DTI)的方法对44名慢性吸烟者和44名与之相匹配的非吸烟者的脑白质的完整性进行比较。结果:慢性吸烟组的双侧顶额叶区白质FA值高于非吸烟组(P<0.05,纠正后,cluster水平)。两侧的差异区非常的对称,除此之外没有发现两组白质有差异的脑区。此外,我们发现慢性吸烟者的FA值增高与首次吸烟的年龄相关,即首次吸烟的年龄越小,FA值增高越明显。结论:本研究显示慢性吸烟导致双侧顶额叶区白质对称性的改变,研究结果支持了慢性吸烟引起双侧顶-额区连接改变的假设,说明青少年吸烟可能对以后脑白质发育有影响。
     目的:采用磁共振三维成像技术,研究慢性吸烟者的脑灰质改变情况。方法:我们采用基于体素的形态学分析方法对44名吸烟者和44名相匹配的不吸烟者进行两组之间的脑灰质体积比较。结果:本研究发现,与不吸烟者组相比,吸烟者组的左侧丘脑、额中回区和扣带回灰质体积下降(p<0.001,未纠正)。结论:本研究发现了慢性吸烟者丘脑、额中回区和扣带回灰质体积下降。本研究结果将有助于进一步研究慢性吸烟的大脑作用机制。
     目的:采用功能磁共振(fMRI)磁共振技术,探讨慢性吸烟者静息状态下的脑功能活动情况。方法:本研究采用局部一致性(ReHo)方法,对44名吸烟者和44名与之相匹配的不吸烟的健康志愿者在静息状态下脑功能活动情况进行比较分析。结果:与不吸烟者相比,吸烟者静息状态右侧额下回BOLD信号ReHo降低,左侧顶上回BOLD信号ReHo增强(P<0.05,纠正后,cluster水平)。结论:首次采用ReHo方法分析吸烟者静息状态下脑的BOLD信号变化的脑区。此研究提示慢性吸烟会导致脑功能活动的改变。
     目的:探讨氯胺酮依赖者、吸烟者对不同成瘾物质(氯胺酮使用、吸烟)诱导的脑功能活动的异同之处。方法:采用氯胺酮使用、吸烟相关、性相关的短片录像对41名氯胺酮依赖(合并吸烟)者、45名吸烟者和44名无任何成瘾物质依赖者进行进行功能磁共振,观察脑功能活动变化。结果:对氯胺酮相关刺激,吸烟者组与对照组之间没有差异,而氯胺酮依赖者有不同部位脑区功能活动降改变;对吸烟相关刺激,无论与不吸烟者还是氯胺酮依赖者相比,吸烟者的脑功能增强;对性行为相关刺激,氯胺酮依赖者组的脑功能活动降低,而吸烟者组和不吸烟者组之间没有差异。结论:本测试结果显示氯胺酮使用和吸烟诱导的脑功能反应区涉及到多个脑区活动改变,与成瘾的神经病理学机制相关。
Objective:To explore the differences of cognitive function between ketamine users, smokers and healthy controls. Methods:Digit Symbol Test, Trail Making Test and The Stroop Color-Word Test were used to measure the differences of cognitive function in ketamine dependent subjects, smokers and drug free healthy volunteers. Results:compared with smokers and healthy controls, ketamine abuser had significant lower scores in Digit Symbol Test and the Stroop Color-Word Test, but no difference in Trail Making Test. Conclusions:The findings suggest that ketamine abusers have cognitive deficits which supported our finding in neuroimaging studies. However, this test did not show cognitive impairment in chronic cigarette smokers.
     Objective:To assess the brain white matter integrity in patients with ketamine dependence. Methods:White matter volumes were measured by using in vivo diffusion tensor magnetic resonance imaging (DTI) data in 41ketamine dependent subjects and 44 drug free healthy volunteers. Results: White matter changes associated with chronic ketamine use were found in bilateral frontal and left temporo-parietal cortices. Further, frontal white matter fractional anisotropy (FA) correlated with the severity of drug use (as measured by estimated total ketamine consumption). Conclusions:We provide direct evidence for dose-dependent abnormalities of white matter in bilateral frontal region and left temporo-parietal following chronic ketamine. The findings suggest a microstructural basis for the cognitive changes observed with prolonged ketamine use. Moreover, their similarity to white matter changes observed in chronic schizophrenia have implications for the glutamate model of this illness.
     Objective:To assess volumetric abnormalities of grey matter in ketamine dependent subjects. Methods:We used voxel based morphometry in conjunction with statistical parametric mapping on the structural magnetic resonance images of ketamine-dependent (n= 41) and drug-naive control individuals (n= 44) to assess differences between the two groups in gray matter volume. Results:We found a decrease in gray matter volume in bilateral frontal (left superior frontal and right middle frontal) cortex of ketamine patients in comparison to controls (p<0.05 corrected for multiple comparisons at cluster-level). Also, we found that the duration (months) of ketamine use was negatively correlated with gray matter volume in bilateral frontal cortex while the estimated total lifetime ketamine consumption was only negatively correlated with gray matter volume in left superior frontal cortex. Conclusions:This is the first voxel-based morphometry study showing reduction of frontal gray matter volume in patients with ketamine dependence and showing the correlation of duration of ketamine use and cumulative doses of ketamine with decrease of frontal gray matter volume. Brian structural study of the affected areas in patients with ketamine dependence might better guide future research into the poorly understood condition of ketamine addiction and its correlates of schizophrenia.
     Objective:To assess the alterations in regional homogeneity of resting-state brain activity in ketamine dependence. Methods:In this study, 41 patients with ketamine dependence and 44 healthy control subjects being imaged with BOLD fMRI and analyzed with the ReHo method. Results: Compared with healthy controls, decreased ReHo was found in ketamine users in the right Anterior Cingulate and increased ReHo was found in left Frontal Lobe (Precentral Gyrus) (p<0.05, cluster-level corrected). We also observed negative correlations between increased ReHo in precentral frontal gyrus and estimated total lifetime ketamine consumption, ketamine craving. Conclusions:To our knowledge, this is the first time to find the changes of the resting-state of brain activity in patients with ketamine dependence. Our findings indicated abnormal brain activity was distributed frontal cortex in patients with ketamine dependence during resting state.
     Objective:To assess the Brain white matter integrity in chronic cigarette smokers using diffusion tensor imaging (DTI). Methods:Brain magnetic resonance imaging (MRI) was performed for 44 smokers and 44 healthy age-and sex-matched comparison non-smoking subjects to compare the alteration of white matter integrity as measured by the fractional anisotropy (FA) on diffusion tensor imaging (DTI). Results:DTI data revealed that smokers had higher fractional anisotropy than healthy non-smokers in almost symmetrically bilateral fronto-parietal region white matter. FA differences were not seen in other areas. Positive association between the first start smoking age and increased fractional anisotropy was found in chronic smokers. Conclusions:The data suggest that smokers and non-smokers differed in bilateral fronto-parietal region white matter. These findings support the hypothesis that chronic cigarette smoking involves alterations of bilateral fronto-parietal connectivity and suggest that adolescent cigarette exposure modulates the development of white matter in brain.
     Objective:To assess volumetric abnormalities of grey matter in chronic cigarette smokers. Methods:We used voxel based morphometry in conjunction with statistical parametric mapping on the structural magnetic resonance images of 44 smokers and 44 non-smoking control individuals to assess gray matter volume differences between the two groups. Results:We found a decrease in gray matter volume in left thalamus, medial frontal cortex and anterior cingulate of smokers in comparison to controls (p<0.001 uncorrected for multiple comparisons at voxel-level). Conclusions:This voxel-based morphometry study showing reduction of regional gray matter volume in smokers. Brian structural study of the affected areas in smokers might better guide future research into the pathogenesis of chronic smoking.
     Objective:To assess the alterations in regional homogeneity of resting-state brain activity in chronic cigarette smokers. Methods:In this study,45 otherwise healthy smokers and 44 healthy control subjects being imaged with BOLD fMRI and analyzed with the ReHo method. Results: Compared with healthy controls, decreased ReHo was found in smokers in the right inferior frontal gyrus and increased ReHo was found in left superior parietal lobule (p<0.05, voxel=10, cluster-level corrected). Conclusions:To our knowdge, this is the first time to find the changes of the resting-state of brain activity in patients with ketamine dependence. Our findings indicated abnormal brain activity was distributed frontal cortex in patients with ketamine dependence during resting state.
     Objective:To assess the similarities and differences of cue-induced craving between ketamine user, smokers and healthy controls. Methods: Using block (ketamine-related, smoking-related and sex-related clips) design fMRI to aseess the brain acticities during different cue-induced craving in 41ketamine dependent subjects,45 smokers and 44 drug free healthy volunteers. Results:As for ketamine related cue, ketamine dependent subject showed brain activity changes; there is no difference between smokers and controls. As for smoking related cue, smokers showed higher brain activities than ketamine users and controls. As for sex related cue, ketamine users showed lower brain activity than smokers and controls; there is no difference between smokers and controls. Conclusions:The findings suggest that ketamine and smoking cue-elicited craving induced multiple brain regions' activity which associated with the neurophthology of addiction.
引文
[1]aan het RM, Collins KA, Murrough JW, Perez AM, Reich DL, Charney DS, Mathew SJ (2010) Safety and efficacy of repeated-dose intravenous ketamine for treatment-resistant depression. Biol Psychiatry 67:139-145.
    [2]Ahmed SN, Petchkovsky L (1980) Abuse of ketamine. Br J Psychiatry 137:303.
    [3]Alberg AJ (2008) Cigarette smoking:health effects and control strategies. Drugs Today (Barc) 44:895-904.
    [4]Alicata D, Chang L, Cloak C, Abe K, Ernst T (2009) Higher diffusion in striatum and lower fractional anisotropy in white matter of methamphetamine users. Psychiatry Res 174:1-8.
    [5]Allman JM, Hakeem A, Erwin JM, Nimchinsky E, Hof P (2001) The anterior cingulate cortex. The evolution of an interface between emotion and cognition. Ann N Y Acad Sci 935:107-117.
    [6]Amann LC, Halene TB, Ehrlichman RS, Luminais SN, Ma N, Abel T, Siegel SJ (2009) Chronic ketamine impairs fear conditioning and produces long-lasting reductions in auditory evoked potentials. Neurobiol Dis 35:311-317.
    [7]Arnone D, Barrick TR, Chengappa S, Mackay CE, Clark CA, bou-Saleh MT (2008) Corpus callosum damage in heavy marijuana use:preliminary evidence from diffusion tensor tractography and tract-based spatial statistics. Neuroimage 41:1067-1074.
    [8]Arnow BA, Millheiser L, Garrett A, Lake PM, Glover GH, Hill KR, Lightbody A, Watson C, Banner L, Smart T, Buchanan T, Desmond JE (2009) Women with hypoactive sexual desire disorder compared to normal females:a functional magnetic resonance imaging study. Neuroscience 158:484-502.
    [9]Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839-851.
    [10]Ashtari M, Cervellione KL, Hasan KM, Wu J, Mcllree C, Kester H, Ardekani BA, Roofeh D, Szeszko PR, Kumra S (2007) White matter development during late adolescence in healthy males:a cross-sectional diffusion tensor imaging study. Neuroimage 35:501-510.
    [11]Azizian A, Monterosso J, O'Neill J, London ED (2009) Magnetic resonance
    imaging studies of cigarette smoking. Handb Exp Pharmacol 113-143.
    [12]Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111:209-219.
    [13]Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system-a technical review. NMR Biomed 15:435-455.
    [14]Beaulieu C, Allen PS (1994) Determinants of anisotropic water diffusion in nerves. Magn Reson Med 31:394-400.
    [15]Bechara A (2003) Risky business:emotion, decision-making, and addiction. J Gambl Stud 19:23-51.
    [16]Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537-541.
    [17]Bjork JM, Knutson B, Fong GW, Caggiano DM, Bennett SM, Hommer DW (2004) Incentive-elicited brain activation in adolescents:similarities and differences from young adults. J Neurosci 24:1793-1802.
    [18]Breier A, Malhotra AK, Pinals DA, Weisenfeld NI, Pickar D (1997) Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers. Am J Psychiatry 154:805-811.
    [19]Brody AL (2006) Functional brain imaging of tobacco use and dependence. J Psychiatr Res 40:404-418.
    [20]Brody AL, Mandelkern MA, Jarvik ME, Lee GS, Smith EC, Huang JC, Bota RG, Bartzokis G, London ED (2004a) Differences between smokers and nonsmokers in regional gray matter volumes and densities. Biol Psychiatry 55:77-84.
    [21]Brody AL, Mandelkern MA, Lee G, Smith E, Sadeghi M, Saxena S, Jarvik ME, London ED (2004b) Attenuation of cue-induced cigarette craving and anterior cingulate cortex activation in bupropion-treated smokers:a preliminary study. Psychiatry Res 130:269-281.
    [22]Brody AL, Mandelkern MA, London ED, Childress AR, Lee GS, Bota RG, Ho ML, Saxena S, Baxter LR, Jr., Madsen D, Jarvik ME (2002) Brain metabolic changes during cigarette craving. Arch Gen Psychiatry 59:1162-1172.
    [23]Brody AL, Mandelkern MA, Olmstead RE, Jou J, Tiongson E, Allen V, Scheibal D, London ED, Monterosso JR, Tiffany ST, Korb A, Gan JJ, Cohen MS (2007) Neural substrates of resisting craving during cigarette cue exposure. Biol Psychiatry 62:642-651.
    [24]Brunetti M, Babiloni C, Ferretti A, Del GC, Merla A, Olivetti BM, Romani GL (2008) Hypothalamus, sexual arousal and psychosexual identity in human males:a functional magnetic resonance imaging study. Eur J Neurosci 27:2922-2927.
    [25]Camchong J, Lim KO, Sponheim SR, Macdonald AW (2009) Frontal white matter integrity as an endophenotype for schizophrenia:diffusion tensor imaging in monozygotic twins and patients' nonpsychotic relatives. Front Hum Neurosci 3:35.
    [26]Chen WJ, Fu TC, Ting TT, Huang WL, Tang GM, Hsiao CK, Chen CY (2009) Use of ecstasy and other psychoactive substances among school-attending adolescents in Taiwan:national surveys 2004-2006. BMC Public Health 9:27.
    [27]Childress AR, Ehrman RN, Wang Z, Li Y, Sciortino N, Hakun J, Jens W, Suh J, Listerud J, Marquez K, Franklin T, Langleben D, Detre J, O'Brien CP (2008) Prelude to passion:limbic activation by "unseen" drug and sexual cues. PLoS One 3:e1506.
    [28]Chu PS, Kwok SC, Lam KM, Chu TY, Chan SW, Man CW, Ma WK, Chui KL, Yiu MK, Chan YC, Tse ML, Lau FL (2007)'Street ketamine'-associated bladder dysfunction:a report of ten cases. Hong Kong Med J 13:311-313.
    [29]Chung A, Lyoo IK, Kim SJ, Hwang J, Bae SC, Sung YH, Sim ME, Song IC, Kim J, Chang KH, Renshaw PF (2007) Decreased frontal white-matter integrity in abstinent methamphetamine abusers. Int J Neuropsychopharmacol 10:765-775.
    [30]Cohen A, Young RW, Velazquez MA, Groysman M, Noorbehesht K, Ben-Shahar OM, Ettenberg A (2009) Anxiolytic effects of nicotine in a rodent test of approach-avoidance conflict. Psychopharmacology (Berl) 204:541-549.
    [31]Cole DM, Beckmann CF, Long CJ, Matthews PM, Durcan MJ, Beaver JD (2010) Nicotine replacement in abstinent smokers improves cognitive withdrawal symptoms with modulation of resting brain network dynamics. Neuroimage.
    [32]Cowan RL, Lyoo IK, Sung SM, Ahn KH, Kim MJ, Hwang J, Haga E, Vimal RL, Lukas SE, Renshaw PF (2003) Reduced cortical gray matter density in human MDMA (Ecstasy) users:a voxel-based morphometry study. Drug Alcohol Depend 72:225-235.
    [33]Crews FT, Boettiger CA (2009) Impulsivity, frontal lobes and risk for addiction.
    Pharmacol Biochem Behav 93:237-247.
    [34]Cuadra MB, Cammoun L, Butz T, Cuisenaire O, Thiran JP (2005) Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images. IEEE Trans Med Imaging 24:1548-1565.
    [35]Curran HV, Morgan C (2000) Cognitive, dissociative and psychotogenic effects of ketamine in recreational users on the night of drug use and 3 days later. Addiction 95:575-590.
    [36]Daumann J, Heekeren K, Neukirch A, Thiel CM, Moller-Hartmann W, Gouzoulis-Mayfrank E (2008) Pharmacological modulation of the neural basis underlying inhibition of return (IOR) in the human 5-HT2A agonist and NMDA antagonist model of psychosis. Psychopharmacology (Berl) 200:573-583.
    [37]David SP, Munafo MR, Johansen-Berg H, Mackillop J, Sweet LH, Cohen RA, Niaura R, Rogers RD, Matthews PM, Walton RT (2007) Effects of Acute Nicotine Abstinence on Cue-elicited Ventral Striatum/Nucleus Accumbens Activation in Female Cigarette Smokers:A Functional Magnetic Resonance Imaging Study. Brain Imaging Behav 1:43-57.
    [38]Deakin JF, Lees J, McKie S, Hallak JE, Williams SR, Dursun SM (2008) Glutamate and the neural basis of the subjective effects of ketamine:a pharmaco-magnetic resonance imaging study. Arch Gen Psychiatry 65:154-164.
    [39]Degenhardt L, et al. (2008) Toward a Global View of Alcohol, Tobacco, Cannabis, and Cocaine Use:Findings from the WHO World Mental Health Surveys. PLoS Med 5:e141.
    [40]Degenhardt L, Copeland J, Dillon P (2005) Recent trends in the use of "club drugs": an Australian review. Subst Use Misuse 40:1241-1256.
    [41]Degenhardt L, Dunn M (2008) The epidemiology of GHB and ketamine use in an Australian household survey. Int J Drug Policy 19:311-316.
    [42]Di CG (2002) Nucleus accumbens shell and core dopamine:differential role in behavior and addiction. Behav Brain Res 137:75-114.
    [43]Diekhof EK, Falkai P, Gruber O (2008) Functional neuroimaging of reward processing and decision-making:a review of aberrant motivational and affective processing in addiction and mood disorders. Brain Res Rev 59:164-184.
    [44]Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7-61.
    [45]Domino EF, Chodeff P, Corssen G. (1965)Pharmacologic effects of Ci-581, a new dissociative anesthetic, in man. Clin Pharmacol.Ther.6:279-291.
    [46]Dosenbach NU, Fair DA, Cohen AL, Schlaggar BL, Petersen SE (2008) A dual-networks architecture of top-down control. Trends Cogn Sci 12:99-105.
    [47]Eguchi K, Kario K, Hoshide S, Hoshide Y, Ishikawa J, Morinari M, Hashimoto T, Shimada K (2004) Smoking is associated with silent cerebrovascular disease in a high-risk Japanese community-dwelling population. Hypertens Res 27:747-754.
    [48]Ellison G (1995) The N-methyl-D-aspartate antagonists phencyclidine, ketamine and dizocilpine as both behavioral and anatomical models of the dementias. Brain Res Brain Res Rev 20:250-267.
    [49]Ellison-Wright I, Bullmore E (2010) Anatomy of bipolar disorder and schizophrenia: A meta-analysis. Schizophr Res 117:1-12.
    [50]Ersche KD, Fletcher PC, Roiser JP, Fryer TD, London M, Robbins TW, Sahakian BJ (2006) Differences in orbitofrontal activation during decision-making between methadone-maintained opiate users, heroin users and healthy volunteers. Psychopharmacology (Berl) 188:364-373.
    [51]Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481-1489.
    [52]Fagerstrom K (2002) The epidemiology of smoking:health consequences and benefits of cessation. Drugs 62 Suppl 2:1-9.
    [53]Fang YX, Wang YB, Shi J, Liu ZM, Lu L (2006) Recent trends in drug abuse in China. Acta Pharmacol Sin 27:140-144.
    [54]Filbey FM, Claus E, Audette AR, Niculescu M, Banich MT, Tanabe J, Du YP, Hutchison KE (2008) Exposure to the taste of alcohol elicits activation of the mesocorticolimbic neurocircuitry. Neuropsychopharmacology 33:1391-1401.
    [55]Fowler JS, Volkow ND, Kassed CA, Chang L (2007) Imaging the addicted human brain. Sci Pract Perspect 3:4-16.
    [56]Franken IH (2003) Drug craving and addiction:integrating psychological and neuropsychopharmacological approaches. Prog Neuropsychopharmacol Biol Psychiatry 27:563-579.
    [57]Franklin TR, Wang Z, Wang J, Sciortino N, Harper D, Li Y, Ehrman R, Kampman
    K, O'Brien CP, Detre JA, Childress AR (2007) Limbic activation to cigarette smoking cues independent of nicotine withdrawal:a perfusion fMRI study. Neuropsychopharmacology 32:2301-2309.
    [58]Fusar-Poli P, Perez J, Broome M, Borgwardt S, Placentino A, Caverzasi E, Cortesi M, Veggiotti P, Politi P, Barale F, McGuire P (2007) Neurofunctional correlates of vulnerability to psychosis:a systematic review and meta-analysis. Neurosci Biobehav Rev 31:465-484.
    [59]Gallinat J, Meisenzahl E, Jacobsen LK, Kalus P, Bierbrauer J, Kienast T, Witthaus H, Leopold K, Seifert F, Schubert F, Staedtgen M (2006) Smoking and structural brain deficits:a volumetric MR investigation. Eur J Neurosci 24:1744-1750.
    [60]Garavan H, Pankiewicz J, Bloom A, Cho JK, Sperry L, Ross TJ, Salmeron BJ, Risinger R, Kelley D, Stein EA (2000) Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am J Psychiatry 157:1789-1798.
    [61]Garrido R, King-Pospisil K, Son KW, Hennig B, Toborek M (2003) Nicotine upregulates nerve growth factor expression and prevents apoptosis of cultured spinal cord neurons. Neurosci Res 47:349-355.
    [62]Garrido R, Malecki A, Hennig B, Toborek M (2000) Nicotine attenuates arachidonic acid-induced neurotoxicity in cultured spinal cord neurons. Brain Res 861:59-68.
    [63]Garrido R, Mattson MP, Hennig B, Toborek M (2001) Nicotine protects against arachidonic-acid-induced caspase activation, cytochrome c release and apoptosis of cultured spinal cord neurons. J Neurochem 76:1395-1403.
    [64]Gazdzinski S, Durazzo TC, Studholme C, Song E, Banys P, Meyerhoff DJ (2005) Quantitative brain MRI in alcohol dependence:preliminary evidence for effects of concurrent chronic cigarette smoking on regional brain volumes. Alcohol Clin Exp Res 29:1484-1495.
    [65]Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870-878.
    [66]George DT, Gilman J, Hersh J, Thorsell A, Herion D, Geyer C, Peng X, Kielbasa W, Rawlings R, Brandt JE, Gehlert DR, Tauscher JT, Hunt SP, Hommer D, Heilig M (2008) Neurokinin 1 receptor antagonism as a possible therapy for alcoholism. Science 319:1536-1539.
    [67]George MS, Anton RF, Bloomer C, Teneback C, Drobes DJ, Lorberbaum JP, Nahas Z, Vincent DJ (2001) Activation of prefrontal cortex and anterior thalamus in alcoholic subjects on exposure to alcohol-specific cues. Arch Gen Psychiatry 58:345-352.
    [68]Giessing C, Thiel CM, Rosler F, Fink GR (2006) The modulatory effects of nicotine on parietal cortex activity in a cued target detection task depend on cue reliability. Neuroscience 137:853-864.
    [69]Gill JR, Stajic M (2000) Ketamine in non-hospital and hospital deaths in New York City. J Forensic Sci 45:655-658.
    [70]Gilman JM, Ramchandani VA, Davis MB, Bjork JM, Hommer DW (2008) Why we like to drink:a functional magnetic resonance imaging study of the rewarding and anxiolytic effects of alcohol. J Neurosci 28:4583-4591.
    [71]Giuliani NR, Calhoun VD, Pearlson GD, Francis A, Buchanan RW (2005) Voxel-based morphometry versus region of interest:a comparison of two methods for analyzing gray matter differences in schizophrenia. Schizophr Res 74:135-147.
    [72]Goldstein RZ, Volkow ND (2002) Drug addiction and its underlying neurobiological basis:neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 159:1642-1652.
    [73]Govind AP, Vezina P, Green WN (2009) Nicotine-induced upregulation of nicotinic receptors:underlying mechanisms and relevance to nicotine addiction. Biochem Pharmacol 78:756-765.
    [74]Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA (1996) Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383:713-716.
    [75]Greicius MD, Supekar K, Menon V, Dougherty RF (2009) Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 19:72-78.
    [76]Grusser SM, Wrase J, Klein S, Hermann D, Smolka MN, Ruf M, Weber-Fahr W, Flor H, Mann K, Braus DF, Heinz A (2004) Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics. Psychopharmacology (Berl) 175:296-302.
    [77]Heinz A, Wrase J, Kahnt T, Beck A, Bromand Z, Grusser SM, Kienast T, Smolka MN, Flor H, Mann K (2007) Brain activation elicited by affectively positive stimuli is associated with a lower risk of relapse in detoxified alcoholic subjects. Alcohol Clin Exp Res 31:1138-1147.
    [78]Heishman SJ (1999) Behavioral and cognitive effects of smoking:relationship to nicotine addiction. Nicotine Tob Res 1 Suppl 2:S143-S147.
    [79]Heitzeg MM, Nigg JT, Yau WY, Zubieta JK, Zucker RA (2008) Affective circuitry and risk for alcoholism in late adolescence:differences in frontostriatal responses between vulnerable and resilient children of alcoholic parents. Alcohol Clin Exp Res 32:414-426.
    [80]Hermann D, Smolka MN, Wrase J, Klein S, Nikitopoulos J, Georgi A, Braus DF, Flor H, Mann K, Heinz A (2006) Blockade of cue-induced brain activation of abstinent alcoholics by a single administration of amisulpride as measured with fMRI. Alcohol Clin Exp Res 30:1349-1354.
    [81]Hess CP (2009) Update on diffusion tensor imaging in Alzheimer's disease. Magn Reson Imaging Clin N Am 17:215-224.
    [82]Hetem LA, Danion JM, Diemunsch P, Brandt C (2000) Effect of a subanesthetic dose of ketamine on memory and conscious awareness in healthy volunteers. Psychopharmacology (Berl) 152:283-288.
    [83]Hoeft F, Barnea-Goraly N, Haas BW, Golarai G, Ng D, Mills D, Korenberg J, Bellugi U, Galaburda A, Reiss AL (2007) More is not always better:increased fractional anisotropy of superior longitudinal fasciculus associated with poor visuospatial abilities in Williams syndrome. J Neurosci 27:11960-11965.
    [84]Holcomb HH, Lahti AC, Medoff DR, Weiler M, Tamminga CA (2001) Sequential regional cerebral blood flow brain scans using PET with H2(15)O demonstrate ketamine actions in CNS dynamically. Neuropsychopharmacology 25:165-172.
    [85]Holzapfel M, Barnea-Goraly N, Eckert MA, Kesler SR, Reiss AL (2006) Selective alterations of white matter associated with visuospatial and sensorimotor dysfunction in turner syndrome. J Neurosci 26:7007-7013.
    [86]Honey GD, Corlett PR, Absalom AR, Lee M, Pomarol-Clotet E, Murray GK, McKenna PJ, Bullmore ET, Menon DK, Fletcher PC (2008) Individual differences in psychotic effects of ketamine are predicted by brain function measured under placebo. J Neurosci 28:6295-6303.
    [87]Honey RA, Honey GD, O'Loughlin C, Sharar SR, Kumaran D, Bullmore ET, Menon DK, Donovan T, Lupson VC, Bisbrown-Chippendale R, Fletcher PC (2004) Acute ketamine administration alters the brain responses to executive demands in a verbal working memory task:an FMRI study. Neuropsychopharmacology 29:1203-1214.
    [88]Hong LE, Gu H, Yang Y, Ross TJ, Salmeron BJ, Buchholz B, Thaker GK, Stein EA (2009) Association of nicotine addiction and nicotine's actions with separate cingulate cortex functional circuits. Arch Gen Psychiatry 66:431-441.
    [89]Jacobsen LK, Picciotto MR, Heath CJ, Frost SJ, Tsou KA, Dwan RA, Jackowski MP, Constable RT, Mencl WE (2007a) Prenatal and adolescent exposure to tobacco smoke modulates the development of white matter microstructure. J Neurosci 27:13491-13498.
    [90]Jacobsen LK, Pugh KR, Constable RT, Westerveld M, Mencl WE (2007b) Functional correlates of verbal memory deficits emerging during nicotine withdrawal in abstinent adolescent cannabis users. Biol Psychiatry 61:31-40.
    [91]Janes AC, Pizzagalli DA, Richardt S, deB FB, Chuzi S, Pachas G, Culhane MA, Holmes AJ, Fava M, Evins AE, Kaufman MJ (2010) Brain reactivity to smoking cues prior to smoking cessation predicts ability to maintain tobacco abstinence. Biol Psychiatry 67:722-729.
    [92]Jansen KL (1990) Ketamine--can chronic use impair memory? Int J Addict 25:133-139.
    [93]Joe-Laidler K, Hunt G (2008) Sit Down to Float:The Cultural Meaning of Ketamine Use in Hong Kong. Addict Res Theory 16:259-271.
    [94]Johnson-Frey SH (2004) The neural bases of complex tool use in humans. Trends Cogn Sci 8:71-78.
    [95]Karama S, Lecours AR, Leroux JM, Bourgouin P, Beaudoin G, Joubert S, Beauregard M (2002) Areas of brain activation in males and females during viewing of erotic film excerpts. Hum Brain Mapp 16:1-13.
    [96]Kemp FB (2009) Smoke free policies in Europe. An overview. Pneumologia 58:155-158.
    [97]Kilts CD, Gross RE, Ely TD, Drexler KP (2004) The neural correlates of
    cue-induced craving in cocaine-dependent women. Am J Psychiatry 161:233-241.
    [98]Kim SW, Sohn DW, Cho YH, Yang WS, Lee KU, Juh R, Ahn KJ, Chung YA, Han SI, Lee KH, Lee CU, Chae JH (2006) Brain activation by visual erotic stimuli in healthy middle aged males. Int J Impot Res 18:452-457.
    [99]Kim YT, Lee SW, Kwon DH, Seo JH, Ahn BC, Lee J (2009) Dose-dependent frontal hypometabolism on FDG-PET in methamphetamine abusers. J Psychiatr Res 43:1166-1170.
    [100]Koob GF (1992) Drugs of abuse:anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 13:177-184.
    [101]Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35:217-238.
    [102]Koplan JP, An WK, Lam RM (2010) Hong Kong:a model of successful tobacco control in China. Lancet 375:1330-1331.
    [103]Kosten TR, Scanley BE, Tucker KA, Oliveto A, Prince C, Sinha R, Potenza MN, Skudlarski P, Wexler BE (2006) Cue-induced brain activity changes and relapse in cocaine-dependent patients. Neuropsychopharmacology 31:644-650.
    [104]Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB, Jr., Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199-214.
    [105]Krystal JH, Perry EB, Jr., Gueorguieva R, Belger A, Madonick SH, bi-Dargham A, Cooper TB, Macdougall L, bi-Saab W, D'Souza DC (2005) Comparative and interactive human psychopharmacologic effects of ketamine and amphetamine: implications for glutamatergic and dopaminergic model psychoses and cognitive function. Arch Gen Psychiatry 62:985-994.
    [106]Kyriakopoulos M, Bargiotas T, Barker GJ, Frangou S (2008) Diffusion tensor imaging in schizophrenia. Eur Psychiatry 23:255-273.
    [107]Lahti AC, Holcomb HH, Medoff DR, Tamminga CA (1995) Ketamine activates psychosis and alters limbic blood flow in schizophrenia. Neuroreport 6:869-872.
    [108]Le BD (2003) Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4:469-480.
    [109]Le BD, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging:concepts and applications. J Magn Reson Imaging 13:534-546.
    [110]Lee JH, Lim Y, Wiederhold BK, Graham SJ (2005) A functional magnetic resonance imaging (FMRI) study of cue-induced smoking craving in virtual environments. Appl Psychophysiol Biofeedback 30:195-204.
    [111]Leung KS, Li JH, Tsay WI, Callahan C, Liu SF, Hsu J, Hoffer L, Cottler LB (2008) Dinosaur girls, candy girls, and Trinity:voices of Taiwanese club drug users. J Ethn Subst Abuse 7:237-257.
    [112]Leyton M (2007) Conditioned and sensitized responses to stimulant drugs in humans. Prog Neuropsychopharmacol Biol Psychiatry 31:1601-1613.
    [113]Lim KO, Wozniak JR, Mueller BA, Franc DT, Specker SM, Rodriguez CP, Silverman AB, Rotrosen JP (2008) Brain macrostructural and microstructural abnormalities in cocaine dependence. Drug Alcohol Depend 92:164-172.
    [114]Lindquist S, Bodammer N, Kaufmann J, Konig F, Heinze HJ, Bruck W, Sailer M (2007) Histopathology and serial, multimodal magnetic resonance imaging in a multiple sclerosis variant. Mult Scler 13:471-482.
    [115]Liu H, Hao Y, Kaneko Y, Ouyang X, Zhang Y, Xu L, Xue Z, Liu Z (2009) Frontal and cingulate gray matter volume reduction in heroin dependence:optimized voxel-based morphometry. Psychiatry Clin Neurosci 63:563-568.
    [116]Liu H, Li L, Hao Y, Cao D, Xu L, Rohrbaugh R, Xue Z, Hao W, Shan B, Liu Z (2008a) Disrupted white matter integrity in heroin dependence:a controlled study utilizing diffusion tensor imaging. Am J Drug Alcohol Abuse 34:562-575.
    [117]Liu JJ, Mohila CA, Gong Y, Govindarajan N, Onn SP (2005) Chronic nicotine exposure during adolescence differentially influences calcium-binding proteins in rat anterior cingulate cortex. Eur J Neurosci 22:2462-2474.
    [118]Liu Y, Wang K, Yu C, He Y, Zhou Y, Liang M, Wang L, Jiang T (2008b) Regional homogeneity, functional connectivity and imaging markers of Alzheimer's disease:a review of resting-state fMRI studies. Neuropsychologia 46:1648-1656.
    [119]Lua AC, Lin HR, Tseng YT, Hu AR, Yeh PC (2003) Profiles of urine samples from participants at rave party in Taiwan:prevalence of ketamine and MDMA abuse. Forensic Sci Int 136:47-51.
    [120]Ma N, Liu Y, Li N, Wang CX, Zhang H, Jiang XF, Xu HS, Fu XM, Hu X, Zhang DR (2010) Addiction related alteration in resting-state brain connectivity. Neuroimage 49:738-744.
    [121]Maas LC, Lukas SE, Kaufman MJ, Weiss RD, Daniels SL, Rogers VW, Kukes TJ, Renshaw PF (1998) Functional magnetic resonance imaging of human brain activation during cue-induced cocaine craving. Am J Psychiatry 155:124-126.
    [122]Majewski-Tiedeken CR, Rabin CR, Siegel SJ (2008) Ketamine exposure in adult mice leads to increased cell death in C3H, DBA2 and FVB inbred mouse strains. Drug Alcohol Depend 92:217-227.
    [123]Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3:e442.
    [124]Matochik JA, Eldreth DA, Cadet JL, Bolla KI (2005) Altered brain tissue composition in heavy marijuana users. Drug Alcohol Depend 77:23-30.
    [125]Maxwell CR, Ehrlichman RS, Liang Y, Trief D, Kanes SJ, Karp J, Siegel SJ (2006) Ketamine produces lasting disruptions in encoding of sensory stimuli. J Pharmacol Exp Ther 316:315-324.
    [126]Mayberg HS, Silva JA, Brannan SK, Tekell JL, Mahurin RK, McGinnis S, Jerabek PA (2002) The functional neuroanatomy of the placebo effect. Am J Psychiatry 159:728-737.
    [127]McBride D, Barrett SP, Kelly JT, Aw A, Dagher A (2006) Effects of expectancy and abstinence on the neural response to smoking cues in cigarette smokers:an fMRI study. Neuropsychopharmacology 31:2728-2738.
    [128]McCambridge J, Winstock A, Hunt N, Mitcheson L (2007) 5-Year trends in use of hallucinogens and other adjunct drugs among UK dance drug users. Eur Addict Res 13:57-64.
    [129]McCann UD, Szabo Z, Scheffel U, Dannals RF, Ricaurte GA (1998) Positron emission tomographic evidence of toxic effect of MDMA ("Ecstasy") on brain serotonin neurons in human beings. Lancet 352:1433-1437.
    [130]McClernon FJ (2009) Neuroimaging of Nicotine Dependence:Key Findings and Application to the Study of Smoking-Mental Illness Comorbidity. J Dual Diagn 5:168-178.
    [131]McClernon FJ, Hiott FB, Huettel SA, Rose JE (2005) Abstinence-induced changes in self-report craving correlate with event-related FMRI responses to smoking cues. Neuropsychopharmacology 30:1940-1947.
    [132]McClernon FJ, Hiott FB, Liu J, Salley AN, Behm FM, Rose JE (2007) Selectively reduced responses to smoking cues in amygdala following extinction-based smoking cessation:results of a preliminary functional magnetic resonance imaging study. Addict Biol 12:503-512.
    [133]McClernon FJ, Kozink RV, Lutz AM, Rose JE (2009) 24-h smoking abstinence potentiates fMRI-BOLD activation to smoking cues in cerebral cortex and dorsal striatum. Psychopharmacology (Berl) 204:25-35.
    [134]McClernon FJ, Kozink RV, Rose JE (2008) Individual differences in nicotine dependence, withdrawal symptoms, and sex predict transient fMRI-BOLD responses to smoking cues. Neuropsychopharmacology 33:2148-2157.
    [135]Medina KL, McQueeny T, Nagel BJ, Hanson KL, Yang TT, Tapert SF (2009) Prefrontal cortex morphometry in abstinent adolescent marijuana users:subtle gender effects. Addict Biol 14:457-468.
    [136]Moeller FG, Hasan KM, Steinberg JL, Kramer LA, Dougherty DM, Santos RM, Valdes I, Swann AC, Barratt ES, Narayana PA (2005) Reduced anterior corpus callosum white matter integrity is related to increased impulsivity and reduced discriminability in cocaine-dependent subjects:diffusion tensor imaging. Neuropsychopharmacology 30:610-617.
    [137]Mon A, Durazzo TC, Gazdzinski S, Meyerhoff DJ (2009) The impact of chronic cigarette smoking on recovery from cortical gray matter perfusion deficits in alcohol dependence:longitudinal arterial spin labeling MRI. Alcohol Clin Exp Res 33:1314-1321.
    [138]Morgan CJ, Huddy V, Lipton M, Curran HV, Joyce EM (2009) Is persistent ketamine use a valid model of the cognitive and oculomotor deficits in schizophrenia? Biol Psychiatry 65:1099-1102.
    [139]Morgan CJ, Monaghan L, Curran HV (2004) Beyond the K-hole:a 3-year longitudinal investigation of the cognitive and subjective effects of ketamine in recreational users who have substantially reduced their use of the drug. Addiction 99:1450-1461.
    [140]Morgan CJ, Muetzelfeldt L, Curran HV (2010) Consequences of chronic ketamine
    self-administration upon neurocognitive function and psychological wellbeing:a 1-year longitudinal study. Addiction 105:121-133.
    [141]Mottola CA (1993) Measurement strategies:the visual analogue scale. Decubitus 6:56-58.
    [142]Myers CS, Taylor RC, Moolchan ET, Heishman SJ (2008) Dose-related enhancement of mood and cognition in smokers administered nicotine nasal spray. Neuropsychopharmacology 33:588-598.
    [143]Myrick H, Anton RF, Li X, Henderson S, Randall PK, Voronin K (2008) Effect of naltrexone and ondansetron on alcohol cue-induced activation of the ventral striatum in alcohol-dependent people. Arch Gen Psychiatry 65:466-475.
    [144]Narendran R, Frankle WG, Keefe R, Gil R, Martinez D, Slifstein M, Kegeles LS, Talbot PS, Huang Y, Hwang DR, Khenissi L, Cooper TB, Laruelle M, bi-Dargham A (2005) Altered prefrontal dopaminergic function in chronic recreational ketamine users. Am J Psychiatry 162:2352-2359.
    [145]Nestler EJ (2005) Is there a common molecular pathway for addiction? Nat Neurosci 8:1445-1449.
    [146]Normile D (2010) Public health. A sense of crisis as China confronts ailments of affluence. Science 328:422-424.
    [147]Paakki JJ, Rahko J, Long X, Moilanen I, Tervonen O, Nikkinen J, Starck T, Remes J, Hurtig T, Haapsamo H, Jussila K, Kuusikko-Gauffin S, Mattila ML, Zang Y, Kiviniemi V (2010) Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders. Brain Res 1321:169-179.
    [148]Parellada E, Catafau AM, Bernardo M, Lomena F, Gonzalez-Monclus E, Setoain J (1994) Prefrontal dysfunction in young acute neuroleptic-naive schizophrenic patients:a resting and activation SPECT study. Psychiatry Res 55:131-139.
    [149]Paul RH, Grieve SM, Niaura R, David SP, Laidlaw DH, Cohen R, Sweet L, Taylor G, Clark RC, Pogun S, Gordon E (2008) Chronic cigarette smoking and the microstructural integrity of white matter in healthy adults:a diffusion tensor imaging study. Nicotine Tob Res 10:137-147.
    [150]Pelchat ML, Johnson A, Chan R, Valdez J, Ragland JD (2004) Images of desire: food-craving activation during fMRI. Neuroimage 23:1486-1493.
    [151]Perry EB, Jr., Cramer JA, Cho HS, Petrakis IL, Karper LP, Genovese A, O'Donnell E, Krystal JH, D'Souza DC (2007) Psychiatric safety of ketamine in psychopharmacology research. Psychopharmacology (Berl) 192:253-260.
    [152]Petrakis IL, Limoncelli D, Gueorguieva R, Jatlow P, Boutros NN, Trevisan L, Gelernter J, Krystal JH (2004) Altered NMDA glutamate receptor antagonist response in individuals with a family vulnerability to alcoholism. Am J Psychiatry 161:1776-1782.
    [153]Pfefferbaum A, Rosenbloom M, Rohlfing T, Sullivan EV (2009) Degradation of association and projection white matter systems in alcoholism detected with quantitative fiber tracking. Biol Psychiatry 65:680-690.
    [154]Pomarol-Clotet E, Canales-Rodriguez EJ, Salvador R, Sarro S, Gomar JJ, Vila F, Ortiz-Gil J, Iturria-Medina Y, Capdevila A, McKenna PJ (2010) Medial prefrontal cortex pathology in schizophrenia as revealed by convergent findings from multimodal imaging. Mol Psychiatry.
    [155]Raichle ME, Mintun MA (2006) Brain work and brain imaging. Annu Rev Neurosci 29:449-476.
    [156]Ray R, Loughead J, Wang Z, Detre J, Yang E, Gur R, Lerman C (2008) Neuroimaging, genetics and the treatment of nicotine addiction. Behav Brain Res 193:159-169.
    [157]Ridgway GR, Henley SM, Rohrer JD, Scahill RI, Warren JD, Fox NC (2008) Ten simple rules for reporting voxel-based morphometry studies. Neuroimage 40:1429-1435.
    [158]Risinger RC, Salmeron BJ, Ross TJ, Amen SL, Sanfilipo M, Hoffmann RG, Bloom AS, Garavan H, Stein EA (2005) Neural correlates of high and craving during cocaine self-administration using BOLD fMRI. Neuroimage 26:1097-1108.
    [159]Roman GC (2005) Vascular dementia prevention:a risk factor analysis. Cerebrovasc Dis 20 Suppl 2:91-100.
    [160]Romero MJ, Asensio S, Palau C, Sanchez A, Romero FJ (2010) Cocaine addiction: Diffusion tensor imaging study of the inferior frontal and anterior cingulate white matter. Psychiatry Res 181:57-63.
    [161]Rose JE, Behm FM, Salley AN, Bates JE, Coleman RE, Hawk TC, Turkington TG (2007) Regional brain activity correlates of nicotine dependence. Neuropsychopharmacology 32:2441-2452.
    [162]Rose JE, Behm FM, Westman EC, Mathew RJ, London ED, Hawk TC, Turkington TG, Coleman RE (2003) PET studies of the influences of nicotine on neural systems in cigarette smokers. Am J Psychiatry 160:323-333.
    [163]Rosenbloom M, Sullivan EV, Pfefferbaum A (2003) Using magnetic resonance imaging and diffusion tensor imaging to assess brain damage in alcoholics. Alcohol Res Health 27:146-152.
    [164]Rowland LM, Beason-Held L, Tamminga CA, Holcomb HH (2010) The interactive effects of ketamine and nicotine on human cerebral blood flow. Psychopharmacology (Berl).
    [165]Salo R, Nordahl TE, Buonocore MH, Natsuaki Y, Waters C, Moore CD, Galloway GP, Leamon MH (2009) Cognitive control and white matter callosal microstructure in methamphetamine-dependent subjects:a diffusion tensor imaging study. Biol Psychiatry 65:122-128.
    [166]Schienle A, Schafer A, Hermann A, Vaitl D (2009) Binge-eating disorder:reward sensitivity and brain activation to images of food. Biol Psychiatry 65:654-661.
    [167]Schifano F, Corkery J, Oyefeso A, Tonia T, Ghodse AH (2008) Trapped in the "K-hole":overview of deaths associated with ketamine misuse in the UK (1993-2006). J Clin Psychopharmacol 28:114-116.
    [168]Schnoll RA, Lerman C (2006) Current and emerging pharmacotherapies for treating tobacco dependence. Expert Opin Emerg Drugs 11:429-444.
    [169]Seksik P, Nion-Larmurier I, Sokol H, Beaugerie L, Cosnes J (2008) Effects of light smoking consumption on the clinical course of Crohn's disease. Inflamm Bowel Dis.
    [170]Sharma A, Brody AL (2009) In vivo brain imaging of human exposure to nicotine and tobacco. Handb Exp Pharmacol145-171.
    [171]Shi F, Liu Y, Jiang T, Zhou Y, Zhu W, Jiang J, Liu H, Liu Z (2007) Regional homogeneity and anatomical parcellation for fMRI image classification:application to schizophrenia and normal controls. Med Image Comput Comput Assist Interv 10:136-143.
    [172]Shimony JS, McKinstry RC, Akbudak E, Aronovitz JA, Snyder AZ, Lori NF, Cull TS, Conturo TE (1999) Quantitative diffusion-tensor anisotropy brain MR imaging: normative human data and anatomic analysis. Radiology 212:770-784.
    [173]Shukla DK, Keehn B, Muller RA (2010) Regional homogeneity of fMRI time series in autism spectrum disorders. Neurosci Lett.
    [174]Silk TJ, Vance A, Rinehart N, Bradshaw JL, Cunnington R (2009) White-matter abnormalities in attention deficit hyperactivity disorder:a diffusion tensor imaging study. Hum Brain Mapp 30:2757-2765.
    [175]Smieskova R, Fusar-Poli P, Allen P, Bendfeldt K, Stieglitz RD, Drewe J, Radue EW, McGuire PK, Riecher-Rossler A, Borgwardt SJ (2010) Neuroimaging predictors of transition to psychosis-A systematic review and meta-analysis. Neurosci Biobehav Rev.
    [176]Szily E, Keri S (2008) Emotion-related brain regions. Ideggyogy Sz 61:77-86.
    [177]Tanabe J, Tregellas JR, Dalwani M, Thompson L, Owens E, Crowley T, Banich M (2009) Medial orbitofrontal cortex gray matter is reduced in abstinent substance-dependent individuals. Biol Psychiatry 65:160-164.
    [178]Tapert SF, Brown GG, Baratta MV, Brown SA (2004) fMRI BOLD response to alcohol stimuli in alcohol dependent young women. Addict Behav 29:33-50.
    [179]Tapert SF, Cheung EH, Brown GG, Frank LR, Paulus MP, Schweinsburg AD, Meloy MJ, Brown SA (2003) Neural response to alcohol stimuli in adolescents with alcohol use disorder. Arch Gen Psychiatry 60:727-735.
    [180]Teipel SJ, Meindl T, Wagner M, Kohl T, Burger K, Reiser MF, Herpertz S, Moller HJ, Hampel H (2009) White matter microstructure in relation to education in aging and Alzheimer's disease. J Alzheimers Dis 17:571-583.
    [181]Thompson PM, Hayashi KM, Simon SL, Geaga JA, Hong MS, Sui Y, Lee JY, Toga AW, Ling W, London ED (2004) Structural abnormalities in the brains of human subjects who use methamphetamine. J Neurosci 24:6028-6036.
    [182]Thompson R, Duncan J (2009) Attentional modulation of stimulus representation in human fronto-parietal cortex. Neuroimage 48:436-448.
    [183]Tregellas JR, Shatti S, Tanabe JL, Martin LF, Gibson L, Wylie K, Rojas DC (2007) Gray matter volume differences and the effects of smoking on gray matter in schizophrenia. Schizophr Res 97:242-249.
    [184]Tsai TH, Cha TL, Lin CM, Tsao CW, Tang SH, Chuang FP, Wu ST, Sun GH, Yu DS, Chang SY (2009) Ketamine-associated bladder dysfunction. Int J Urol 16:826-829.
    [185]Tsukada H, Nishiyama S, Fukumoto D, Sato K, Kakiuchi T, Domino EF (2005) Chronic NMDA antagonism impairs working memory, decreases extracellular
    dopamine, and increases D1 receptor binding in prefrontal cortex of conscious monkeys. Neuropsychopharmacology 30:1861-1869.
    [186]van den Heuvel MP, Mandl RC, Kahn RS, Hulshoff Pol HE (2009) Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 30:3127-3141.
    [187]Volkow ND, Fowler JS, Wang GJ (2003) The addicted human brain:insights from imaging studies. J Clin Invest 111:1444-1451.
    [188]Volkow ND, Fowler JS, Wang GJ, Goldstein RZ (2002) Role of dopamine, the frontal cortex and memory circuits in drug addiction:insight from imaging studies. Neurobiol Learn Mem 78:610-624.
    [189]Volkow ND, Fowler JS, Wang GJ, Swanson JM (2004) Dopamine in drug abuse and addiction:results from imaging studies and treatment implications. Mol Psychiatry 9:557-569.
    [190]Vollenweider FX, Geyer MA (2001) A systems model of altered consciousness: integrating natural and drug-induced psychoses. Brain Res Bull 56:495-507.
    [191]Vollenweider FX, Leenders KL, Scharfetter C, Antonini A, Maguire P, Missimer J, Angst J (1997) Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [18F]fluorodeoxyglucose (FDG). Eur Neuropsychopharmacol 7:9-24.
    [192]Vollstadt-Klein S, Kobiella A, Buhler M, Graf C, Fehr C, Mann K, Smolka MN (2010) Severity of dependence modulates smokers' neuronal cue reactivity and cigarette craving elicited by tobacco advertisement. Addict Biol.
    [193]Walter M, Witzel J, Wiebking C, Gubka U, Rotte M, Schiltz K, Bermpohl F, Tempelmann C, Bogerts B, Heinze HJ, Northoff G (2007) Pedophilia is linked to reduced activation in hypothalamus and lateral prefrontal cortex during visual erotic stimulation. Biol Psychiatry 62:698-701.
    [194]Wang JJ, Durazzo TC, Gazdzinski S, Yeh PH, Mon A, Meyerhoff DJ (2009) MRSI and DTI:a multimodal approach for improved detection of white matter abnormalities in alcohol and nicotine dependence. NMR Biomed 22:516-522.
    [195]Wang Z, Faith M, Patterson F, Tang K, Kerrin K, Wileyto EP, Detre JA, Lerman C (2007) Neural substrates of abstinence-induced cigarette cravings in chronic smokers. J Neurosci 27:14035-14040.
    [196]Warner KE, Mackay J (2006) The global tobacco disease pandemic:nature, causes, and cures. Glob Public Health 1:65-86.
    [197]Wessa M, Houenou J, Leboyer M, Chanraud S, Poupon C, Martinot JL, Paillere-Martinot ML (2009) Microstructural white matter changes in euthymic bipolar patients:a whole-brain diffusion tensor imaging study. Bipolar Disord 11:504-514.
    [198]Wexler BE, Gottschalk CH, Fulbright RK, Prohovnik I, Lacadie CM, Rounsaville BJ, Gore JC (2001) Functional magnetic resonance imaging of cocaine craving. Am J Psychiatry 158:86-95.
    [199]Wilson SJ, Sayette MA, Delgado MR, Fiez JA (2005) Instructed smoking expectancy modulates cue-elicited neural activity:a preliminary study. Nicotine Tob Res 7:637-645.
    [200]Wilson SJ, Sayette MA, Fiez JA (2004) Prefrontal responses to drug cues:a neurocognitive analysis. Nat Neurosci 7:211-214.
    [201]Wolff K, Winstock AR (2006) Ketamine:from medicine to misuse. CNS Drugs 20:199-218.
    [202]Wong DF, et al. (2006) Increased occupancy of dopamine receptors in human striatum during cue-elicited cocaine craving. Neuropsychopharmacology 31:2716-2727.
    [203]Wu T, Long X, Zang Y, Wang L, Hallett M, Li K, Chan P (2009) Regional homogeneity changes in patients with Parkinson's disease. Hum Brain Mapp 30:1502-1510.
    [204]Xiong J, Parsons LM, Gao JH, Fox PT (1999) Interregional connectivity to primary motor cortex revealed using MRI resting state images. Hum Brain Mapp 8:151-156.
    [205]Yang GH, Ma JM, Liu N, Zhou LN (2005) [Smoking and passive smoking in Chinese,2002]. Zhonghua Liu Xing Bing Xue Za Zhi 26:77-83.
    [206]Yang Z, Xie J, Shao YC, Xie CM, Fu LP, Li DJ, Fan M, Ma L, Li SJ (2009) Dynamic neural responses to cue-reactivity paradigms in heroin-dependent users:an fMRI study. Hum Brain Mapp 30:766-775.
    [207]Yao Z, Wang L, Lu Q, Liu H, Teng G (2009) Regional homogeneity in depression and its relationship with separate depressive symptom clusters:a resting-state fMRI study. J Affect Disord 115:430-438.
    [208]Yuan K, Qin W, Dong M, Liu J, Liu P, Zhang Y, Sun J, Wang W, Wang Y, Li Q, Yang W, Tian J (2010) Combining spatial and temporal information to explore resting-state networks changes in abstinent heroin-dependent individuals. Neurosci Lett 475:20-24.
    [209]Yuan Y, Zhu Z, Shi J, Zou Z, Yuan F, Liu Y, Lee TM, Weng X (2009) Gray matter density negatively correlates with duration of heroin use in young lifetime heroin-dependent individuals. Brain Cogn 71:223-228.
    [210]Zang Y, Jiang T, Lu Y, He Y, Tian L (2004) Regional homogeneity approach to fMRI data analysis. Neuroimage 22:394-400.
    [211]Zhu CZ, Zang YF, Cao QJ, Yan CG, He Y, Jiang TZ, Sui MQ, Wang YF (2008) Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder. Neuroimage 40:110-120.
    [212]Zijlstra F, Veltman DJ, Booij J, van den BW, Franken IH (2009) Neurobiological substrates of cue-elicited craving and anhedonia in recently abstinent opioid-dependent males. Drug Alcohol Depend 99:183-192.
    [1]Leyton M. Conditioned and sensitized responses to stimulant drugs in humans [J]. Prog Neuropsychopharmacol Biol Psychiatry,2007,31:1601-13
    [2]Franken I H. Drug craving and addiction:integrating psychological and neuropsychopharmacological approaches [J]. Prog Neuropsychopharmacol Biol Psychiatry,2003,27:563-579
    [3]Rohsenow D J, Niaura R S, Childress A R, et al. Cue reactivity in addictive behaviors:theoretical and treatment implications [J]. Int J Addict,1990-1991, 25(7A-8A):957-993
    [4]Gilman J M, Ramchandani V A, Davis M B, et al. Why we like to drink:a functional magnetic resonance imaging study of the rewarding and anxiolytic effects of alcohol [J]. J Neurosci,2008,28:4583-4591
    [5]George D T, Gilman J, Hersh J, et al. Neurokinin 1 receptor antagonism as a possible therapy for alcoholism [J]. Science,2008,319:1536-1539
    [6]Franklin T R, Wang Z, Wang J, et al. Limbic activation to cigarette smoking cues independent of nicotine withdrawal:a perfusion fMRI study [J]. Neuropsychopharmacology,2007,32:2301-2309
    [7]Everitt B J, Robbins T W. Neural systems of reinforcement for drug addiction:from actions to habits to compulsion [J]. Nat Neurosci,2005,8:1481-1489
    [8]McClernon FJ, Kozink RV, Rose JE. Individual differences in nicotine dependence, withdrawal symptoms, and sex predict transient fMRI-BOLD responses to smoking cues [J]. Neuropsychopharmacology,2008,33(9):2148-2157
    [9]Brody A L, Mandelkern M A, Olmstead R, E et al.Neural substrates of resisting craving during cigarette cue exposure [J]. Biol Psychiatry,2007,15;62(6):642-651
    [10]David S P, Munafo M R, Johansen-Berg H, et al. Effects of Acute Nicotine Abstinence on Cue-elicited Ventral Striatum/Nucleus Accumbens Activation in Female Cigarette Smokers:A Functional Magnetic Resonance Imaging Study [J]. Brain Imaging Behav,2007,1(3-4):43-57
    [11]McClernon F J, Hiott F B, Liu J, et al. Selectively reduced responses to smoking cues in amygdala following extinction-based smoking cessation:results of a preliminary functional magnetic resonance imaging study [J]. Addict Biol,2007, 12(3-4):503-512
    [12]Franklin T R, Wang Z, Wang J, et al. Limbic activation to cigarette smoking cues independent of nicotine withdrawal:a perfusion fMRI study [J]. Neuropsychopharmacology,2007,32(11):2301-2309
    [13]Lee J H, Lim Y, Wiederhold B K, et al. A functional magnetic resonance imaging (FMRI) study of cue-induced smoking craving in virtual environments [J]. Appl Psychophysiol Biofeedback,2005,30(3):195-204
    [14]Wilson S J, Sayette M A, Delgado M R, et al. Instructed smoking expectancy modulates cue-elicited neural activity:a preliminary study [J]. Nicotine Tob Res, 2005,7(4):637-645
    [15]Brody A L, Mandelkern M A, Lee G, et al. Attenuation of cue-induced cigarette craving and anterior cingulate cortex activation in bupropion-treated smokers:a preliminary study [J]. Psychiatry Res,2004,30;130(3):269-281
    [16]Myrick H, Anton R F, Li X, et al. Effect of naltrexone and ondansetron on alcohol cue-induced activation of the ventral striatum in alcohol-dependent people [J]. Arch Gen Psychiatry,2008,65(4):466-475
    [17]Filbey F M, Claus E, Audette A R, et al. Exposure to the taste of alcohol elicits activation of the mesocorticolimbic neurocircuitry [J]. Neuropsychopharmacology, 2008,33(6):1391-1401
    [18]Hermann D, Smolka M N, Wrase J, et al. Blockade of cue-induced brain activation of abstinent alcoholics by a single administration of amisulpride as measured with fMRI [J]. Alcohol Clin Exp Res,2006,30(8):1349-1354
    [19]Grusser S M, Wrase J, Klein S, et al. Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics [J]. Psychopharmacology (Berl),2004,175(3):296-302
    [20]Tapert S F, Brown G G, Baratta M V, et al. fMRI BOLD response to alcohol stimuli in alcohol dependent young women [J]. Addict Behav,2004,29(1):33-50
    [21]Tapert S F, Cheung E H, Brown G G, et al. Neural response to alcohol stimuli in adolescents with alcohol use disorder [J]. Arch Gen Psychiatry,2003,60(7): 727-735
    [22]George M S, Anton R F, Bloomer C, et al. Activation of prefrontal cortex and anterior thalamus in alcoholic subjects on exposure to alcohol-specific cues [J]. Arch Gen Psychiatry,2001,58(4):345-352
    [23]Childress A R, Ehrman R N, Wang Z, et al. Prelude to passion:limbic activation by "unseen" drug and sexual cues [J]. PLoS One,2008,30;3(1):e1506
    [24]Wong D F, Kuwabara H, Schretlen D J, et al. Increased occupancy of dopamine receptors in human striatum during cue-elicited cocaine craving [J]. Neuropsychopharmacology,2006,31(12):2716-2727
    [25]Kosten T R, Scanley B E, Tucker K A, et al. Cue-induced brain activity changes and relapse in cocaine-dependent patients [J]. Neuropsychopharmacology,2006,31(3): 644-650
    [26]Kilts C D, Gross R E, Ely T D, et al. The neural correlates of cue-induced craving in cocaine-dependent women [J]. Am J Psychiatry,2004,161(2):233-241
    [27]Wexler B E, Gottschalk C H, Fulbright R K, et al. Functional magnetic resonance imaging of cocaine craving [J]. Am J Psychiatry,2001,158(1):86-95
    [28]Garavan H, Pankiewicz J, Bloom A, et al. Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli [J]. Am J Psychiatry, 2000,157(11):1789-1798
    [29]Maas L C, Lukas S E, Kaufman M J, et al. Functional magnetic resonance imaging of human brain activation during cue-induced cocaine craving [J]. Am J Psychiatry, 1998,155(1):124-126
    [30]Zijlstra F, Veltman D J, Booij J, et al. Neurobiological substrates of cue-elicited craving and anhedonia in recently abstinent opioid-dependent males[J]. Drug Alcohol Depend,2009,1; 99 (1-3):183-192
    [31]Yang Z, Xie J, Shao Y C, et al. Dynamic neural responses to cue-reactivity paradigms in heroin-dependent users:an fMRI study [J]. Hum Brain Mapp,2009, 30(3):766-775

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700