高胆固醇对AD大鼠认知功能影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默病(Alzheimer’s disease)是引起老年人痴呆的主要原因,已经成为危害老年人群健康和生命的重要疾病。近年研究表明血管危险因素在AD发生、发展中起着重要作用,干预和减少血管危险因素对于预防和延迟AD的发生具有重要意义。
     在血管危险因素中,中年时期的高胆固醇血症与老年时期的AD关系最密切。研究证实高血清胆固醇的个体具有更高的AD易感性,在高脂肪和高热量饮食国家AD的发病率高,低脂肪饮食国家AD的发病率低。有研究发现AD病人的血浆总胆固醇和LDL胆固醇水平升高,HDL水平下降。与对照组相比,服用他汀类药物的人AD发病率降低70 %,为胆固醇代谢异常导致AD提供了一个非常有力的证据。在体实验报道高胆固醇促进β淀粉样蛋白前体的表达、淀粉样蛋白生成,和增加β淀粉样蛋白的沉积,而改用普通饮食可以减少Aβ的生成。高胆固醇破坏突触结构功能的可塑性,改为普通饮食后突触的损伤得以逆转。那么,高胆固醇血症对AD患者的认知功能影响如何?这一方面研究甚少。
     中枢神经系统炎性反应是AD早期病理表现,AD病人在严重认知功能下降之前,已经出现老年斑激活的小胶质细胞和星形胶质细胞,激活的小胶质细胞和星形胶质细胞可释放各种细胞毒性分子,包括活性氧、一氧化氮、促炎症细胞因子、蛋白水解酶、补体和兴奋性氨基酸。实验显示胆固醇喂养的兔子脑中出现炎性反应和AD样病理改变,高胆固醇诱导小胶质细胞和星形胶质细胞活化,研究发现高胆固醇可增加APOE基因敲除鼠和野生鼠脑中主要炎症介质IL-6的表达,并且这一作用与APOE敲除与否无关。高胆固醇是否会加重Aβ诱导的炎性损伤呢?这一方面尚未见研究。
     神经原纤维缠结是AD最重要的病理特征之一。Tau蛋白是一种多功能的微管相关蛋白,能稳定微管,促进微管装配。异常过磷酸化的Tau蛋白构成神经原纤维缠结的核心。研究提示Aβ是AD病理过程的启动环节,Tau蛋白功能异常可能是神经元功能障碍和死亡的重要环节。目前对高胆固醇与Tau蛋白磷酸化关系研究较少,高胆固醇是否影响Aβ诱导的Tau蛋白异常磷酸化尚未见报道。
     对以上问题的研究有助于了解胆固醇影响AD发生和发展的机制,同时为通过控制胆固醇含量预防AD的发生和延缓AD的进展提供实验依据。因此,本研究的主要内容包括如下,探讨高胆固醇对AD大鼠认知功能的影响;高胆固醇对AD大鼠海马神经细胞损伤的影响;从炎性因子、Tau异常磷酸化角度探讨高胆固醇对AD大鼠脑海马区神经损伤的影响的机制。
     方法:
     1高胆固醇对AD大鼠认知功能影响及其机制
     SD大鼠(雄性,体重250±20g)随机分成四组:高胆固醇饮食+AD组,AD组,高胆固醇饮食+Sal组,Sal组。高胆固醇饮食+AD组和高胆固醇饮食+Sal组喂养高胆固醇饮食,AD组和Sal组喂养标准饮食(普通鼠粮),分别喂养8周。将凝聚态Aβ1-40注射入高胆固醇饮食+AD组和AD组大鼠右侧海马齿状回建立AD大鼠模型,将生理盐水注入高胆固醇饮食+Sal组和Sal组大鼠右侧海马齿状回。采用Morris水迷宫和穿梭箱检测大鼠学习记忆;使用HE染色观察病理改变;尼氏染色检测神经元缺失;刚果红染色观察Aβ的沉积。利用免疫组织化学方法检测GFAP、IL-6、TNF-α和Tau蛋白水平;使用原位杂交和RT-PCR检测IL-6和TNF-αmRNA水平。
     2高胆固醇对Aβ1-40诱导神经元损伤和胶质细胞活化影响的体外研究
     用2d龄SD大鼠海马建立神经组织混合培养体系。分为3组:正常对照组、Aβ(2uM)组、胆固醇(1mM)+ Aβ(2uM)组。检测细胞培养上清液LDH释放度,IL-6、TNF-α的含量、免疫荧光染色检测神经元形态和数量变化。
     结果:
     1高胆固醇对AD大鼠认知功能影响及其机制的在体研究.高胆固醇饮食AD组在Morris水迷宫和穿梭箱都表现出严重的学习和记忆损害。在莫里斯水迷宫实验中,AD以及其他各组相比,高胆固醇饮食+AD组具有较长的平均逃避潜伏期和较少的穿环数和较小的平台象限游泳距离百分比。在穿梭箱实验中,与AD组以及其余各组相比,高胆固醇饮食+AD组有较少主动回避率和总回避率,较长回避潜伏期。
     在各组中,高胆固醇饮食+AD组神经元缺失最大,神经元缺失显著多于标准饮食AD组。在相同饮食情况下,AD组神经元缺失较Sal组多。在相同注射试剂情况下,高胆固醇饮食组神经元缺失重于标准饮食组。
     与其余各组相比,高胆固醇饮食+AD组在海马齿状回和CA1区,有更多的IL-6和TNF-α阳性细胞,与AD组相比,差异显著。皮质部位IL-6和TNF-α阳性细胞只与饮食有关,与注射试剂无关,高胆固醇饮食组多于标准饮食组。RT-PCR结果显示高胆固醇饮食+AD组IL-6mRNA和TNF-αmRNA多于标准饮食AD组。
     高胆固醇饮食诱导海马齿状回和CA1区(Pser202)Tau表达,高胆固醇饮食+AD组(Pser202)Tau阳性细胞数多于AD组。高胆固醇饮食+AD组(Pser202)Tau阳性细胞数最多。
     2高胆固醇对Aβ1-40诱导神经元损伤和胶质细胞活化的影响
     Aβ组细胞培养上清液中LDH释放度较正常对照组明显增高,高胆固醇+Aβ组LDH释放度在各组中最高,与Aβ组相比,差异显著。
     神经元荧光染色结果显示,正常对照组神经元胞体饱满,神经突起较长,神经突起形成网络联系;Aβ组与正常对照组相比,神经元数目减少,突起变短;高胆固醇+Aβ组神经元数目减少最明显,神经突起断裂,突起回缩。
     正常对照组细胞培养上清液中有少量IL-6和TNF-α分泌,Aβ组IL-6和TNF-α含量明显增高,在各组中高胆固醇+Aβ组含量最高,与Aβ组相比有非常显著差异。
     结论:
     1.高胆固醇加重阿尔茨海默病大鼠认知功能损害。
     2.高胆固醇增加AD大鼠海马IL-6和TNF-α的表达和Tau异常磷酸化,导致神经元缺失增加,进而加重认知功能损害。
     3.高胆固醇促进Aβ诱导体外培养的神经元损伤和IL-6和TNF-α分泌。体外研究证实高胆固醇增强Aβ的神经元损伤和胶质细胞活化作用。
Alzheimer’s disease is the most common form of dementia in later life, and a major cause of disability and death in the elderly. Recently study indicates vascular risk factors play important role in the pathogenesis and development of Alzheimer’s disease. It is important to interfere in and reduce modifiable vascular risk factors to prevent and delay Alzheimer’s disease.
     In all vascular risk factor, hypercholesteremia in midlife have the closest relation with AD in older age. There have been accumulating evidences pointing toward a potentially important link between high cholesterol, Aβ, and AD. Evidences from clinical and epidemiological studies suggest that high cholesterol might influence the development of AD. There are several investigations demonstrating that individuals with elevated serum cholesterol levels have increased susceptibility to AD. The prevalence of AD is higher in countries with high-fat and high-calorie diets and lower in those with low-in-fat diets. In addition, recent other studies have indicated that the prevalence of AD is reduced among people taking a class of cholesterol-lowering medicines. Experimental studies provided additional and important support for the role of cholesterol in AD. Several studies in vitro have reported that modifications of cholesterol content can influence the expression of the amyloid precursor protein (APP) and alter Aβproduction, and there had also circumstantial evidence that high cholesterol could change Aβdeposition. Cholesterol-enriched diet can destroy synaptic plasticity, but regular diet can reverse the impaiment of synaptic plasticity. Then, whether high cholesterol further aggravate AD patient’s pathogenetic changes, and how to influence their cognition function are not fully understood.
     Inflammatory reaction in the central nervous system is an early pathological change in the brains of AD patients. In addition, there have been clear evidences of inflammatory process in the AD brain. Neuritic plaques activate microgial cell and astrocytes even before severe cognitive decline. A lot of active microgial cells and reactive astrocytes have the potential roles to injure neurons by the release of different cytotoxic factors including reactive oxygen species, nitric oxide, proinflammatory cytokines, proteolytic enzymes, complement factors, and excitatory amino acids et al. Evidences suggested that cholesterol-fed induced development of inflammation and AD-like pathological changes in rabbit brain. Another study shows high cholesterol induces the activation of both microglia and astrocyte in mice. High cholesterol induced expression increase of IL-6. Whether high cholesterol can increase overall inflammatory damage induced by Aβis unclear.
     Neurofibrillary tangles (NFTs) is a common feature of Alzheimer’s disease (AD). Tau is a multifunctional microtubule-associated-protein, which can stable microtubule and promote assembly of microtubule. Hyperphosphorylated Tau is major component of neurofibillary tangles. Studies show Aβis trigger of pathogenesis and abnormal function of Tau, which results in functional disturbance and death of neuron. There are few studies of relation between high cholesterol and Tau hyperphosphorylation, effect of high cholesterol on Tau hyperphosphorylation induced by Aβhas not been reported.
     It is necessary to understand the mechanism of influence of high cholesterol on the pathogenesis and development of AD, and to supply experimental base for preventing and delaying AD by change of cholesterol content. Thus in the present study, there are main contents including effects of high cholesterol diet on cognitive impairment by Aβinjection in hippocampus of rats; By studies in vive and vitro, evaluate the effects of high cholesterol on neurons loss in hippocampus of AD rats; influences of high cholesterol on expression of IL-6, TNF-αand phosporylation of Tau induced by Aβ.
     Method:
     1. Effect of high cholesterol on Aβ-induced cognitive impairment and its’mechanism. SD rats (male, weight 250±20g,) were divided into four groups randomly: CH+ AD group,AD group, CH+Sal group, Sal group. Each group has eight rats. CH+AD group and CH+Sal group rats had eaten high cholesterol diet, AD group and Sal group rats had Standard rat diet for eight weeks, then aggregated beta-amyloid1-40 was injected into right hippocampus of CH+AD group and AD group to establish AD rat modles, Sal was injected into right hippocampus of CH+Sal and sal group rats. Morris water maze and shuttle box test were measured rat learning and memory function; The pathological changes were observed with HE staining; Nissle’s staining was used to assessed loss of neuron; Aβ depositon was evaluated by congo red staining; GFAP, IL-6, TNF-αand (Pser202)Tau protein expression were analyzed by immunohistochemistry; IL-6 and TNF-αmRNA were further detected by in suit hybridization and RT-PCR.
     2. Effect of high cholesterol on Aβ-induced injury of neurons and activation of glial cell in vitro.
     The mixed hippocampal cells of 2d-old Sprague-Dawley rats were cultured. There were three groups: normal control group, Aβ(2μM) group, cholesterol (1mM)+Aβ(2μM) group. Lactic dehydrogenase (LDH) releasing assay was applied for measurement of the change of neuron cell. IL-6 and TNF-αcontents in culture supernatants were determined by ELISA and neurons were subjected to fluorescence staining.
     Result:
     1. Effect of high cholesterol on Aβ-induced cognitive impairment and its mechanism. CH+AD rats exhibited seriously learning and memory deficits in both Morris water maze and shuttle box. In Morris water maze test, mean value of escape latency of CH+Aβgroup was longer than the other groups, CH+AD group had shorter distance percentage of spending in the former platform quadrant and fewer frequency of crossing the former platform site than the SD+ Aβand other groups. In shuttle box, CH+AD group had fewer AAR, GAR and longer escape latency, comparing with AD and other group. It suggested high cholesterol aggravated cognitive impairment of AD rats.
     CH+AD group rats showed most significant defects of neurons in all groups. With the same food, Aβ-injected rats had greater neuronal loss than Sal rats. With the same injection, high cholesterol fed rat had more neurons loss than standard diet.
     IL-6 and TNF-αpositive cells of dentate guys and CA1 were more in CH+AD group rats than the other groups; There were more IL-6 and TNF-αpositive cell in cortex of high cholesterol diet group than standard diet group. In RT-PCR trail, expression of IL-6 mRNA and TNF-αmRNA is higher in CH+AD group rats than AD groups.
     High cholesterol induced increase of (Pser202)Tau positive cells in dentate guys and CA1, CH+AD rats had the most number of (Pser202)Tau positive cell.CH+AD rats had significantly more (Pser202)Tau positive cell than AD rats.
     2. Effect of high cholesterol on Aβ-induced injury of neurons and activation of glial cell in vitro.
     Percent of LDH release in hippocampal culture of Aβgroup is larger the control group. In all groups, CH+Aβhas the largest percent of LDH release, and larger than Aβgroup.
     In the normal control group, fluorescence stains of the neuron were even, neuronal body was full, nerve processes are long and formed a network. In the Aβgroup, the number of neurons decrease and nerve processes shorten, CH+Aβgroup has fewer neurons and shorter nerve process than Aβgroup.
     IL-6 and TNF-αcontents in culture supernatants of normal control group are low. IL-6 and TNF-αcontents of Aβgroup significantly increase, in all group, IL-6 and TNF-αcontents of CH+Aβgroup is highest, the differences in IL-6 and TNF-αcontents were significant between CH+Aβgroup and Aβgroup.
     Conclusion:
     1. High cholesterol may deteriorate cognitive impairment caused by Aβinjection into hippocampus of rats.
     2. High cholesterol increases the expression of tow important inflammatory cytokines IL-6 and TNF-α,and phosphorylation of (ser202)Tau in hippocampus of AD group,which causes more neurons defect and severer cognitive impairment.
     3. high cholesterol facilitates Aβ-induced injury of cultured neurons and activation of glial cells, which secrete IL-6 and TNF-α.Experiment in vitro further confirms that high cholesterol enhance injury of neurons and activation of glial cells induced by Aβ.
引文
1. Brookmeyer R,Corrada MM, Curriero FC,et al.Survival following a diagnosis of Alzheimer’s disease. Arch Neurol,2002;59(11):1764-7.
    2. De la Torre JC. Is Alzheimer’s disease a neurodegenerative or a vascular disorder? Date,dogma,and dialectics.Lancet Neurol,2004,3:184-90.
    3. Petrovitch H,White LR,Izmirllian G,et al. Midlife blood pressure and neuritic plaques, neurofibrillary tangles, and brain weight at death: the HAAS. Honolulu-Asia aging Study.Neurobiol Aging, 2000 ;21(1):57-62.
    4. Peila R,Rodriguez BL,Launer LJ,et al. Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: The Honolulu-Asia Aging Study. Diabetes 2002; 51(4):1256-62.
    5. Kivipelto M,Helkala EL,Laakso MP,et al.Midlife vascular risk factors and Alzheimer’s disease in later life longitudinal, population based study,2001; 322(7300):1447-51.
    6. Hofman A,Ott A,Breteler MM,et al.Atherosclerosis apoliprotein E,and prevalence of demntia and Alzheimer’s diseae in the Rotterdam study.Lancet 1997;349(9046): 151-4.
    7. Javik GP.interactions of apolipoprotein E genotype,total cholesterol level,age,and sex in prediction of Alzheimer’s disease:a case-control study.Neurology,1995;45(6): 1092-6.
    8. Kuo YM,Emmerling MR,Bisgaier CL,et al.Elevated low-dentisy lipoprotein in Alzheimer’s disease correlates with brain A beta1-42 levels.Biochem Biophys Res Commun.1998,252(3):711-5.
    9. Lesser G, Kandiah K, Libow LS , et al. Elevated serum total and LDL cholesterol in very old patients with Alzheimer’s disease. Dement Geriatr Cogn Disord,2001, 12 :138-45.
    10. Helmuth L.New therapies,New Alzheimer’s treatments that may ease the mind. Science, 2002 ;297(5585) :1260-2.
    11. Kivipelto M,Helkala EL,Laakso MP,et al. Midlife vascular risk factors and Alzheimer's disease in later life: longitudinal, population based study.BMJ,2001;322(7300): 1447-51.
    12. Mori T,Paris D,Town T,et al.Cholesterol accumulates in senile plaques of Alzheimer’sdisease patients and in transgenic APP(SW) mice,J Neuopathol Exp Neurol.2001,60 (8):778-85.
    13. Vehmas AK,Kawas CH,Stewart WF,et al. Immune reactive cells in senile plaques and cognitive decline in Alzheimer's disease.Neurobiol Aging,2003;24(2):321–31.
    14. McGeer EG,McGeer PL.Clinically tested drugs for Alzheimer's disease.Expert Opin Investig Drugs,2003;12(7):1143–51.
    15. Rahman SM,Van Dam AM,Schultzberg M,et al.High cholesterol diet results in increased expression of interleukin-6 and caspase-1 in the brain of apolipoprotein E knockout and wild type mice.J Neuroimmuno,2005;169(1-2):59-67.
    16. Onzalo-Ruiz A,Perez JI,Sanz JM,et al. Effects of lipids and aging on the neurotoxicity and neuronal loss caused by intracerebral injections of the amyloid-beta peptide in the rat. Exp Neurol,2006;197(1):41-55.
    17. Cordle A,Landreth G. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors attenuate beta-amyloid-induced microglial inflammatory responses.Neurosci, 2005;12 (25):299-307.
    18. 周丽华,陈以慈,姚志彬,等. 胚胎隔或隔与蓝斑组织联合移植治疗老年性痴呆动物模型的形态学研究.解剖学报,1996;27:169-73.
    19. Oddos S,Caccamo A,Shepherd JD,et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron, 2003;39(3):409-21
    20. Game D,Adams D, Alessandrini R,et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature, 1995;373(6514): 523-7.
    21. Forloni G,Tagliavini F,Bugiani O,et al. Amyloid in Alzheimer's disease and prion-related encephalopathies: studies with synthetic peptides.Prog Neurobiol,1996; 49(4):287-315.
    22. Frautschy SA,Yang F,et al.Rodent models of Alzheimer's disease: rat A beta infusion approaches to amyloid deposits.Neurobiol Aging,1996;17(2):311-21.
    23. Giovannelli L,Casamenti F,Scali C,et al Differential effects of amyloid peptides beta-(1-40) and beta-(25-35) injections into the rat nucleus basalis. Neuroscience, 1995 ;66(4):781-92.
    24. Alvarez XA,Miguel-Hidalgo JJ,Fernandez-Novoa L,et al. Intrahippocampal injections of the beta-amyloid 1-28 fragment induces behavioral deficits in rats.Methods Find Exp Clin Pharmacol,1997;19(7):471-9.
    25. Stepanichev MY,Zdobnova IM,Zarubenko II,et al.Amyloid-beta(25-35)-induced memory impairments correlate with cell loss in rat hippocampus.Physiol Behav, 2004 ;80(5):647-55.
    26. Olariu A,Yamada K,Mamiva T,et al. Memory impairment induced by chronic protein kinase C.Brain Res,2002;957(2):278-86.
    27. Scali C,Prosperi C,Giovannelli L,et al. Beta(1-40) amyloid peptide injection into the nucleus basalis of rats induces microglia reaction and enhances cortical gamma- aminobutyric acid release in vivo.Brain Res,1999;831(1-2):319-21.
    28. 刘学源,赵伟康,徐品初.Aβ 杏仁核注射对大鼠异常磷酸化 Tau 蛋白表达的影响.中国现代医学杂志.2003;13(10):5-7.
    29. Garcao P,Oliverira CR,Agostinho P,et al. Comparative study of microglia activation induced by amyloid-beta and prion peptides: role in neurodegeneration.J Neurosci Res,2006;84(1):182-93.
    30. Giovannelli L,Casamenti F,Scali C,et al. Differential effects of amyloid peptides beta-(1-40) and beta-(25-35) injections into the rat nucleus basalis.Neuroscience, 1995;66(4):781-92.
    31. Fyhn M,Hafting T,Treves A,et al. Hippocampal remapping and grid realignment in entorhinal cortex.Nature,2007;446(7132):190-4.
    32. Forstl H,Kurz A. Clinical features of Alzheimer's disease.Eur Arch Psychiatry Clin Neurosci,1999;249(6):288-90.
    33. 刘辉,陈俊抛,田时雨,等.海马注射 β 淀粉样蛋白对大鼠学习记忆及局部神经元的损伤作用.中华神经科杂志,2000;33(3):150-3.
    34. 赵玲,李雅莉,靳洪涛,等.何首乌提取物对高胆固醇血症大鼠学习记忆及血脂的影响.中草药,2004;35(11):1277-9.
    35. Smith GE,Petersen RC,Parisi JE.Definition, course, and outcome of mild cognitive impairment. Aging Neuropsychol cogn. 1996 ;3:141–47.
    36. Li L,Cao D,Garber DW,et al.Association of aortic atherosclerosis with cerebral beta-amyloidosis and learning deficits in a mouse model of Alzheimer's disease.Am JPathol,2003;163(6):2155–64.
    37. Cao DF, Fukuchi KI,Wan HQ,et al.Lack of LDL receptor aggravates learning deficits and amyloid deposits in Alzheimer transgenic mice.Neurobiology of Aging.2006; 11(27):1632-43.
    38. Pfrieger FW.Role of cholesterol in synapse formation and function.Biochem Biophys Acta,2003;1610(2):271–80.
    39. Koudinov AR,Koudinva NV.cholesterol homeostasis failure as a unifying cause of synaptic degeneration.J Neurol Sci,2005;29-30:33-40.
    40. Koudinova NV,Kontush A,Berezov TT,et al.Amyloid beta, neural lipids, cholesterol and Alzheimer's disease.Neurobiol Lipids,2003;1:6.
    41. Dufour F,Liu QY,Gusev P,et al.Cholesterol -enriched diet affects spatial learning and synaptic function in hippocampal synapses.Brain Research.2006;1(1103):88-98.
    42. Lu J,Zheng YL,Wu DM,et al.Trace amounts of copper induce neurotoxicity in the cholesterol-fed mice through apoptosis.FEBS Letters.2006;580(28-29):6730–40.
    43. Gonzalo-Ruiz A and Sanz JM.Alteration of cholinergic, excitatory amino acid and neuropeptide markers in the septum-diagonal band complex following injections of fibrilliar β-amyloid protein into the retrosplenial cortex of the rat.Eur J Anat. 2002;6: 58–71.
    44. Gonzalo-Ruiz A,Gonzalez I,Sanz-Anquela JM.Effects of β-amyloid protein on serotoninergic, noradrenergic, and cholinergic markers in neurons of the pontomesen- cephalic tegmentum in the rat.J Chem Neuroanat.2003;26(3):153-69.
    45. Pappolla MA,Bryant-Thomas TK,Herbert D,et al.Mild hypercholesterolemia is an early risk factor for the development of Alzheimer amyloid pathology.Neurology. 2003;61(2): 199–205.
    46. Steinberg D.Atherogenesis in perspective:hypercholesterolemia and inflammation as partners in crime.Nat Med.2002;8(11):1211-7.
    47. Shie FS,Jin LW,Cook DG,et al.Diet-induced hypercholesterolemia enhances brain A beta accumulation in transgenic mice.Neuroreport 2002;13(4):455–9.
    48. Rahman SM,Van Dam AM,Schultzberg M,et al.High cholesterol diet results in increased expression of interleukin-6 and caspase-1 in the brain of apolipoprotein E knockout and wild type mice. J Neuroimmunol.2005; 169(1-2):59 – 67.
    49. Govannelli L,Casamenti F,Scali C,et al.Differential effects of amyloid peptidesβ (1-40) andβ(25-35) injections into the rat nucleus basalis.Neuroscience ,1995 ;66 :781-92.
    50. Wilcock DM, Munireddy SK,Rosenthal A,et al. Microglial activation facilitates Abeta plaque removal following intracranial anti-Abeta antibody administration.Neurobiol Dis,2004;15(1):11-20.
    51. Lemere CA,Spooner ET,Lafrancois J,et al.Evidence for peripheral clearance of cerebral Abeta protein following chronic ,active Abeta immunization in PSAPP mice.Neurobic Dis,2003;14(1):10-8.
    52. Das P,Howard V,loosbrockNetamyloid-beta immunization effectively reduces amloid deposition in FCRegamma-/- knock-out mice.J Neurosci,2003;23(24):8532-8.
    53. Heneka MT,O’banion MK. Inflammatory processes in Alzheimer's disease. 2007 ;184(1-2):69-91.
    54. Casal C ,Serratosa J , Tusell JM. Effects of beta-A peptides on activation of the transcription factor NF-kappaB and in cell proliferation in glial cell cultures [J ] . Neurosci Res,2004;48(3):315-23.
    55. M cGeer PL,McGeer EG.Inflammation of the brain in A lzheimer’s disease:implications for therapy[J ].J Leukoc Biol,1999;65(4):409-15.
    56. Sparks DL,Kuo YM,Roher A,et al.Alterations of Alzheimer’s disease in the cholesterol-fed rabbit,including vascular inflammation.Preliminary observations.Ann NY Acad Sci,2000;903:335–44.
    57. 吴传深,周东丰,管振全.血浆 IL -6 水平与阿尔茨海默病.中国神经免疫学和神经病学杂志,2003;10(2):87-89.
    58. 杨 戈,金红姝,郁志华.调心方有效部位和达纳康对类 AD 大鼠脑组织 IL - 1β IL - 6和 APPmRNA 表达的影响.辽宁中医杂志,2006;33(5):530-3.
    59. Fillit H , Ding WH,Buee L,et al. Elevated circulating tumor necrosis factor levels in Alzheimer's disease. Neurosci Lett, 1991;129(3):318-20.
    60. 高丽芳,杨连峰.高浓度血浆肿瘤坏死因子-α 与百岁老人痴呆有关.国外医学 老年医学分册,2000;21(4):191.
    61. 王琳,韩杰,张昱.Alzheimer 病病人血清与脑脊液白细胞介素-1 及肿瘤坏死因子水平检测的研究.中华神经科杂志,2002;35(6):339-41.
    62. Dickson DW,Lee SC,Mattiace LA,et al.Microglia and cytokines in neurological disease,with special reference to AIDS and Alzheimer's disease.Glia,1993;7(1):75-83.
    63. Meda L,Cassatella MA, Szendrei GI,et al. Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature,1995;374(6523):647-50.
    64. Sutton ET, Thomas T,Bryant MW,et al. Amyloid-beta peptide induced inflammatory reaction is mediated by the cytokines tumor necrosis factor and interleukin-1.J Submicrosc Cytol Pathol,1999;31(3):313-23.
    65. Jankowsky JL,Derrick BE,Patterson PH.cytokine responses to LTP induction in the rat hippocampus:a comparison of in vitro and in vivo techniques.Learn Mem.2000; 7(6):400-12.
    66. Crisby M,Rahman SM,Svlven C,et al.Effects of high cholesterol diet on gliosis in apolipoprotein E knockout mice.Implications for Alzheimer’s disease and stroke.Neurosci Lett,2004;369(2):87-92.
    67. Steinberg D.Atherogenesis in perspective:hypercholesterolemia and inflammation as partners in crime.Nat Med,2002;8(11):1211-7.
    68. Mudher A,Lovestone S, Alzheimer's disease-do tauists and baptists finally shake hands? Trends Neurosci, 2002;25(1):22–6.
    69. Liu T,Perry G,Chan HW,et al.Amyloid-beta-induced toxicity of primary neurons is dependent upon differentiation-associated increases in tau and cyclin-dependent kinase 5 expression.J. Neurochem, 2004;88(3): 554–63.
    70. Rapoport M,Dawson HN,Binder LI,et al.Tau is essential to beta -amyloid-induced neurotoxicity.Proc Natl Acad Sci USA,2002;99(9)6364–9.
    71. Gotz J,Chen F,van Dorpe J,et al. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils.Science,2001;293(5534):1491–5.
    72. Ghribi O,Herman MM,Savory J. Lithium inhibits Abeta-induced stress in endoplasmic reticulum of rabbit hippocampus but does not prevent oxidative damage and tau phosphorylation.J Neurosci Res,2003;71(6), 853–62.
    73. Ghribi O,Prammonjago P,Herman MM,et al.Abeta(1-42)-induced JNK and ERK activation in rabbit hippocampus is differentially regulated by lithium but is not involved in the phosphorylation of tau.Brain Res Mol Brain Res,2003;119(2): 201–6.
    74. Lewis J,Dickson DW,Lin WL,et al.Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP.Science,2001;293(5534):1487-91.
    75. Gotz J,Chen F,van Dorpe J,et al. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils.Science,2001;293(5534):1446-7.
    76. 彭小松,陈晓春,黄俊山等.Aβ25-35 注射诱导大鼠海马神经元 tau 蛋白异常磷酸化.中华神经科杂志,2004;37(6):533-7.
    77. Greenberg SM, Koo EH,Selkoe DJ,et al. Secreted beta-amyloid precursor protein stimulates mitogen-activated protein kinase and enhances tau phosphorylation.Proc Natl Acad Sci USA,1994;91(15):7104-8.
    78. Distl R,Meske V,Ohm TG. Tangle-bearing neurons contain more free cholesterol than adjacent tangle-free neurons. Acta Neuropathol (Berl), 2001;101(6):547-54.
    79. Ghribi O,Larsen B,Schrag M,et al. High cholesterol content in neurons increases BACE, beta-amyloid, and phosphorylated tau levels in rabbit hippocampus.Exp Neurol,2006;200(2):460-7.
    80. Fan QW,Yu W,Senda T,et al.Cholesterol-dependent modulation of tau phosphorylation in cultured neurons.Journal of Neurochemistry,2001;76(2),391-400.
    81. Rahmana R,Akterina S,Flores-Morales A,et al.High cholesterol diet induces tau hyperphosphorylation in apolipoprotein E deficient mice.FEBS Letters,2005;579 (28):6411–6.
    82. Chromy BA,Nowak RJ,Lambert MP,et al.Self-assembly of Abeta (1–42) into globular neurotoxins. Biochemistry ,2003;42:12749–60.
    83. Korzen Iewskic,Call Ewe Ert DM.J Immunol Methods,1983,64(3)313-20.
    84. Multhaup G,Masters CL,Beyreuther K.A molecular approach to Alzheimer′s disease.Biol Chem Hoppe Seyler,1993;374(1):1-8.
    85. 王 琦,谢 瑶,姚志彬. β-淀粉样蛋白 31~35 对体外培养的隔区胆碱能神经元的作用.中国神经科学杂志, 1999;15(2):115-9.
    86. Ashall F, Goate AM.Role of the β-amyloid precursor protein in Alz heimer′s disease. Trends Biochem Sci, 1994;19(1):42-6.
    87. Frears ER,Stephens DJ,Walters CE, et al.The role of cholesterol in the biosynthesis of beta-amyloid.Neuroreport,1999;10 (8) :1699-705.
    88. Kojro E,Gimpl G,Lammich S, et al.Low cholesterol stimulates the nonamyloidogenic pathway by its effects on the alpha-secretase Alzheimer′s disease ADAM. Proc Natl Acad Sci USA,2001,98 (10) :5815-20.
    89. Ares MP, Porn-Ares MI, Moses S,et al.Beta-hydroxy cholesterol induces Ca2 + oscillations,MAP kinase activation and apoptosis in human aortic smooth muscle cells.Atherosclerosis, 2000;153 :23-35.
    90. Yao PM, Tabas I.Free cholesterol loading of macrophages is associated with widespread mitochondrial dysfunction and activation of the mitochondrial apoptosis pathway. J Biol Chem ,2001;276 :42468 -76.
    91. Shimabukuro M, Zhou YT, Levi M, et al.Fatty acid-induced beta cell apoptosis : a link between obesity and diabetes.Proc Natl Acad Sci USA ,1998;95 :2498-502.
    92. 赵玉峰,朱运龙,周京军等.胆固醇对离体培养胰岛素细胞活性的损害作用.中国康复理论与实践,2003 ;9(9): 475-5.
    93. Inoue K,Kubota S,Seyama Y.Cholestanol induces apoptosis of cerebellar neuronal cells[J ] .Biochem Biophys Res Commun,1999;256 :198-203.
    94. Wang XJ,Wei JC,Wang CM,et al.Effect of cholesterol liposomeons on calcium mobilization in muscular cells from the rabbit sphincter of Oddi.World J Gastroenterol,2002;8:144-49.
    95. Xiao ZL,Chen Q,Biancani P,er al.Abnormalities of gallbladder muscle associated with acute inflammation in guinea pigs.Am J physiol Gastrointest Liver Physiol.2001; 281:490-7.
    96. Fetler L,Amigorena S.Brain under surveillance: the microglia patrol.Science,2005; 309:392–3.
    97. Liu B,Hong JS.Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention.. J Pharmacol Exp Ther, 2003;304(1):1-7.
    98. Griffin WS,Sheng JG,Royston MC,et al.Glial-neuronal interactions in Alzheimer's disease: the potential role of a 'cytokine cycle' in disease progression.Brain Pathol,1998;8(1):65-72.
    99. Sheng JG,Mrak RE,Griffin GW, et al. Neuritic plaque evolution in Alzheimer’s disease is accompanied by transition of activated microglia from primed to enlarged to phagocyticforms. Acta Neuropathol,1997;94:1-8.
    100. D’Andrea MR,Cole GM,Ard MD.The microglial phagocytic role with specific plaque types in the Alzheimer disease brain. Neurobiol Aging,2004;25(5):675–83.
    101. Permanne B,Adessi C,Saborio GP,et al.Reduction of amyloid load and cerebral damage in a transgenic mouse model of Alzheimer's disease by treatment with a beta-sheet breaker peptide. FASEB J, 2002;16(8):860–2.
    102. Combs CK,Karlo JC,Kao SC,et al.beta-Amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis.J Neurosci,2001;21(4):1179–88.
    103. Bach JH,Chae HS,Rah JC,et al.C-terminal fragment of amyloid precursor protein induces astrocytosis.J Neurochem,2001;78(1):109–20.
    104. Luigi Bergamaschini, Cesare Donarini, Giulia Gobbo, et al. Activation of complement and contact system in Alzheimer's disease. Mechanisms of Ageing and Development. 2001;122:1971-83.
    105. De Luigi S,Pizzimenti P,Quadri U,et al.Peripheral Inflammatory Response in Alzheimer's Disease and Multiinfarct Dementia. Neurobiology of Disease, 2002;11(2): 308-14.
    106. Dickson DW,Lee SC,Mattiace LA,et al.Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer's disease.Glia,1993;7(1):75-83.
    107. Meda L,Cassatella MA,Szendrei GI,et al.Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature, 1995;374(6523):647-50.
    108. Rah JC ,Kim HS ,Kim SS ,et al. Effects of carboxyl2terminal fragment of Alzheimer’s amyloid precursor protein and amyloid beta-peptide on the production of cytokines and nitric oxide in glial cells. FASEB J ,2001;15:1463-5.
    109. Matsumoto Y, Watanabe S ,Suh YH ,et al.Effects of intrahippocampal CT105 , a carboxyl terminal fragment of beta-amyloid precursor protein ,alone/with inflammatory cytokines on working memory in rats.J Neurochem,2002;82:234-9.
    1. Brookmeyer R,Gray S,Kawas C. Projections of Alzheimer's disease in the United States and the public health impact of delaying disease onset..Am J Public Health,1998; 88(9):1337–42.
    2. Meek PD,Mckeithan K,Schumock GT.Economic considerations in Alzheimer’s disease.Pharmacotherapy ,1998:18(2):68-73.
    3. Bloom BS,de Pouvouill N,Straus WL.Cost of illness of Alzheimer’s disease:how useful are current estimates?Gerontogist,2003:43(2):158-64.
    4. Brookmeyer R,Corrada MM,Curriero FC,et al.Survival following a diagnosis of Alzheimer disease.Arch Neurol,2002,59(11):1764-7.
    5. 贾建平 方伯言. Alzheimer 病是否属于血管性认知障碍(VCI) 的范畴浅议.老年医学与保健,2005;4:209-14.
    6. 阎福岭.重视 Alzheimer 病与脑缺血的共病研究.国际脑血管病杂志,2006;14(11): 801-2.
    7. Simons K,Ikonen E.Functional rafts in cell membranes. Nature,1997;387(6633): 569–72.
    8. Simons K, Toomre D.Lipid rafts and signal transduction.Nat Rev Mol Cell Biol,2000; 1(1):31-9.
    9. Galvan C, Camoletto PG,et al. Proper axonal distribution of PrP(C) depends on cholesterol-sphingomyelin-enriched membrane domains and is developmentally regulated in hippocampal neurons. Mol Cell Neurosci, 2005;30(3):304–15.
    10. Mauch DH, Nagler K,Schumacher S,et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science, 2001;294(5545):1354–7.
    11. Dietschy JM, Turley SD. Thematic review series: brain Lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res, 2004;45(8):1375-97.
    12. Haines TH. Do sterols reduce proton and sodium leaks through lipid bilayers? Prog Lipid Res,2001;40(4): 299-324.
    13. Pfrieger FW. Cholesterol homeostasis and function in neurons of the central nervous system. Cell Mol Life Sci, 2003;60(6):1158-71.
    14. Nawarskas JJ. HMG-CoA reductase inhibitors and coenzyme Q10.Cardiol Rev, 2005; 13(2):76–9.
    15. Jurevics H, Morell P. Cholesterol for synthesis of myelin is made locally, not imported into brain. J Neurochem,1995;64:895–901.
    16. Poirier J. Apolipoprotein E and cholesterol metabolism in the pathogenesis and treatment of Alzheimer’s disease. Trends Mol Me, 2003;9(3):94–101.
    17. Combarros O, Infante J, Llorca J, et al. Genetic association of CYP46 and risk for Alzheimer’s disease. Dement Geriatr Cogn Disord,2004;18(3-4):257–60.
    18. Papassotiropoulos A, Lutjohann D, Bagli M, et al. Plasma 24S-hydroxycholesterol: a peripheral indicator of neuronal degeneration and potential state marker for Alzheimer's disease. Neuroreport, 2000;11(9):1959–62.
    19. Liu L, Bortnick AE, Nickel M, et al. Effects of apolipoprotein A-I on ATP-bindingcassette transporter A1-mediated efflux of macrophage phospholipid and cholesterol: formation of nascent high density lipoprotein particles. J Biol Chem,2003;278(44): 42976–84.
    20. Kivipelto M, Helkala EL, Laakso MP, et al. Apolipoprotein E epsilon4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer disease. Ann Intern Med,2002;137(3):149-55.
    21. 韩建峰,屈秋民,郭峰等.阿尔滋海默病患者血脂水平与发病的关系 1:1 配对观察.中国临床康复,2005,9:32-34.
    22. Kivipelto M,Helkala EL, Laakso MP,et al.Midlife vascular risk factors and Alzheimer’s disease in later life longitudinal, population based study.BMJ,2001;322(7300):1447-51.
    23. Notkola IL,Sulkava R,Pekkanen J,et al.Serum total cholesterol, apolipoprotein E epsilon 4 allele, and Alzheimer's disease.Neuroepidemiology,1998;17(1):14-20.
    24. Morris MC, Evans DA, Bienias JL, et al. Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch Neurol, 2003; 60(7): 940–6.
    25. Mori TA, Beilin LJ. Omega-3 fatty acids and inflammation.Curr Atheroscler Rep, 2004; 6(6): 461–67.
    26. Refolo LM, Malester B, LaFrancois J, et al. Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol Dis, 2000; 7(6): 321–31.
    27. Shie FS, Jin LW, Cook DG, et al. Diet-induced hypercholesterolemia enhances brain A beta accumulation in transgenic mice. Neuroreport, 2002; 13(4): 455–9.
    28. Kojro E, Gimpl G, Lammich S, et al. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha -secretase ADAM 10. Proc Natl Acad Sci USA, 2001;98(10): 5815–20.
    29. Wahrle S, Das P, Nyborg AC, et al. Cholesterol-dependent gamma-secretase activity in buoyant cholesterol-rich membrane microdomains.Neurobiol Dis, 2002;9(1):11–23.
    30. Distl R ,Meske V,Ohm TG. Tangle-bearing neurons contain more free cholesterol than adjacent tangle-free neurons.Acta Neuropathol (Berl),2001;101(6):547-54.
    31. Ghribi O, Larsen B, Schrag M,et al.Herman High cholesterol content in neurons increases BACE, β-amyloid, and phosphorylated tau levels in rabbit hippocampus.Exp Neurol,2006;200(2):460–7.
    32. Wang JZ,Wu, Q,Smith A,et al. Tau is phosphorylated by GSK-3 at several sites found in Alzheimer disease and its biological activity markedly inhibited only after it is prephosphorylated by A-kinase.FEBS Lett,1998;436(1):28-34.
    33. Rahman A, Akterin S, Flores-Morales A,et al. High cholesterol diet induces tau hyperphosphorylation in apolipoprotein E deficient mice.FEBS Letters,2005;579(28): 6411-6.
    34. Murakami K, Shimizu M, Yamada N, et al. Apolipoprotein E polymorphism is associated with plasma cholesterol response in a 7-day hospitalization study for metabolic and dietary control in NIDDM.Diabetes Care,1993;16(4):564–9.
    35. Luthra K, Tripathi M, Grover R, et al. Apolipoprotein E gene polymorphism in Indian patients with Alzheimer’s disease and vascular dementia. Dement Geriatr Cogn Disord ,2004;17(3):132–5.
    36. Graff-Radford NR,Green RC,Go RC, et al. Association between apolipoprotein E genotype and Alzheimer disease in African American subjects. Arch Neurol,2002; 59(4):594–600.
    37. Hsiung GY, Sadovnick AD, Feldman H. Apolipoprotein E epsilon4 genotype as a risk factor for cognitive decline and dementia: data from the Canadian Study of Health and Aging. CMAJ,2004;171: 863–7.
    38. Rubinsztein DC, Easton DF. Apolipoprotein E genetic variation and Alzheimer’s disease. a meta-analysis.Dement Geriatr Cogn Disord ,1999;10(3):199–209.
    39. Slooter AJ, Cruts M, Kalmijn S, et al. Risk estimates of dementia by apolipoprotein E genotypes from a population-based incidence study: the Rotterdam Study. Arch Neurol, 1998;55:964–8.
    40. Endon CL, Harris JM, Pritchard AL, et al. Genetic variation of the APOE promoter and outcome after head injury. Neurology, 2003; 61(5): 683–5.
    41. Combarros O, Infante J, Llorca J, Berciano J. Genetic association of CYP46 and risk for Alzheimer’s disease. Dement Geriatr Cogn Disord, 2004;18(3-4):257–60.
    42. Kolsch H, Lutjohann D, Ludwig M, et al. Polymorphism in the cholesterol
    24S-hydroxylase gene is associated with Alzheimer’s disease. Mol Psychiatry,2002; 7(8):899- 902.
    43. Papassotiropoulos A, Streffer JR, Tsolaki M, et al. Increased brain beta-amyloid load,phosphorylated tau, and risk of Alzheimer disease associated with an intronic CYP46 polymorphism. Arch Neurol,2003;60(1):29–35.
    44. Johansson A, Katzov H, Zetterberg H, et al. Variants of CYP46A1 may interact with age and APOE to Influence CSF Abeta42 levels in Alzheimer's disease.Hum Genet ,2004;114(6)581–7.
    45. Borroni B, Archetti S, Agosti C, et al. Intronic CYP46 polymorphism along with ApoE genotype in sporadic Alzheimer Disease: from risk factors to disease modulators. Neurobiol Aging, 2004; 25(6):747–51.
    46. Kabbara A, Payet N, Cottel D, et al. Exclusion of CYP46 and APOM as candidate genes for Alzheimer's disease in a French population.Neurosci Lett,2004;363(2): 139–43.
    47. Desai P, DeKosky ST, Kamboh MI. Genetic variation in the cholesterol 24- hydroxylase (CYP46) gene and the risk of Alzheimer’s disease. Neurosci Lett, 2002; 328(1):9–12.
    48. Ingelsson M, Jesneck J, Irizarry MC, et al. Lack of association of the cholesterol
    24-hydroxylase (CYP46) intron 2 polymorphism with Alzheimer’s disease. Neurosci Lett, 2004; 367(2):228–31.
    49. Wollmer MA, Streffer JR, Lutjohann D, et al. ABCA1 modulates CSF cholesterol levels and in.uences the age at onset of Alzheimer’s disease. Neurobiol Aging,2003;24: 421–26.
    50. Katzov H, Chalmers K, Palmgren J, et al. Genetic variants of ABCA1 modify Alzheimer disease risk and quantitative traits related to beta-amyloid metabolism.Hum Mutat,2004;23(4):358-67.
    51. Causevic M, Ramoz N, Haroutunian V, et al. Lack of association between the levels of the low-density lipoprotein receptor-related protein (LRP) and either Alzheimer dementia or LRP exon 3 genotype. J Neuropathol Exp Neurol,2003;62(1):999–1005.
    52. Kolsch H, Ptok U, Mohamed I, et al. Association of the C766T polymorphism of the low-density lipoprotein receptor-related protein gene with Alzheimer’s disease. Am J Med Genet B Neuropsychiatr Genet, 2003;121(1):128–30.
    53. Rockwood K, Kirkland S, Hogan DB, et al. Use of lipid-lowering agents, indication bias, and the risk of dementia in community-dwelling elderly people. Arch Neurol,2002; 59(2):223–7
    54. Yaffe K, Barrett-Connor E, Lin F, et al. Serum lipoprotein levels, statin use, and cognitive function in older women. Arch Neurol, 2002;59(3):378–84.
    55. Zandi PP, Sparks DL, Khachaturian AS, et al. Do statins reduce risk of incident dementia and Alzheimer disease? The Cache County Study. Arch Gen Psychiatry, 2005; 62(2): 217–24.
    56. Li G, Higdon R, Kukull WA, et al. Statin therapy and risk of dementia in the elderly: a community-based prospective cohort study. Neurology,2004;63(9):1624–28.
    57. Rea TD, Breitner JC, Psaty BM, et al. Statin use and the risk of incident dementia: the Cardiovascular Health Study. Arch Neurol,2005; 62(7):1047–51.
    58. Locatelli S, Lutjohann D, Schmidt HH, et al. Reduction of plasma 24S- hydrox- ycholesterol (cerebrosterol) levels using high-dosage simvastatin in patients with hypercholesterolemia: evidence that simvastatin affects cholesterol metabolism in the human brain.Arch Neurol,2002;59(2):213–6.
    59. Vega GL,Weiner MF,Lipton AM,et al. Reduction in levels of 24S-hydroxych- olesterol by statin treatment in patients with Alzheimer disease.Arch Neurol,2003; 60(4):510–5.
    60. Hoglund K, Thelen KM, Syversen S, et al. The effect of simvastatin treatment on the amyloid precursor protein and brain cholesterol metabolism in patients with Alzheimer's disease.Dement Geriatr Cogn Disord ,2005;19(5-6):256–65.
    61. Sjogren M, Gustafsson K, Syversen S, et al. Treatment with simvastatin in patients with Alzheimer's disease lowers both alpha- and beta-cleaved amyloid precursor protein.Dement Geriatr Cogn Disord, 2003;16(1):25–30.
    62. Parvathy S, Ehrlich M, Pedrini S, et al. Atorvastatin-induced activation of Alzheimer’s alpha secretase is resistant to standard inhibitors of protein phosphorylation-regulated ectodomain shedding. J Neurochem, 2004; 90(4):1005-10
    63. Fassbender K, Simons M, Bergmann C, et al. Simvastatin strongly reduces levels of Alzheimer’s disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc Natl Acad Sci USA, 2001;98(10):5856–61.
    64. Sun YX, Crisby M, Lindgren S, Janciauskiene S. Pravastatin inhibits pro-inflammatory effects of Alzheimer's peptide Abeta(1-42) in glioma cell culture in vitro.Pharmacol Res,2003;47(2):119–26.
    65. Paris D, Townsend KP, Humphrey J, et al. Statins inhibit A beta-neurotoxicity in vitro and A beta-induced vasoconstriction and inflammation in rat aortae. Athero- sclerosis ,2002;161(2):293–9.
    66. Kirsch C, Eckert GP, Mueller WE. Statin effects on cholesterol micro-domains in brain plasma membranes. Biochem Pharmacol, 2003;65(5):843–56.
    67. Haendeler J, Hoffmann J, Zeiher AM, Dimmeler S. Antioxidant effects of statins via S- nitrosylation and activation of thioredoxin in endothelial cells: a novel vasculoprotective function of statins.Circulation, 2004;110(7):856–61.
    68. Kinlay S, Schwartz GG, Olsson AG, et al. High-dose atorvastatin enhances the decline in in.ammatory markers in patients with acute coronary syndromes in the MIRACL study. Circulation, 2003;108(13):1560–6.
    69. Osamah H, Mira R, Sorina S, et al. Reduced platelet aggregation after fluvastatin therapy is associated with altered platelet lipid composition and drug binding to the platelets.Br J Clin Pharmacol, 1997;44(1):77–83.
    70. Fassbender K, Simons M, Bergmann C, et al. Simvastatin strongly reduces levels of Alzheimer's disease beta -amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo.Proc Natl Acad Sci USA ,2001;98(10):5856–61.
    71. Chauhan NB, Siegel GJ, Feinstein DL. Effects of lovastatin and pravastatin on amyloid processing and inflammatory response in TgCRND8 brain.Neurochem Res, 2004; 29(10):1897–911.
    72. Chen J, Zhang ZG, Li Y, et al. Statins induce angiogenesis, neurogenesis, and synaptogenesis after stroke.Ann Neurol ,2003;53(6):743–51.
    1. Mihara H, Takahashi Y.Engineering peptides and proteins that undergo α-to-β transitions.Current Opin Structural Biol,1997;7(4):501-8.
    2. Manelli AM,Stine WB,Van Eldik LJ,et al.ApoE and Abeta1–42 Interactions: effects of isoform and conformation on structure and function.J Mol Neurosci,2004; 23(3):235-46.
    3. Chromy BA,Nowak RJ,Lambert M.P,et al.Self-assembly of Abeta (1–42) into globular neurotoxins.Biochemistry,2003;42(44):12749–60.
    4. Blasko I,Veerhuis R,Stampfer-Kountchev M,et al.Costimulatory effects of interferon-gamma and interleukin-1 beta or tumor necrosis factor alpha on the synthesis of Abeta1-40 and Abeta1-42 by human asteocytes.Neurobiol Dis,2000;7(6Pt B) :682-9.
    5. Lukiw WJ,Bazan NG.Neuroinflammatory signaling upregulation in Alzheimer’s disease.Neurochem Res,2000;25 ( 9-10) :1173-84.
    6. Mattson MP.Apoptosis in neurodegenerative disorders.Nat Pev Mol Cell Biol ,2000;1(2) :120
    7. Tan J,Town T,Mori T,et al.CD45 opposes beta-amyloid peptide-induced microglial activation via inhibition of p44/ 42 mitogen-activated protein kinase.. Neurosci, 2000 ;20(20) :7587-94.
    8. Combs CK,Karlo JC,Kao SC,et al. beta-Amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis.Neurosci ,2001;21(4):1179-88.
    9. Liu B,Hong JS.Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention..J Pharmacol Exp Ther,2003; 304(1):1–7.
    10. Griffin WS,Sheng JG,Royston MC,et al. Glial-neuronal interactions in Alzheimer's disease: the potential role of a 'cytokine cycle' in disease progression.Brain Pathol, 1998;8(1):65–72.
    11. Cagnin A ,Brooks DJ ,Kennedy AM,et al.In-vivo measurement of activated microglia in dementia[J ] .Lancet ,2001 ,358 (9280) :461-7.
    12. D’Andrea MR,Cole GM,Ard MD. The microglial phagocytic role with specific plaque types in the Alzheimer disease brain. Neurobiol Aging,2004;25(5):675–83.
    13. DeGiorgio LA,Shimizu Y,Chun HS,et al.APP knockout attenuates microglial activation and enhances neuron survival in substantia nigra compacta after axotomy.Glia 2002;38(2):174–8.
    14. Schubert P,Morino T,Miyazaki H,et al.Cascading glia reactions: a common pathomechanism and its differentiated control by cyclic nucleotide signaling.Ann N Y Acad Sci 2000;903:24–33.
    15. Permanne B,Adessi C,Saborio GP,et al.Reduction of amyloid load and cerebral damage in a transgenic mouse model of Alzheimer's disease by treatment with a beta-sheet breaker peptide.FASEB J 2002;16(8):860–2.
    16. Combs CK,Karlo JC,Kao SC,et al.beta-Amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis.J Neurosci 2001;21(4):1179–88.
    17. Bach JH,Chae HS,Rah JC,et al.C-terminal fragment of amyloid precursor protein induces astrocytosis.J Neurochem 2001;78(1):109–20.
    18. Yan Q,Zhang J,Liu H,et al.Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer's disease.J Neurosci 2003;23(20):7504–9.
    19. Wilcock DM,DiCarlo G,Henderson D.Intracranially administered anti-Aβantibodies reduceβ-amyloid deposition by mechanisms both in dependent of and associated with microglial activation.J Neurosci ,2003 ,23 (9) :3745-52..
    20. Rogers J ,Lue LF.Microglial chemotaxis ,activation ,and phagocytosis of amyloidbeta-peptide as linked phenomena in Alzheimer′s disease[J ] .Neurochem Int ,2001; 39(526) :333-40.
    21. Wyss-Coray T,Loike JD,Brionne TC,et al.Adult mouse astrocytes degrade amyloid-beta in vitro and in situ.Nat Med,2003;9(4):453–7.
    22. Nagele RG,D'Andrea MR,Lee H,et al.Astrocytes accumulate A beta 42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains.Brain Res,2003;971(2):197–209.
    23. Heneka MT, Wiesinger H,Dumitrescu-Ozimek L,et al.Neuronal and glial coexpression of argininosuccinate synthetase and inducible nitric oxide synthase in Alzheimer disease.J Neuropathol Exp Neurol,2001;60(9) 906–16.
    24. Rossner S, Lange-Dohna C,Zeitschel U,et al.Alzheimer's disease beta-secretase BACE1 is not a neuron-specific enzyme.J Neurochem,2005;92:226–34.
    25. Nunomura A,Perry G,Aliev G,et al.Oxidative damage is the earliest event in Alzheimer disease.J Neuropathol Exp Neurol;2001:60(8):759–67.
    26. Cagnin A,Brooks DJ,Kennedy AM,et al.In-vivo measurement of activated microglia in dementia.Lancet,2001;358(9280):461–7.
    27. Heneka MT,Sastre M,Dumitrescu-Ozimek L,et al.Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J Neuroinflammation,2005;2:22.
    28. Murray CA,Lynch MA.Evidence that increased hippocampal expression of the cytokine interleukin-1 beta is a common trigger for age- and stress-induced impairments in long-term potentiation.J Neurosci,1998;18(15)2974–81.
    29. Tancredi V, D'Arcangelo G,Grassi F.et al.Tumor necrosis factor alters synaptic transmission in rat hippocampal slices.Neurosci Lett,1992;146(2)176–8.
    30. Sheng JG,Griffin WS,Royston MC,et al.Distribution of interleukin-1-immunoreactive microglia in cerebral cortical layers: implications for neuritic plaque formation in Alzheimer's disease.Neuropathol Appl Neurobiol,1998;24(4):278-83.
    31. Griffin WS,Sheng JG,Royston MC,et al.Glial-neuronal interactions in Alzheimer's disease: the potential role of a 'cytokine cycle' in disease progression.Brain Pathol,1998;8 (1): 65-72.
    32. Rothwell NJ , Luheshi GN.Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends Neurosci,2000;23(12):618-25.
    33. Mrak RE,Griffin WS.The role of activated astrocytes and of the neurotrophic cytokine S100B in the pathogenesis of Alzheimer's disease.Neurobiol Aging,2001;22(6):915 - 22.
    34. Qiu Z,Gruol DL.Interleukin-6, beta-amyloid peptide and NMDA interactions in rat cortical neurons.J Neuroimmunol,2003;39(1-2):51 - 7.
    35. Faltraco F,Burger K,Zill P,et al.Interleukin-6-174 G/C promoter gene polymorphism C allele reduces Alzheimer's disease risk..J Am Geriatr Soc,2003;51(4):578 - 9.
    36. Dickson DW,Lee SC,Mattiace LA ,et al.Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer's disease.Glia,1993;7(1):75-83
    37. Meda L,Cassatella MA,Szendrei GI,et al.Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature,1995, 374(6523):647-50.
    38. Sutton ET,Thomas T,Bryant MW,et al.Amyloid-beta peptide induced inflammatory reaction is mediated by the cytokines tumor necrosis factor and interleukin-1.J Submicrosc Cytol Pathol,1999;31(3):313-23.
    39. Grammas P , Ovase R.Cerebrovascular transforming growth factor-beta contributes to inflammation in the Alzheimer’s disease brain [J ] .Am J Pathol ,2002;160 (5) : 1583-7.
    40. McGeer PL,McGeer EG.The possible role of complement activation in Alzheimer disease.Trends Mol Med,2002;8(11):519–23.
    41. Yasojima K,Schwab C,McGeer EG,et al.Upregulated production and activation of the complement system in Alzheimer's disease brain.Am J Pathol,1999;154,927–36.
    42. Webster S,Lue LF, Brachova L,et al. Molecular and cellular characterization of the membrane attack complex, C5b-9, in Alzheimer's disease.Neurobiol Aging,1997;18(4): 415–21.
    43. Wyss-Coray T,Yan F,Lin AH,et al.Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer's mice.Proc Natl Acad Sci USA,2002;99(16):10837–42.
    44. Webster SD , Yang AJ ,Margol L , et al.Complement component C1q modulates the phagocytosis of Abeta by microglia [ J ] .Exp Neurol ,2000 ;161(1) :127-38.
    45. Fonseca MI, Zhou J,Botto M,et al.Absence of C1q leads to less neuropathology in transgenic mouse models of Alzheimer's disease.J Neurosci,2004;24(29):6457–65.
    46. Hoozemans JJ,Veerhuis R ,Janssen I,et al.The role of cyclo-oxygenase 1 and 2 activity in prostaglandin E(2) secretion by cultured human adult microglia:implications for Alzheimer's disease.Brain Res ,2002;951(2):218-26.
    47. O’Banion MK,Miller JC ,Chang JW,et al.Interleukin-1 beta induces prostaglandin G/ H synthase-2 (cyclooxygenase-2) in primary murine astrocyte cultures.J Neurochem,1996; 66(6):2532-40.
    48. Ho L,Pieroni C,Winger D ,et al. Regional distribution of cyclooxygenase-2 in the hippocampal formation in Alzheimer's disease..J Neurosci Res,1999;57(3):295-303.
    49. Xiang Z,Ho L,Yemul S,et al.Cyclooxygenase-2 promotes amyloid plaque deposition in a mouse model of Alzheimer's disease neuropathology.Gene Expr,2002; 10(5-6):271-8.
    50. Owens T,Babcock AA,Millward JM,et al. Cytokine and chemokine inter-regulation in the inflamed or injured CNS. Brain Res Brain Res Rev,2005;48(2),178–84.
    51. Xia MQ,Hyman BT.Chemokines/chemokine receptors in the central nervous system and Alzheimer's disease.Neurovirology,1999;5(1)32–41.
    52. Lue LF,Rydel R, Brigham EF,et al.Inflammatory repertoire of Alzheimer's disease and nondemented elderly microglia in vitro.Glia,2001;35(1):72–9.
    53. Xia MQ,Qin SX,Wu LJ,et al.Immunohistochemical study of the beta-chemokine receptors CCR3 and CCR5 and their ligands in normal and Alzheimer's disease brains.Am J Pathol,1998;153(1):31–7.
    54. Breitner JCS,Welsh KA,Helms MJ,et al.Delayed onset of Alzheimer's disease with nonsteroidal anti-inflammatory and histamine H2 blocking drugs.Neurobiol Aging,1995;16(4):523-30.
    55. Szekely CA, Thorne JE,Zandi PP,et al.Nonsteroidal anti-inflammatory drugs for the prevention of Alzheimer's disease: a systematic review. Neuroepidemiology,2004; 23(4):159–69.
    56. Breitner JCS,Welsh KA,Helms MJ,et al.Delayed onset of Alzheimer's disease with nonsteroidal anti-inflammatory and histamine H2 blocking drugs.Neurobiol Aging,1995;16(4):523-30.
    57. McGeer PL,Schulzer M,McGeer EG.Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer's disease: a review of 17 epidemiologic studies.Neurology,1996;47(2):425-32.
    58. Soininen H,West C,Robbins J,et al.Long-term efficacy and safety of celecoxib in Alzheimer's disease. Dement Geriatr Coqn Disord,2007;23(1):8-21.
    59. Breitner JC,Zandi PP. Do nonsteroidal antiinflammatory drugs reduce the risk of Alzheimer's disease?N Engl J Med,2001;345(21):1567–8.
    60. Lim GP,Yang F,Chu T,et al.Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer's disease.J Neurosci 2000;20(15):5709–14.
    61. Eriksen JL,Sagi SA,Smith TE,et al.NSAIDs and enantiomers of flurbiprofen target gamma-secretase and lower Abeta 42 in vivo.J Clin Invest 2003;112(3):440–9.
    62. Kukar T,Murphy MP, Eriksen JL,et al. Diverse compounds mimic Alzheimer disease-causing mutations by augmenting Abeta42 production.Nat. Med,2005; 11(5):545–50.
    63. Li AC,Brown KK,Silvestre MJ,et al.Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest.2000;106(4):523-31.
    64. Barak Y,Nelson MC,Ong ES,et al. PPAR gamma is required for placental, cardiac, and adipose tissue development.Mol Cell,1999;4(4):585–95.
    65. Sastre M,Dewachter I,Landreth GE,et al.Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-gamma agonists modulate immuno- stimulated processing of amyloid precursor protein through regulation of beta- secretase.J Neurosci,2003;23(30): 9796–804.
    66. Sastre M,Dewachter I,Rossner S,et al.Nonsteroidal anti-inflammatory drugs repress beta-secretase gene promoter activity by the activation of PPARgamma. Proc Natl Acad Sci USA,2006;103(2):443–8.
    67. Heneka MT,Sastre M, Dumitrescu-Ozimek L,et al.Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice.Brain 2005;128(6):1442–53.
    68. Yan Q,Zhang J,Liu H,et al.Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer's disease.J Neurosci 2003;23(20):7504–9.
    69. Klotz L,Schmidt S,Schmidt M,et al.Anti-inflammatory and antiproliferative actions of peroxisome proliferator-activated receptor-g (PPARg) agonists on T-lymphocytes in multiple sclerosis patients and healthy controls.Mediators Inflamm,2004;13:61-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700