苯并[a]芘神经毒性与CYP1A1基因多态性的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯并[a]芘在环境中广泛存在,是有机物不完全燃烧的产物。苯并[a]芘的致癌性在人类和动物模型中已被确认。国内外关于苯并[a]芘的神经毒性研究鲜见报道。但有研究表明苯并[a]芘可引起染毒大鼠的行为学改变,人群调查表明焦化厂工人的认知功能损伤与接触苯并[a]芘的剂量有关,提示苯并[a]芘具有神经毒性。CYP1A1是参与苯并[a]芘和其他多环芳烃类化合物活化代谢的重要酶类,可直接影响苯并[a]芘和其它前致癌物的活化,CYP1A1遗传多态性与多种肿瘤的易感性之间存在着密切关系。脑组织中含有多种亚型CYP-450,有报道神经毒物林丹、锰等的神经毒性均与CYP-450有关,苯并[a]芘神经毒作用与血浆苯并[a]芘浓度和脑内苯并[a]芘代谢物浓度显著相关,提示苯并[a]芘的神经毒性可能通过CYP1A1介导,因而,苯并[a]芘的神经毒性应与CYP1A1的基因多态性有关。苯并[a]芘的职业和环境接触人群众多,以前可能由于关注其致癌性而忽略了其神经毒性,其神经毒性对作业工人的危害可能是一个重要的职业卫生问题,意义可能不亚于其致癌性。本研究从职业接触人群、实验动物、体外细胞培养三个方面研究了苯并[a]芘的神经毒性作用,并从CYP1A1的基因多态性的出发,初步探讨了苯并[a]芘神经毒性的易感因素和作用机制。本文共分三个部分。
     第一部分职业接触苯并[a]芘的神经毒性研究
     第一节焦炉作业工人的神经行为功能的研究
     从某钢铁公司焦化厂选择健康成年男性工人200名。从该公司的原材料处和自动化处选择88名工人作为对照组。采用自行设计的、统一的调查表,询问调查对象的一般情况、文化程度、工种、工龄、吸烟饮酒情况、生活习惯、职业变动史、自觉症状、服药史、神经精神系统疾病史及家族史等,高效液相色谱法测定作业环境空气中苯并[a]芘,收集调查对象的班后尿,用高效液相色谱法检测尿中1-羟基芘的水平;用WHO推荐的神经行为核心测试组合(NCTB)测试焦炉工神经行为功能,包括情感状态和和6个行为操作项目。环境监测表明炉顶、炉侧的苯并[a]芘浓度分别为0.186μg/m~3和1.624μg/m~3,超过职业卫生标准0.15μg/m~3的0.24倍和9.83倍。炉底和对照区空气中苯并[a]芘浓度未超过标准。可见B[a]P浓度由炉底到炉顶大幅度升高。与对照组相比,焦炉工尿1-羟基芘的水平高于对照组,P<0.05,接触组与对照组在年龄、工龄、吸烟、饮酒及吃烧烤食物情况间均衡,文化水平不均衡,以文化水平为协变量对进行协方差分析,焦炉工在总数字跨度、数字跨度顺序、二次打点总数、二次打点正确数得分低于对照组,差异有统计学意义(P<0.05),按照尿1-羟基芘浓度30%和70%百分位数为分界点将所有研究对象分为三组,数字跨度总分、数字跨度顺序、数字跨度倒序、习惯用手、数字译码、视觉记忆得分随尿1-羟基芘浓度增高而降低;通过多元线性回归和偏相关分析表明,数字跨度、数字跨度顺序、数字译码和视觉记忆得分的回归方程可以引入尿1-羟基芘浓度,与尿1-羟基芘浓度存在负相关(P<0.01)。结果表明,职业性苯并[a]芘接触引起神经行为中与记忆有关三项指标的相同改变,职业性苯并[a]芘可以引起接触人群感知和记忆功能降低。
     第二节焦炉作业自主神经功能的研究
     用Ewing DJ推荐的自主神经(ANS)功能测试项目测定288名研究对象的心率、血压变化,测试项目共包括Valaslva Manoeuvre心率反应(HR-V)、深呼吸时的心率变化(HR-DB)、即立心率反应(HR-IS,包括Re_(30:15)和RR_(max/min)两项)和即立血压反应(BP-IS)。以文化水平为协变量,进行协方差分析。结果显示,焦炉作业工人自主神经功能降低,表现反映副交感神经调节功能的HR-V值降低,接触组与对照组相比有显著性差异(P<0.05),而反映交感神经调节功能的指标没有明显改变。按照尿1-羟基芘浓度30%和70%百分位数为分界点将所有研究对象分为三组,各组HR-V值比较有统计学差异,多元线性回归也表明尿1-羟基芘浓度,文化水平、炼焦工龄与心率反应有关。结果表明,焦炉工副交感神经调节功能下降,自主神经调节功能紊乱可能与焦炉生产中产生的苯并[a]芘有关。
     第三节焦炉作业工人脑电图和脑电地形图研究
     接触组按照炉顶、炉侧、炉底各工种按年龄随机选取15名作为研究对象,对照组按年龄随机选取25名,要求在年龄、文化水平、工龄、吸烟和饮酒习惯上尽量齐同,共70人作为研究对象。采用日产6518型脑电图机与北京太阳科技公司脑电处理系统对70名研究对象的脑电图和脑电地形图进行了采集,分析结果表明,经fisher检验,接触组与对照组均以α波为主(p=0.013),但是在接触组θ波出现的频率已高达13.33%。广泛性异常(p=0.2666)、弥散性异常(p=0.1718)和局限性异常(p=0.0089)高于对照组,脑电地形图则主要表现为各频带均为低能量值,α频带呈弥散性分布,有时出现不对称现象。提示焦炉作业工人大脑皮层神经功能低下。
     第四节焦炉作业工人外周神经传导速度和诱发电位的研究
     使用日本捷斯特公司生产Neuropack M1,检测第三节中选择研究对象的双侧正中神经和尺神经的感觉和运动神经(排除受伤神经)传导速度(SCV和MCV)、远端潜伏期(SL和ML)、体感诱发电位、听觉诱发电位和视觉诱发电位。结果表明,感觉和运动神经传导速度、远端潜伏期上接触组与对照组比较无显著性差异,两组体感诱发电位N9、N13、N20潜伏期之间无统计学差异,听觉诱发电位Ⅰ波峰潜伏期、Ⅲ波峰潜伏期、Ⅴ波峰潜伏期、Ⅰ~Ⅲ峰间潜伏期、Ⅲ~Ⅴ峰间潜伏期、Ⅰ~Ⅴ峰间潜伏期、和视觉诱发电位P100峰潜伏期各指标之间无统计学差异。可见多环芳烃未引起焦炉作业工人外周神经传导速度和诱发电位的改变。
     第五节焦炉作业工人GYP1A1基因多态性分析
     采用聚合酶链反应-限制性片段长度多态性分析(PCR-RFLP)和等位基因特异性PCR(ASA-PCR)分别对CYP1A1基因Msp I位点多态性和Exon7 Ile—Val位点多态性进行了分析,结果显示,Msp I位点ml/ml、ml/m2、m2/m2基因型分布以及Ile-Val位点Ile/Ile、Ile/Val、Val/Val基因型分布在接触组与对照组都无显著性差异,两基因多态性位点等位基因频率经卡方检验,符合Hardy-weinberg平衡定律。焦炉工CYP1A1 MspⅠ各基因型个体中尿中1-羟基芘水平表现为野生型纯合子<杂合子<变异型纯合子的变化趋势,但差异无显著性,而GYP1A1第7外显子Val/Val个体尿中1-羟基芘水平与Ile/Ile比较有显著性差异,CYP1A1基因多态性影响了尿中1-羟基芘水平。接触组两多态性位点不同基因型个体神经行为功能和自主神经功能分析表明,MspⅠ位点ml/ml、ml/m2、m2/m2基因型间神经行为功能和自主神经功能各指标无统计学差异,Ile-Val位点Ile/Ile、Ile/Val、Val/Val基因型间上述指标比较,突变型(Val/Val)倒序数字跨度得分低于野生型(Ile/Ile),CYP1A1 Ile-Val位点多态性影响了倒序数字跨度,可见,CYP1A1基因多态性影响了苯并[a]芘的神经行为毒性。
     第二部分苯并[a]芘神经毒性的体内实验研究
     第一节单次侧脑室注射苯并[a]芘大鼠脑形态学改变
     健康雄性SD大鼠40只,随机分为5组:空白对照组、二甲基亚砜(DMSO)组(溶剂对照组)、苯并[a]芘高浓度组(50mmol/L)、苯并[a]芘中浓度组(5mmol/L)、苯并[a]芘低浓度组(0.5mmol/L)。每组8只,用25%乌拉坦(0.4ml/100g)经腹腔注射麻醉后,将大鼠置于立体定向仪上,侧脑室插管,50μL微量进样器通过插管分别向高、中、低浓度组缓慢注入苯并[a]芘溶液10μL,溶剂对照组DMS010μl,空白对照组生理盐水10μl,动物插管给药后,各组都出现活动减少、反应迟钝、进食量减少、昏睡;三天后,中、高剂量组部分大鼠出现动作迟缓、步态蹒跚,少数表现烦燥易惊,未出现动物死亡,对照组和低剂量组仅表现为活动减少,无其他明显异常行为改变。病理结果显示,对照组小脑蒲肯野细胞数目形态正常,海马神经细胞排列整齐,数目形态正常;随着苯并[a]芘剂量的增高,神经细胞损伤越严重,特别高剂量组出现典型的神经细胞损伤现象出现,表现出小脑蒲氏细胞数目减少,部分细胞出现坏死表现,胞核聚集、浓缩、溶解;海马神经细胞出现排列紊乱,数目减少,胞浆透明,核皱缩,脑皮质未发现典型的坏死灶和胶质细胞增生,脑桥和延髓部分也未见明显改变。本次研究显示脑病理改变随苯并[a]芘剂量增加而加重,有一定的剂量一反应关系,为下一步的慢性染毒剂量选择提供了依据。
     第二节亚慢性染毒大鼠学习记忆功能测试
     健康雄性SD大鼠40只,经麻醉后定位插管,一周后称重后按体重编号,将动物随机分为4组:橄榄油组(溶剂对照组)、苯并[a]芘2.5mmol/L组、苯并[a]芘5mmol/L组、苯并[a]芘10mmol/L组。每组8只,麻醉后定位,应用微量注射器通过插管分别向高、中、低浓度组缓慢注入苯并[a]芘溶液10μL,溶剂对照组橄榄油10μl,缝皮。每周给药一次,连续给药三周。为探讨B[a]P对大鼠学习记忆功能的影响,本研究选择跳台试验和水迷宫实验对染毒大鼠进行学习记忆功能评价。大鼠染毒后跳台试验结果显示,随染毒剂量的增加,大鼠步下平台的潜伏期缩短,次数增多,有明显的剂量反应关系,结果表明苯并[a]芘可损害大鼠对被动逃避反应的学习和短期记忆能力。Morris水迷宫试验结果显示:随染毒剂量的增加,各组大鼠平均潜伏期延长,在原平台停留时间缩短,各剂量组与对照组比较有显著性差异,各剂量组间平均潜伏期比较无显著性差异,而在原平台象限停留时间高剂量组与低剂量组间有差异,P<0.05。B[a]P可造成大鼠空间学习记忆功能的损害。这与人群调查发现的焦炉作业工人学习记忆能力降低相一致。
     第三节亚慢性染毒大鼠海马的形态学改变和凋亡检测
     大鼠染毒结束后,断头处死,取出海马。病理结果显示随着苯并[a]芘剂量的增高,有典型的神经细胞损伤现象出现,中、高剂量组海马神经细胞出现排列紊乱,数目减少,胞浆透明,核皱缩,细胞周围出现环状带,电镜结果显示,随着剂量的增高,出现细胞核皱缩,染色质边聚,核膜破裂等形态学的变化,线粒体形态逐渐出现肿胀,并可伴有线粒体嵴减少或消失,肿胀重者呈气球样变而且外膜破裂。海马神经细胞凋亡测定结果显示,随着B[a]P染毒剂量的增加,海马神经细胞凋亡指数增高,有剂量-反应关系。海马神经细胞凋亡可能是大鼠学习记忆功能降低的原因,线粒体形态改变提示,神经细胞凋亡可能与线粒体损害有关。
     第四节亚慢性染毒大鼠海马神经生物化学的改变
     大鼠染毒结束后,断头处死,取出海马。高效液相色谱法分别测定海马中谷氨酸(Glu)、天门冬氨酸(Asp)、甘氨酸(Cly)、γ-氨基丁酸(GABA)、多巴胺、5-羟色胺、5-羟吲哚乙酸含量,应用相应试剂盒测定海马SOD、MDA。结果显示,大鼠海马谷氨酸含量明显降低,各剂量组与对照组比较,p<0.01,各剂量组间无显著性差异;而天门冬氨酸(Asp)、甘氨酸(Cly)、γ-氨基丁酸(GABA)含量各组未见明显变化。大鼠海马5-羟色胺(5-HT)含量明显增高,有剂量-反应关系,而多巴胺(DA)、5-羟吲哚乙酸(5-HIAA)含量各组未见明显变化。随苯并[a]芘剂量的增大,MDA含量增多,SOD活性下降。各剂量组与对照组比较,p<0.05,各剂量组间比较,高剂量组与低剂量组比较有显著性差异,结果提示苯并[a]芘染毒可引起大鼠氨基酸递质、单胺类递质的改变,这可能大鼠学习记忆功能减低有关。大鼠海马随苯并[a]芘剂量的增大,MDA含量增多,SOD活性下降,显示海马发生脂质过氧化。
     第五节亚慢性染毒大鼠海马CYP1A1基因和蛋白的表达
     本次研究应用PT-PCR法研究CYP1A1mRNA表达,免疫组化SABC法和Western-blot检测了海马CYP1A1蛋白的表达。随苯并[a]芘剂量的增高,CYP1A1mRNA及蛋白表达增多,有剂量-反应关系,CYP1A1基因和蛋白表达与海马神经细胞凋亡指数的相关分析表明:海马神经细胞凋亡指数与CYP1A1mRNA表达呈正相关(r=0.871,P<0.01);与Western-blot检测CYP1A1蛋白表达呈正相关(r=0.804,P<0.01)。进而结合动物学习记忆功能、神经递质的改变,脂质过氧化水平的增高。我们推测CYP1A1表达增高可能是苯并[a]芘神经毒性作用的关键环节。这可部分解释人群CYP1A1基因多态性与焦炉作业工人学习记忆功能降低的关系。
     第三部分苯并[a]芘神经毒性的体外研究
     第一节苯并[a]芘致神经元形态改变和凋亡检测
     选用新生1~3d的SD大鼠,取脑,分离大脑皮质进行神经元培养,加入0.5mg/ml阿糖胞苷(终浓度10μM)培养液以抑制胶质细胞增殖。经GFAP免疫组化证明,胶质细胞小于10%,在细胞培养第5天左右,选取生长良好的同批次神经细胞,以苯并[a]芘同时加或不加S9分别对神经元染毒,两种染毒方法都分为对照组、低剂量组、中剂量组、高剂量组,使苯并[a]芘终浓度分别为0μM、10μM、20μM,40μM。继续培养40h,观察细胞的生长状况和形态学改变。
     结果表明,苯并[a]芘染毒后神经元树突数量减少,轴突减少变短,细胞与细胞间连接明显减少;加S9后,各剂量组比不加S9组细胞形态改变明显,两组相差一个剂量组,即低剂量加S9组形态改变基本相当于不加S9的中剂量组。高剂量加S9组形态改变最明显,部分神经元的大多数树突消失融解,细胞轴突也严重受损,胞体变圆、收缩。AO/EB染色结果表明苯并[a]芘可引起神经元轴突与树突的数量,细胞间和细胞连接减少。高剂量染毒组可见轴突与树突的数量进一步减少,细胞与突触间,胞体与胞体间连接明显减少甚至消失,胞体明显缩小,染色质聚集,细胞呈桔黄色;加S9后,各剂量组比不加S9组细胞形态改变明显,两组相差一个剂量组,即低剂量加S9组形态改变基本相当于不加S9的中剂量组。高剂量加S9组形态改变最明显,+S9高剂量组神经细胞胞核呈固缩状的桔红色荧光,轴突与树突的数量锐减,细胞与细胞间连接很少甚至消失,有核分裂边聚。本次应用Annexin V和PI双染法进行细胞凋亡的检测,结果发现,随着苯并[a]芘染毒剂量的加大,神经细胞的早期、晚期和总凋亡率逐渐增高,有剂量依赖性,未加S9的中、低剂量组早期和晚期凋亡率与对照组相比差异均无显著性意义(p>0.05)。高剂量组与对照组相比差异有显著性意义,加入S9后,苯并[a]芘对神经细胞的损害作用明显加强,随着苯并[a]芘染毒剂量,神经细胞早期和晚期凋亡率明显升高,+S9的三个剂量组与对照组相比差异均有显著性意义,p<0.05。细胞的凋亡率叠加示意图和直方图显示,神经细胞的早期、晚期和总凋亡率与染毒剂量呈明显的剂量依赖性。表明苯并[a]芘可引起神经元凋亡,而且加入肝S9后作用增强,代谢活化是苯并[a]芘引起凋亡的主要原因。
     第二节苯并[a]芘染毒神经元的细胞活力改变和氧化损伤
     应用Cell Counting Kit-8检测染毒后各组神经元的细胞活力,随着苯并[a]芘浓度的增加,神经细胞活力下降,未加S9组仅中、高剂量组与对照组比较有显著性差异,加S9组各剂量组与对照组比较均有显著性差异,而且各剂量组间有显著性差异,表现出较明显的剂量-反应关系。表明苯并[a]芘具有细胞毒性。染毒后的神经细胞内SOD和MDA测定表明,加S9组随着苯并[a]芘浓度的增加,神经细胞SOD活性下降,MDA含量升高,各剂量组与对照组比较有显著性差异,表明神经细胞发生脂质过氧化。加入罗丹明123(Rh123),应用流式细胞仪测定细胞线粒体膜电位,随着苯并[a]芘浓度的增加,细胞线粒体膜电位下降,未加S9组仅中、高剂量组与对照组比较有显著性差异,加S9组各剂量组与对照组比较均有显著性差异,而且各剂量组间有显著性差异,表现出较明显的剂量-反应关系,苯并[a]芘代谢活化引起脂质过氧化,进而线粒体膜电位的降低可能是凋亡的诱发途径。
     第三节神经元CYP1A1蛋白及基因的表达与细胞损伤的关系
     本次研究应用RT-PCR法对神经元CYP1A1mRNA表达,免疫组化SABC法和Western-blot检测了神经元CYP1A1蛋白的表达。结果随苯并[a]芘剂量的增高,CYP1A1mRNA及蛋白表达增多,有剂量-反应关系,CYP1A1基因和蛋白表达与神经元细胞凋亡率的相关分析表明:神经细胞凋亡率与CYP1A1mRNA表达呈正相关(r=0.831,P<0.01);与CYP1A1蛋白表达呈正相关(r=0.780,P<0.01)。结合所有+S9和—S9的检测结果,表明CYP1A1表达增高是细胞损伤的关键因素,这与整体动物试验的结果是一致的。
     小结
     1.职业性苯并[a]芘接触可引起明显的记忆功能降低和副交感神经调节功能降低。
     2.苯并[a]芘引起的记忆功能降低与CYP1A1基因多态性有关。
     3.体内和体外实验都证明苯并[a]芘诱导的CYP1A1表达增高是苯并[a]芘神经毒性的关键环节。
     4.苯并[a]芘可引起大鼠学习记忆能力降低,可能与海马神经细胞凋亡,谷氨酸含量降低,5-羟色胺水平升高以及脂质过氧化有关。
     5.苯并[a]芘可能通过线粒体途径诱发神经细胞凋亡。
Benzo(a)pyrene(B[a]P),one of polycyclic aromatic hydrocarbon(PAH)compounds,is product of incomplete combustion of organic matters and is widespread in the environment.The carcinogenicity of B[a]P is well established in human and animal model.Due to the widespread distribution of B[a]P in the environment and the potential exposure for human,the adverse effects of these compounds deserved to be investigated.Although the neurotoxic effect of B[a]P has not drawn much attention,.there were some related data implying that B[a]P showed the neurotoxic effects.when exposed to B[a]P by oral gavage,rats were induced behavioral impairments,and there was a significant correlation between neurotoxic effects and plasma B[a]P concentration,and its metabolite concentration in brain tissue.Coke-production plant workers in Poland developed neurotic syndromes with vegetative disregulation,and a loss of short-term memory;their prevalence depended on the level of exposure to B[a]P.B[a]P is metabolised to active metabolites that are tumourigenic.The bioactivation of B[a]P is catalyzed by some cytochrome P450(CYP)enzymes,particularly CYP 1A1.The brain tissues of various species contain almost all CYP-enzymes found in liver,including CYP1A1.CYP-enzymes in brain were associated with neurotoxic effects of some chemicals,such as lindane and manganes.The correlation between the neurotoxicity of B[a]P and B[a]P metabolite concentrations in brain implied that CYP1A1 may mediate the neurotoxicity of B[a]P.CYP1A1 gene polymorphisms have been studied in relation to various kinds of cancers.Our hypothesis is that CYP1A1 gene polymorphisms wound modulates the neurotoxicity of B[a]P.The neurotoxicity of B[a]P may be a important occupational risk like its carcinogenicity for occupational exposed populations.In this research,occupational exposed population,experimental animals and primarily cultured neuron exposed to B[a]P were investigated to preliminarily elucidate the mechanism of neurotoxicity of B[a]P and its association with CYP1A1 gene polymorphisms.The research was divided into three parts.
     PartⅠNeurotoxicity study on occupational population exposed to B[a]P
     1.neurobehavioral function of coke oven wokers
     200 healthy adult male coke oven workers were selected from coke plant of a state-owned enterprise in Taiyuan City.88 controls unexposed to polycyclic aromatic hydrocarbons(PAHs) occupationally were selected from the same enterprise.All the subjects participated this investigation freely according to their consent.Concentration of B[a]P in the working environment was monitored by High Performance Liquid Chromatography(HPLC).Urine samples were collected immediately after working shift.The level of urinary 1-hydroxypyrene was determined by High Performance Liquid Chromatography(HPLC).General informations of workers correlated to the investigation were collected by query and filled in the questionnaire according to the same criteria by well-trained investigators.WHO recommended neurobehavioral core test battery(NCTB)was performed on coke oven workers and controls to test the neurobehavioral changes and the mood state.The concentration of B[a]P at oven bottom,oven side and oven top were 0.0195μg/m3,,0.186μg/m3 and 1.624μg/m3 respectively,and Concentration of B[a]P at oven side and oven top were higher than the occupational hygiene criterion.Urinary 1-hydroxypyrene were significant difference between exposure group(3.42±0.98μmol/mol creatinine)and control group(2.75±1.09μmol/mol creatinine).No significant differences were found between exposure group and control group on age,length of service,smoking,drinking and unhealthy food consumption;however,compared to the controls,the scores of the coke oven workers were lower in the total digital span,the forward digital span,right dotting and total dotting,and the differences showed statistical significance(P<0.05).Significant difference of the total digital span,the forward digital span, backward digital span,digit symbol and Benton visual retentions existed in different urinary 1-hydroxypyrene concentration groups and showed a dose-response tendency.Results of multiple stepwise regression analysis and correlation analysis showed that the level of urinary 1-hydroxypyrene affect memory and perception of coke oven workers and there wre negative correlations between the levels of urinary 1-hydroxypyrene and changes in neurobehavioral function.It was suggested that B[a]P wound mainly causes decrease of memory and perception in coke oven workers..
     2.Function of autonomic nervous system(ANS)in coke oven wokers
     Function of autonomic nervous system(ANS)of 288 subjiects were measured with the method recommended by Ewing DJ,which consists of 4 tests:Valaslva Manoeuvre heart rate variation(HR-V),variation of heart rate when deeply breathing(HR-DB),variation of heart rate when instantly standing up(HR-IS,including RR30:15 and RRmax:min)and variation of blood pressure when instantly standing up(BP-IS).Compared to controls,HR-V decreased significantly in coke oven workers(p<0.01),which represents modulation of parasympathetic nervous function.But no statistical differences were found in HR-DB,RR30:15,RRmax:min and BP-IS between exposed groups and control group(p>0.05).Significant difference of HR-V existed in different urinary 1-hydroxypyrene concentration groups.Results of multiple linear stepwise regression demonstrated that the level of urinary 1-hydroxypyrene and level of education affect HR-V.The results indicated that B[a]P affected autonomic nervous function of coke oven workers by mainly down- regulating parasympathetic nervous function.
     3.Changes of electroencephalogram and brain electrical activity mapping in coke oven wokers
     45 subjects,as a exposed group,were randomly selected from exposed groups according to their type of work in production and age,25 controls were chosen from unexposed group according to the same principal.All subjects were conducted electroencephalogram and brain electrical activity mapping.Compare with controls,the ratio of abnormal EEG increased,brain electrical activity mapping showed all frequency bands energy values were lowered,andαfrequency band distribution was diffuse,sometimes dissymmetrical.The results displayed B[a]P increased ratio of abnormal EEG.
     4.Changes of conduction velocity of peripheral nerve and evoked potential in coke oven wokers
     The conduction velocity of peripheral nerve and evoked potential were monitored by neuropack M1,(Nihon Kohden coporation),compared with controls,there is no significant difference in sensory conduction velocity and motorial conduction velocity of ulnar nerve and median nerve.The sensory evoked potencial,auditory evoked potencial and pattern-visual evoked potencial in two groups also showed no significant diffrence.It was suggested that B[a]P shoud have no effect on conduction velocity of peripheral nerve and evoked potential.
     5.Analysis of CYP1A1 gene polymorphisms in coke oven wokers
     CYP1A1 gene polymorphisms including MspⅠsite and Ile-Val site were monitored by PCR-RFLP and ASA-PCR,respectively.The results revealed that there were no statistic difference of the genotype frequencies of m1/m1、m1/m2、m2/m2 of MspⅠsite and that of Iie/Iie、Ile/Val、Val/Val of Ile-Val site between exposed group and contol group,In exposed group the level of urinary 1-hydroxypyrene of Val/Val was significantly higher than Ile/Ile wild homozygote.Although there was a tendency of m1/m1<m1/m2<m2/m2 in urinary 1-hydroxypyrene,there was no statistically significant difference.The scores of Dignity Span Backward with Val/Val gene type were higher than those with Iie/Iie gene type.Other index of NTCB and ANS showed no difference among three gene types of Ile-Val site.All index of NTCB and ANS showed no difference among three gene type of MspⅠsite.The present data revealed CYP1A1 Ile-Val site gene polymorphism modulats the neurobehavioral toxicity of B[a]P.
     PARTⅡstudy ofneurotoxicity of B[a]P in vivo
     1.single intracerebroventricular injection of benzo[a]pyrene induces morphological changes in rats
     Forty male SD rats,adult and healthy,were divided into 5 groups randomly:normal control, DMSO control,B[a]P 0.5mmol/L,B[a]P 5mmol/L,B[a]P50mmol/L,all groups were administered by intracerebroventricular injection,and the injectant volume was 10μl.The morphology of neural cells in rats' hippocampus and cerebellum were observed by optical microscope.In cerebellum and hippocampus,arrangement and numbers of the neural cells were normal in control group,but with the increasing of the doses of B[a]P exposed,the arrangement of neural cells became disorderly,the quantity of cells became diminished,and the cells showed necrosis appearance.The results displayed that benzo[a]pyrene damaged brain tissues of rats,and the higher the dose of B[a]P is,the more serious the damage of brain is.
     2.Subchronical intracerebroventricular injection of benzo[a]pyrene decreased the capacity of learning and memory in rats
     Forty male SD rats,adult and healthy,were intubated,after one week,all incubated rats were divided into 4 groups randomly:normal control,olive oil control,B[a]P2.5mmol/L,B[a]P 5mmol/L,and B[a]P10mmol/L,all groups were administered by intracerebroventricular injection, and the injectant volume was 10μl.Step-down and Morris water maze tests were applied to assess the capacity of learning and memory in rats.With the dose of B[a]P increasing,the step down latency was shortern,and times of stepping down increased,there existed significant differences in three B[a]P -treated groups compared with controls.The results indicated that B[a]P can induce impairment of passive avoidance learning and short-term memory.In Morris water maze tests the mean escape latency was prolonged and the length of staying in the original quadrant was shorterned in treated groups while dose was increasing.There was an evident dose -response relationship between the dose of B[a]P and the data of Morris water maze tests,which suggested that B[a]P would affecte the spatial learning and memory functions.
     3.Subchronicai intracerebroventricular injection of benzo[a]pyrene induces hippocampus morphological changes and apoptosis
     The observation under light microcope showed:arrangement of the neural cells in rats' hippocampus was orderly in control group,but with the increasing of the doses of B[a]P exposed,the cells displayed disorderly arranged,the connections among the neural cells were loosened,the karyon shrinked,some rings around the cells were observed.Picture under electron microscope displayed:in control group,the karyotin distributed symmetrically,and its form was regular,the form of mitochondria was regular,the arrangement of bars was orderly,and with the increasing of the doses of B[a]P exposed,the karyon shrinked,the karyotin assembled in the edge,karyotheca was broken,mitochondria swelled,broken,the bars were reduced and disappeared.
     With the increasing of the dose of B[a]P exposed,the apoptosis indices(AI)of neural cells in rats' hippocampus increased,and AI in 5mmol/L B[a]P group and 10mmol/L B[a]P group were significantly higher than that of controls(P<0.05),and which in B[a]P 10mmol/L group were significantly higher than that of 2.5mmol/L B[a]P group.
     4.Subchronicai intracerebroventricular injection of benzo[a]pyrene induces neurochemical changes of hippocampus in rats
     To explore the mechanism of B[a]P induced neurotoxicity,amino acid transmitters, monoamine transmitters,SOD and MDA were determined.Compared with controls,GLU was decreased in three treated groups,and other amino acid transmitters showed no changes,while there was an increasing trend of 5-HT in treated groups,no differences of DA and 5-HIAA were found between treated groups and contol group.SOD activity decreased and content of MDA increased in three treated group compared with the conrols.All these data implied the potential mechanism of neurotoxicity of B[a]P.
     5.Subchronical intracerebroventricular injection of benzo[a]pyrene induces CYP1A1 expression changes of hippocampus in rats
     To explore the relationship between neurotoxicity of B[a]P and CYP1A1 expression, RT-PCR was used to determine CYP1A1 mPNA,and immunohistochemical staining and western bloting were performed to determine CYP1A1 protein.CYP1A1 mRNA and CYP1A1 protein increased significantly compared with the control group and in a dose dependent manner, a positive correlation between AI and the expression of CYP1A1mRNA,the expression of CYP1A1 protein were observed.Considering the data mentioned above and the capacity of learning and memory in rats and neurochemical changes prehensively,CYP1A1 expression may be thought to be the critical step in neurotoxicity of B[a]P.
     PartⅢstudy of neurotoxicity of B[a]P in vitro
     1.Changes of cell morphology and apoptosis of primary cultured neurons induced by B[a]P
     primary neurons were dissociated from cerebral cortex of 1-3 days old SD rat and cultured with DMEM incubator at 37℃,cell density was adjusted at 1×10~5cells/ml,after 5 days' cultivation,the astrocyte GFAP was identified by immunohistochemical staining.If the astrocyte was less than 10%,the cultured cells was thought to be pure neurons.Then,they were divided into two groups,+S9 and -S9,and all the two groups of neurons were cultivated with B[a]P at 0,10,20,40μmol/L,respectively,for 40 hours.The morphology was observed,and apoptosis was measured.Under light microscope,with the increment of B[a]P dose,the numbers of neurites and dendrites of neurons and the conjunctions among cells were reduced evidently.The changes were more serious at 40μmol/L in +S9 group.The neurites of some neurons became shorter,even disappeared,and the cell body became round.Stained with AO/EB,under fluorescence light,live neuron showed a bright green color,while the dead one was red,as apoptotic cell was orange.Based on the color of neuron,we can distinguish living conditions of the neurons.With B[a]P dose increasing,the ratios of orange colored cells increased,and the numbers of neurites and dendrites of neurons and the conjunctions among cells decreased,+S9 group showed more severity,at 40μmol/L,the cell body became round and anumber of neurons were stained orange even red,and the neurite of some neuron became shorter,even disappear,the karyon shrinked or aggregated in the edge or cleaved.With AnnexinⅤand PI staining,the apoptosis ratios of neurons were measured,early-onset apoptosis ratio,late -onset apoptosis ratio and total apoptosis ratio increased in a dose dependent manner,and +S9 group showed more serious situation.The data suggested that B[a]P could induce apoptosis of neurons,and bioactivation of B[a]P was important to exert its adverse effects.
     2.Changes of cell viability and the mitochondrial membrane potential(MMP)and lipid peroxidation induced by B[a]P
     Neuron vilability decreased in—S9 group at dose of 20μmol/L compared with controls,in +S9 group there existed significant differences in three treated grous.The determination of MMP in neuron showed that MMP decreased in—S9 group at dose of 20μmol/L compared with controls,while in+S9 group,the MMP decresed in a dose dependent manner.The SOD activity decreased and MDA increased in treated group compared with controls.These results suggested that liquid peroxidation induced by BaP could lead to MMP changes,which may initiate neuron apoptosis and cell viability decline.
     3.CYP1A1 expression induced by B[a]P in neuron
     With the dose of B[a]P increasing,CYP1A1 mRNA and CYP1A1 protein increased,there existed significantly difference in treated groups compared with control group.A positive correlation between neuron apoptosis ratio and the expression of CYP1A1mRNA,as well as the expression of CYP1A1 protein were observed.The results indicated that CYP1A1 expression is related to cytotoxicity of B[a]P.
     summary
     1.B[a]P-related neurotoxicity in B[a]P exposed wokers are characterized by poor memory and down regulated parasympathetic nervous function.
     2.The neurobehavioral effect of B[a]P is related to CYP1A1 gene polymorphism.
     3.It had been proved that CYP1A1 expression induce by B[a]P may be the critical step in neurotoxicity of B[a]Rin vivo and in vitro.
     4.The impairment of learning and memory by B[a]P was also found in rats,which may be related to neural cell apoptosis,variations of GLUand 5-HT and statue of lipid peroxidation in hippocampus.
     5.B[a]P may induce neural cell apoptosis through mitochodria pathway.
引文
1.Mumtaz MM,George JD,Gold KW,et al.Cibulas W,DeRosa CT.ATSDR evaluation of health effects of chemicals.Ⅳ.Polycyclic aromatic hydrocarbons(PAHs):understanding a complex problem.Toxicol Ind Health.1996 Nov-Dec;12(6):742-971.
    2.Environmental health criteria 202.Selected non-heterocyclic polycyclic aromatic hydrocarbons [M].Geneva:World Health Organization,1998.
    3.陈波,郑力行,胡云平,等.焦炉工职业性多环芳烃暴露特征的研究,中华劳动卫生职业病杂志,2004,24(5):327-330
    4.Eva P,Pia L,Hans T.Cellilar activation and neuronal transport of intranasally instilled benzo[a]pyrene in the olfactory system of rats.Toxicology letters 2002;133:211-219
    5.Crystal R S,Aramandla R,Dolores C S.Modulation of neurotoxic behavior in F-344 rats by temporal disposition of benzo[a]pyrene.Toxicology letters 2002;129:33-45
    6.涂白杰,胡雪原,韩令力.苯并[a]芘、铅染毒小鼠神经毒性及脑组织细胞凋亡的研究.中国职业医学,2004,3l(5):14-17
    7.Stephanou P,Konstandi M,Pappa P,et al.Alternations in central monoaminergic neurotransmission induced by polycyclic aromatic hydrocarbons in rats.Eur J Drug Metab Parmacokinet,1998,23:475-481
    8.Urbaniec W,Sroczynski J,Chelmecka E,Snit M.Effect of work in coke-processing plants on the efficiency of selected cognitive processes.Med Pr.1989;40(1):44-8
    9.王芳,张红梅,聂继盛,等。焦炉工血中脂质过氧化水平与神经行为变化的关系。中华劳动卫生职业病杂志 2007;25(1):15-17
    10.Gu SY,Zhang ZB,Wan JX,et al.Genetic polymorphisms in CYP1A1,CYP2DG,UGT1AG,UGTIA7,and SULT1A1 genes and correlation with benzene exposure in a Chinese occupational population.J Toxicol Environ Health A.2007;70(11):916-24.
    11.Parmar D,Yadav S,Dayal M,et al.Effect of lindane on hepatic and brain cytochrome P450s and influence of P450 modulation in lindane induced neurotoxicity.Food Chem Toxicol. 2003 ;41(8):1077-87.
    12 Liccione JJ, Maines MD.Manganese-mediated increase in the rat brain mitochondrial cytochrome P-450 and drug metabolism activity: susceptibility of the striatum.J Pharmacol Exp Ther. 1989 ;248(1):222-8.
    13 Dayal M, Parmar D, Ali M, et al.Induction of rat brain cytochrome P450s (P450s) by deltamethrin: regional specificity and correlation with neurobehavioral toxicity.Neurotox Res. 2001 Aug;3(4):351-7.
    14 Kapoor N, Pant AB, Dhawan A, et al. Differences in sensitivity of cultured rat brain neuronal and glial cytochrome P450 2E1 to ethanol. Life Sci. 2006;79(16): 1514-22.
    15 Meyer RP, Knoth R, Schiltz E, Volk B. Possible function of astrocyte cytochrome P450 in control of xenobiotic phenytoin in the brain: in vitro studies on murine astrocyte primary cultures.Exp Neurol. 2001;167(2):376-84.
    16 . Santt O, Baranova H, Albuisson E et al.Interaction between GSTMl-null and CYP2D6-deficient alleles in the pathogenesis of Parkinson's disease. Eur J Neurol. 2004;11(4):247-51.
    
    17.Mellick GD.CYP450, genetics and Parkinson's disease: gene x environment interactions hold the key.J Neural Transm Suppl. 2006;(70): 159-65.
    
    18. Takakubo F, Yamamoto M, Ogawa N, et al. Genetic association between cytochrome P450IA1 gene and susceptibility to Parkinson's disease.J Neural Transm. 1996;103(7):843-9.
    
    19.Zheng YX, Chan P, Pan ZF, et al. Polymorphism of metabolic genes and susceptibility to occupational chronic manganism.Biomarkers. 2002 Jul-Aug;7(4):337-46.
    
    20Vijayalakshmi K, Vettriselvi V, Krishnan M, et al. Cytochrome p4501Al gene variants as susceptibility marker for prostate cancer.Cancer Biomark. 2005;l(4-5):251-8.
    
    21Esinler I, Aktas D, Alikasifoglu M, et al. CYPlAl gene polymorphism and risk of endometrial hyperplasia and endometrial carcinoma.Int J Gynecol Cancer. 2006 May-Jun; 16(3): 1407-11
    
    22Okobia M, Bunker C, Zmuda J, et al. Cytochrome P4501A1 genetic polymorphisms and breast cancer risk in Nigerian women.Breast Cancer Res Treat. 2005 Dec;94(3):285-93. Epub 2005 Oct 28
    
    23.Mitchell CE. Distribution and retention of benzo(a)pyrene in rats after inhalation. Toxicol.Lett, 1982, 11: 35-42.
    
    24.Curtis J. Omiecinski, Moses J. Namkung ,Mont R. Juchau Substrate and position specificity of hematin-activated monooxygenation reactions.Biochemical Pharmacology, 1981,30 (20):2837-2845.
    
    25. Maurice E. Knuckles, Frank Inyang , Aramandla Ramesh.Acute and Subchronic Oral Toxicities of Benzo[a]pyrene in F-344 Rats. Toxicological Sciences 2001, 61, 382-388
    26 GBZ/T 160.44—2004.工作场所空气有毒物质测定多环芳香烃化合物
    27 李晓华;冷曙光;郭君;等.改良的高效液相色谱法测定尿中1-羟基芘.卫生研究,2003,32(6):616-617.
    28.Baranski Z Evaluation of occupational exposure to aromatic polycyclic hydrocarbons in bituminous pulp plants.Rocz Panstw Zakl Hig.1991;42(3):223-37.
    29.Lindstedt G,Sollenberg J.Polycyclic aromatic hydrocarbons in the occupational environment.Secand J Work Environ Health,1982,8:1-19
    30 冷曙光,郑玉新,李晓华,等.焦炉工外暴露等级与尿中1-羟基芘水平的关系.工业卫生与职业病,2003,29(5):288-291.
    31 Mukherjee S,Rodrigues E,Weker R,et al.1-Hydroxypyrene as a biomarker of occupational exposure Polycyclic Aromatic Hydrocarbons(PAHs)in biolermarker.J Occup Environ Med.2002,44(12):1119-1125.
    32.石樱桃,聂继盛,王芳,等.焦炉工血清NO及iNOS的与神经行为功能变化的研究.医学综述,2006,12(9):109-111.
    33.Dayal H,Gupta S,Trieff N,et al.Symptom clusters in a community with chronic exposure to chemicals in two superfund sites.Arch.Environ.Health,1995,50:108-111.
    34.Niu Qiao.Neurotoxicity assessment of chemicals on exposed workers-a review of neurobehavioral and neurophysiological tests.Eur J Inflamm 2003;1(2):51-58.
    35.Adonis M,Martinez V,Riquelme R,et al.Susceptibility and exposure biomarkers in people exposed to PAHs from diesel exhaust.Toxicol Lett 2003;144:3-15
    36.牛侨,李哲,G.Abbritti.铅接触工人自律神经系统功能的研究.中国工业医学杂志,1997,10(5):277
    37 牛侨,李哲,G.Abbritti.铅接触工人自律神经系统功能的再研究.中国工业医学杂志,1998,11(2):80
    38 牛侨,代伏英,陈艺兰,等.铅印刷厂排版铸字工自主神经功能测试与评价.卫生毒理学杂志,1998,12(2):111
    39 Murata K.Assessment of autonomic neurotoxicity of environmental and occupational factors as determined by heart rate variablility:recent findings.Nippon Eiseigaku Zassi 1999,54(3):516-525
    40 He Shuchang,Niu Qiao and Wang Sheng.Evaluation of cardiovascular autonomic nervous function in aluminum electrolytic workers.International Journal of Immunopathology and pharmacology.2002,15(2):35-
    41 He Shuchang,Niu Qiao and Chen Yilan.Subclinical neurophysiological and autonomic nervous function.Effects of manganese in welding workers.International Journal of Immunopathology and pharmacology 2002 15(2):23-
    42.何淑嫦,牛侨,王生等.电焊作业工人心血管系统自主神经功能的改变.环境与职业医
    学,2002,19(6):371-373
    
    43 王子栋,徐有恒主编.植物性神经系统生理学-基础与临床,科学出版社,1994:379
    44.Ewing DJ,Clarke BF.Diagnosis and management of diabetic autonomic neuropathy.Br Med J,1982,285:916.
    45 Igor Burstyn,Hans Kromhout,Timo Partanen,et al.Polycyclic Aromatic Hydrocarbons and Fatal Ischemic Heart Disease.Epidemiology.2005,16(6):744-750
    46.Eccles CU.EEG correlates of neurotoxicity.Neurotoxicol Teratol,1988,10(5):423-428
    47.Kovala T,Matikainen E,Mannelin T,et al.Effects of low level exposure to lead on neurophysiological functions among lead battery workers.Occup Environ Med,1997,54(7):487-493
    48.Niu Q,He SC,Li Hy,et al.A comprehensive neurobehavioral and neurophysiological study for low level lead-exposed workers.G Ital Med Lay Erg,2000,22(4):299-304
    49.黄如训主编,临床神经病学,人民卫生出版社,北京,1996,50
    50.Majchrzak R,Sroczynski J,Chelmecka E.Evaluation of the nervous system in workers in the furnace and coal divisions of the coke-producing plants.Med Pr,1990,41:108-113.
    51.Singer R.Early recognition of toxicity by assessing nervous system function.Biomed Environ Sci.1988;1(4):356-62.
    52.Chen ZQ,Chan QI,Par CC,et al.Peripheral nerve conduction velocity in workers occupational exposed to lead.Scand J Work Environ Health,1985,11 Suppl 4:26-28
    53.Araki S,Yokoyama K,Murata K.Assessment of the effects of occupational factors on all faster and slower large myelinated nerve fibers:a study of the distribution of nerve conduction velocity.Environ Res,1993,62(2):325-332
    54.Reinhardt F,Drexler H,Bickel A.Electrophysiological investigation of central,peripheral and autonomic nerve function in workers with long-term low-level exposure to carbon disulphide in the viscose industry.Int Arch Occup Environ Health,1997,70(4):249-256
    55.Singer R,Valciukas JA,Rosenman KD.Peripheral neurotoxicity in workers exposed to inorganic mercury compounds.Arch Environ Health,1987,42(4):181-184
    56.Mitran E,Callender T,Orha B,et al.Neurotoxicity associated with occupational exposure to acetone,methyl ethyl ketone,and cyclohexanone.Environ Res,1997,73(1-2):181-188
    57.Triebig G,Bestler W,Baumeister P,et al.Neurotoxicity of workplace substances.Ⅳ.Determination of motor and sensory nerve conduction velocity in persons exposed to solvent mixtures.Int Arch Occup Environ Health,1983,52(2):139-150
    58.Araki S,Murata K.Determination of evoked potentials in occupational and environmental medicine:a review.Environ Res.1993;63(1):133-47
    59.CArezzo JC,Simson R,Brennan NE.Evoked potentials in the assessment of neurotoxicity in humans.Neurobehav Toxicol Teratol,1985,7(4):299-304
    60.Discalzi G,Fabbro D,Meliga F,et al.Effects of occupational exposure to mercury and lead on brainstem auditory evoked potentials.Int J Psychophysiol,1993,14(1):21-25
    61.Chang YC,Yeh CY,Wang JD.Subclinical neurotoxicity of mercury vapor related by a multimodality evoked potential study of chloralkali workers.Am J Ind Med,1995,27(2):271-279
    62.Barret L,Arsac P,Vincent M,et al.Evoked trigeminal nerve potential in chronic trichloroethylene intoxication.J Toxicol Clin Toxicol,1982,19(4):419-423
    63.Hayashi S,Watanabe J,Nakachi K,Kawajiri K.Genetic linkage of lung cancer-associated MspI polymorphisms with amino acid replacement in the heine binding region of the human cytochrome P450IA1 gene.J Biochem(Tokyo).1991;110(3):407-11.
    64.Cascorbi I,Brockmoller J,Roots I.A C4887A polymorphism in exon 7 of human CYP1A1:population frequency,mutation linkages,and impact on lung cancer susceptibility.Cancer Res.1996 Nov 1;56(21):4965-9.
    65.Kawajiri K,Watanabe J,Gotoh O,et al.Structure and drug inducibility of the human cytochrome P-450c gene.Eur J Biochem 1986;159:219-25.
    66.Masson LF,Sharp L,Cotton SC,Little J.Cytochrome P-450 1A1 gene polymorphisms and risk of breast cancer:a HuGE review.Am J Epidemiol 2005;161:901-15.
    67.常福厚 扈廷茂.蒙族和汉族人群CYP1A1基因MspI位点的多态性.中华医学遗传学杂志,2006,23(3):333-334.
    68.沈靖,王润田,王朝曦,等.中国南方汉族人群三种代谢酶基因多态性的分布特征.中华医学遗传学杂志,2002,19(4):302-306.
    69.胡毅玲,张桥.细胞色素P4501A1基因多态性与肺癌遗传易感性的研究.中华医学遗传学杂志,1999,16(1):26-28.
    70.Crofts,F.,Taioli,E.,Trachman,J.,Cosma,G.N.,Currie,D.,Toniolo,P.and Garte,S.J.Functional significance of different human CYP1A1 genotypes.Carcinogenesis,1994,15,2961-2963.
    71..Masson LF,Sharp L,Cotton SC,Little J.Cytochrome P-450 1A1 gene polymorphisms and risk of breast cancer:a HuGE review.Am J Epidemiol 2005;161:901-15
    72.Kiyohara,C.,Hirohata,T.and Inutsuka,S.The relationship between aryl hydrocarbon hydroxylase and polymorphisms of the CYP1A1 gene.Jpn.J.Cancer Res.,1996,87,18-24.
    73.Cosma,G.,Crofts,F,Taioli,E.,Toniolo,P.and Garte,S.Relationship between genotype and function of the human CYP1A1 gene.J.Toxicol.Environ.Health,1993,40,309-316.
    74..Kiyohara,C.,Nakanishi,Y.,Inutsuka,S.,Takayama,K.,Hara,N.,Motohiro,A.,Tanaka,K,Kono,S.and Hirohata,T.The relationship between CYP1A1 aryl hydrocarbon hydroxylase activity and lung cancer in a Japanese population.Pharmacogenetics,1998,8,315-323.
    75.Cosma,G.,Crofts,F.,Taioli,E.,Toniolo,P.and Garte,S.Relationship between genotype and function of the human CYP1A1 gene.J.Toxicol.Environ.Health,1993,40,309-316
    76.Wu,M.T.,Huang,S.L.,Ho,C.K.,Yeh,Y.F.and Christiani,D.C.Cytochrome P450 1A1 MspI polymorphism and urinary 1-hydroxypyrene concentrations in coke-oven workers.Cancer Epidemiol.Biomarkers Prey.1998,7,823-829
    77.冷曙光,郑玉新,黄传峰等.微粒体环氧化物水化酶基因多态性对焦炉工尿中1-羟基芘水平的影响.中华劳动卫生职业病杂志,2004,22(4):245-249.
    78.Pan,G.,Hanaoka,T.,Yamano,Y.,Hara,K.,Ichiba,M.,Wang,Y.,Zhang,J.,Feng,Y.,Shujuan,Z.,Guan,D.,Gao,G.,Liu,N.and Takahashi,K.A study of multiple biomarkers in coke oven workers-a cross-sectional study in China.Carcinogenesis,1998,19,1963-1968
    79.Nakachi K,Hayashi SI,Kawajiri K,et al.Association of cigarette smoking and CYP1A1polymorphisms with adenocarcinoma of the lung by grades of differentiation.Carcinogenesis,1995.16:2209—2213.
    80 ROjas M,Cascorbil,Alexandrov K,et al.Modulation of benzo[a]pyrene diolepoxide-DNA adduct levels in human white blood cels by CYP1A1,GSTM1 and GSTT1polymorphism.Carcinogenesis,2000,21(1):35-41.
    81.Yun CH,Park HJ,Kim SJ,Kim HK.Identification of cytochrome P450 1A1 in human brain.Biochem Biophys Res Commun.1998;243(3):808-10
    82 Choudhary D,Jansson I,Stoilov I,et al.Expression patterns of mouse and human CYP orthologs(families 1-4)during development and in different adult tissues.Arch Biochem Biophys.2005;436(1):50-61
    83 Zhang SH,Li Q,Yao SL,Zeng BX.Subcellular expression of UGT1A6 and CYP1A1responsible for propofol metabolism in human brain.Acta Pharmacol Sin.2001;22(11):1013-7
    84.孙兮文,谢素珍,竺越,等.利用fMRI研究衰老对听觉数字工作记忆的影响.中国医学计算机成像杂志,2005,11(2)80-83
    85 Chinta SJ,Kommaddi RP,Turman CM,Strobel HW,Ravindranath V.Constitutive expression and localization of cytochrome P-450 1A1 in rat and human brain:presence of a splice variant form in human brain.J Neurochem 2005;93(3):724-36.
    86.涂白杰,陈胜,肖成峰,等.B[a]P对小鼠神经毒性的光镜、电镜及行为学研究.工业卫生与职业病,2002,28(2):94-98
    87.王芳.苯并[a]芘对神经行为功能的影响及与脂质过氧化关系的研究,山西医科大学硕士论文,2006年.
    88.Tang Y,Donnelly KC,Tiffany-Castiglioni E.Neurotoxicity of polycyclic aromatic hydrocarbons and simple chemical mixtures.J Toxicol Environ Health A,2003,66(10):919-40
    89.涂白杰,陈胜,肖成峰等.B[a]P染毒小鼠神经组织的形态学改变及细胞凋亡.中华劳动卫生与职业病杂志,2002,20(1):296-299
    90.Saunders CR,Shockley DC,Knuckles ME.Behavioral effects induced by acute exposure to benzo(a)pyrene in F-344 rats.Neurotox Res,2001,3(6):557-79
    91.Hood DB,Coffee RG,Farthing W,et al.Modeling B(a)p:carbon black aerosols for inhalation toxicology studies.Toxicologist,1998,42:250
    92..Henri Schroeder,Nathalie Grova,Emmanuel Prodhomme,et al.Chronic administration of benzo(a)pyrene(B[a]P)modulates specific behaviours and expression of N-methyl-d-aspartate (NMDA)receptor genes in mice.Toxicology Letters,2006,164,S1:S25-S26.
    93.张均田,斋藤洋.十二种化学药剂破坏小鼠被动回避性行为—跳台试验和避暗试验的作用的比较观察.药学学报,1986,21(1):12-19
    94.Morris RG,Garrud P,Rawlins JN,O'Keefe J.Place navigation impaired in rats with hippocampal lesions.Nature.1982;297(5868):681-3.
    95.涂白杰,胡雪原,韩令力.苯并[a]芘、铅染毒小鼠神经毒性及脑组织细胞凋亡的研究.中国职业医学,2004,31(5):14-17
    96 Petit PX,Zamzami N,Vayssiere JL,etal.Implication of mitochondria in apoptosis[J].Mol Cell Biochem.1997,174(1-2):185-188.
    97 Macouillard-Poulletierde Gann,Belaud-RotureauMA,Voisin P,et al.Flowcytometric analysis of mitochondial activity in situ:application to acetylcetamide-induced mitochondrial swelling and apotosis[J].Cytometry.1998,33(3):333-339.
    98.Heresco-Levy U.Glutamatergic neurotransmission modulation and the mechanisms of antipsychotic atypicality.Prog Neuropsychopharmacol Biol Psychiatry.2003 Oct;27(7):1113-23.
    99.Hynd MR,Scott HL,Dodd PR.Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease.Neurochem Int.2004 Oct;45(5):583-95.
    100.杨在明;袭著革;杨丹凤;等.气态甲醛吸入染毒对小鼠水迷宫学习成绩及海马神经递质的影响.环境与健康杂志,2006,23(5):402-404
    101.贾怡昌,钟才云,王颖明,等.铝对大鼠海马氨基酸类神经递质含量的影响中华预防医学杂志,2001,35(6):397-400
    102.吕京;张军;张丽丽;崔涛;谢广云;贺锡雯;宫内铅暴露的行为畸胎学毒性及脑海马神绎化学的改蛮。卫生研究,2002,31(6)405-407
    103.Jayasekara S,Sharma RP,Drown DB.Effects of benzo[a]pyrene on steady-state levels of biogenic amines and metabolizing enzymes in mouse brain regions.Ecotoxicol Environ Saf,1992,24(1):1-12
    104.Dasgupta PS,Lahiri T.Alteration of brain catecholamines during growth of benzo(a)pyrene induced murine fibrosarcoma.Neoplasma,1992,39(3):163-5
    105.Harkitis P,Tzimas P,Marselos M,et al.Alterations in Brain Neurotransmitters in B(α)P Exposed Rats:Role of D2 Receptors.Review of Clinical Pharmacology and Pharmacokinetics,International Edition,2004,18(1):117-120
    106.Semba K,Adachi N,Arai T.Facilitation of serotonergic activity and amnesia in rats caused by intravenous anesthetics.Anesthesiology.2005 Mar;102(3):616-23.
    107.Richter-Levin G,Segal M:Serotonin,aging and cognitive functions of the hippocampus.Rev Neurosci,1996,7,103-113.
    108.Al-Zahrani SS,Ho MY,Martinez DN,et al.Effect of destruction of the 5-hydroxytryptaminergic pathways on the acquisition of temporal discrimination and memory for duration in a delayed conditional discrimination task.Psychopharmacology(Berl).1996Jan;123(1):103-10
    109 Simonian NA,Coyle JT.Oxidative stress in neurodegenerative diseases.Ann Rev Pharmacol Toxicol,1996,36:83
    110.Floyd RA.Antioxidants,oxidative stress and degenerative neurological disorders.Proc.Soc.Exp.Biol.Med,1999,222:236-245.
    111.Kline AE,Massucci JL,Ma X,et al.Bromocriptine reduces lipid peroxidation and enhances spatial learning and hippocampal neuron survival in a rodent model of focal brain trauma.J Neurotrauma,2004,21(12):1712-22.
    112.Barry W,Rugao L,Wei X,et al.Intermittent Hypoxia is associated with oxidative stress and spatial learning deficits in the rat.AMJ Res Criti Care Med,2003,1167:1548-1553.
    113.Murata T,Omata N,Fujibayashi Y,et al.Posthypoxic reoxygenation-induced neurotoxicity prevented by free radical scavenger and NMDA/non-NMDA antagonist in tandem as revealed by dynamic changes in glucose metabolism with positron autoradiography.Exp Neurol,2000,164:269-279.
    114.庞莉萍,崔景荣.细胞色素P450 1A1的研究进展.国外医学遗传学分册,2005,,28(2):80-84
    115.冷欣夫,邱星辉.细胞色素P450酶系的结构、功能与应用前景.北京:科学出版社,2001.
    116.Chinta SJ,Kommaddi RP,Turman CM,Strobel HW,Ravindranath V.Constitutive expression and localization of cytochrome P-450 1A1 in rat and human brain:presence of a splice variant form in human brain.J Neurochem.2005;93(3):724-36.
    117.Morse DC,Stein AP,Thomas PE,Lowndes HE.Distribution and induction of cytochrome P450 1A1 and 1A2 in rat brain.Toxicol Appl Pharmacol 1998,152:232-239
    118.Strobel HW,Thompson CM,Antonovic L.Cytochromes P450 in brain:function and significance.Curr Drug Metab 2001(2):199-214
    119.Huang P,Rannug A,Ahlbom E,et al.Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the expression of cytochrome P450 1A1,the aryl hydrocarbon receptor,and aryl hydrocarbon nuclear translocator in rat brain and pituitary.Toxicol Appl Pharmacol 2000,169:159-167
    120.Warner M,Kohler C,Hansson T,et al.Regionaldistribution of cytochrome P-450 in the rat brain:spectral quantitation and contribution of P-450b,e and P-450c,d.J Neurochem,1988,50:1057-1065
    121.Kainu,T.,Gustafsson,J.A.,Pelto-Huikko,M.,.The dioxin receptor and its nuclear translocator(Arnt)in the rat brain.Neuroreport,1995,6,2557-2560.
    122.Jie Wu,Aramandla Ramesh,Tultul Nayyar,Darryl B.Hood.Assessment of metabolites and AhR and CYP1A1 mRNA expression subsequent to prenatal exposure to inhaled benzo(a)pyrene.International Journal of Developmental Neuroscience,2003,21,(6):333-346
    123.Jack D.Kelly,Mike Dutchuk,Naoko Takahashi,et al.Covalent binding of(+)7S-trans-7,8-dihydrobenzo[a]pyrene-7,8-diol to trout DNA:P450 and peroxidation-dependent pathways.Cancer Letters,,1993,74:111-117
    124.Andersson H,Lindqvist E,Westerholm R,et al.Neurotoxic effect of fractioned diesel exhausts following microinjections in rat hippocampus and striatum.Environ Res,1998,76:41-45
    125.涂白杰,程淑群,胡雪原.苯并[a]芘与铅联合神经毒性的细胞学研究.中国公共卫生,200420(10)1203-1204
    126.涂白杰,邬堂春,贺涵贞.苯并[a]芘和高温及其联合作用对大鼠小脑粒细胞存活率及热应激蛋白水平的可能作用.中国工业医学,2005,18(2):73-76
    127.王冰,张冬梅,潘卫庆.CCK-8法检测疟原虫HGXPRT蛋白刺激对淋巴细胞的增殖作用.中国热带医学,2006,6(6):949,957.
    128.Penning TM,Burczynski ME,Hung CF,et al.Dihydrodiol dehydrogenases and polycyclic aromatic hydrocarbon activation:generation of reactive and redox active o-quinones.Chem Res Toxicol 1999.12:1-18
    129 Bolton JL,Trush MA,Penning TM,et al.Role of quinines in toxicology.Chem Res Toxicol,2000,13:135-160
    130 Reem H,Elbek AI,Hesham M,et al.Benzo[a]Pyrene,3-Methylcholanthrene and b-Naphthoflavone Induce Oxidative Stress in Hepatoma Hepa 1c1c7 Cells by an AHR-dependent Pathway.Free Radical Research,2004,38(11):1191-1200
    131 Kim HS,Kwack SJ,Lee BM.Lipid peroxidation,antioxidant enzymes and benzo(a)pyrene-quinones in the blood of rats treated with benzo(a)pyrene.Chem Biol Interact, 2000, 127: 139-150
    
    132.LebelC. Oxigen radicals: common mediators of neurotoxicity. Neurotox Teratol, 1991,13: 341-346
    
    133 Baracca A. Sgarbi G, Solaini G, et al. Rhodam ine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F(0)during ATP synthesis. Biochim BiophysActa, 2003, 1606(1-3): 137-146
    
    134.Scorrano L , Nicolli A , Basso E. Two modes of activation of the permeability transition pore : the role of mitochondria cyclophilin. Mol Cell Biochem , 1997 ,174 :181 -184
    
    135. Green, D.R., Reed, J.C., 1998. Mitochondria and apoptosis.Science 281,1309-1312
    
    136. Chang-Bo Ko, Se-Jin Kim, Channy Park, et al.Benzo(a)pyrene-induced apoptotic death of mouse hepatoma Hepalclc7 cells via activation of intrinsic caspase cascade and mitochondrial dysfunction.Toxicology, 2004,199, (1) ,35-46
    
    137Pravettoni, A., Colciago, A., Negri-Cesi, P., Villa, S., Celotti, F., Ontogenetic development, sexual differentiation, and effects of Aroclor1254 exposure on expression of the arylhydrocarbon receptor and of the arylhydrocarbon receptor nuclear translocator in the rat hypothalamus.Reproductive Toxicology ,2005,20, 521-530.
    
    138. Carissa R. Filbrandt, Zhenhua Wu, Berislav Zlokovic, Lisa Opanashuk and Thomas A.Gasiewicz. Presence and Functional Activity of the Aryl Hydrocarbon Receptor in Isolated Murine Cerebral Vascular Endothelial Cells and Astrocytes.NeuroToxicology, 2004, 25,I(4):605-616
    
    139..Nidhi Kapoor , Aditya B. Pant, Alok Dhawan ,et al.Cytochrome P450 1A isoenzymes in brain cells: Expression and inducibilityin cultured rat brain neuronal and glial cells. Life Sciences , 2006, 79: 2387-2394
    
    140.Anna Ptak, Gabriele Ludewig, Maria Kapiszewska, et al. Induction of cytochromes P450, caspase-3 and DNA damage by PCB3 and its hydroxylated metabolites in porcine ovary.Toxicology Letters, 2006,166, (3): 200-211.
    
    141.Nina E. Landvik, Morgane Gorria, Volker M. Arlt, et al.Effects of nitrated-polycyclic aromatic hydrocarbons and diesel exhaust particle extracts on cell signalling related to apoptosis:Possible implications for their mutagenic and carcinogenic effects.Toxicology, 2007,231, (2-3):159-174.
    
    142.A. Dipple, Reactions of polycyclic aromatic hydrocarbons with DNA, IARC Sci. Publ. 1994,107-129.
    
    143.B. Kaina, DNA damage-triggered apoptosis: critical role of DNA repair, double-strand breaks, cell proliferation and signaling,Biochem. Pharmacol. 2003,66: 1547-1554.
    
    144.Chen JH, Chou FP, Lin HH, Wang CJ.Gaseous nitrogen oxide repressed benzo[a]pyrene-induced human lung fibroblast cell apoptosis via inhibiting JNKl signals. Arch Toxicol. 2005 ;79(12):694-704.
    
    145.Burdick AD, Ivnitski-Steele ID, Lauer FT, Burchiel SW.PYK2 mediates anti-apoptotic AKT signaling in response to benzo[a]pyrene diol epoxide in mammary epithelial cells.Carcinogenesis.2006 Nov;27(11):2331-40.
    
    146.Salas VM, Burchiel SW.Apoptosis in Daudi human B cells in response to benzo[a]pyrene and benzo[a]pyrene-7,8-dihydrodiol.Toxicol Appl Pharmacol. 1998 Aug;151(2):367-76.
    
    147.Anita Solhaug, Steinar vreb, Steen Mollerup, et al.Role of cell signaling in B[a]P-induced apoptosis:characterization of unspecific effects of cell signalinginhibitors and apoptotic effects of B[a]P metabolites. Chemico-Biological Interactions. 2005,151 : 101-119.
    
    148.Jin-Yong Chung, Ji Young Kim, Won Rok Kim, et al.Abundance of aryl hydrocarbon receptor potentiates benzo[a]pyrene-induced apoptosis in Hepalclc7 cells via CYP1A1 activation.Toxicology, In Press, Corrected Proof,Available online 15 March 2007
    
    149. Walther B, Ghersi-Egea JF, Minn A, Siest G. Subcellular distribution of cytochrome P-450 in the brain. Brain Res 1986;375:338-44.
    1.Chefson A,Auclair K.Progress towards the easier use of P450 enzymes.Mol Biosyst.2006;2(10):462-9.
    2.Sasame HA,Ames MM,Nelson SD.Cytochrome P-450 and NADPH cytochrome c reductase in rat brain:formation of catechols and reactive catechol metabolites.Biochem Biophys Res Commun.1977;78(3):919-26.
    3.Bhagwat SV,Boyd MR,Ravindranath V.Rat brain cytochrome P450.Reassessment of monooxygenase activities and cytochrome P450 levels.Drug Metab Dispos.1995;23(6):651-4.
    4.Nabeshima T,Fontenot J,Ho IK.Effects of chronic administration of pentobarbital or morphine on the brain microsomal cytochrome P-450 system.Biochem Pharmacol.1981;30(10):1142-5.
    5.Anandatheerthavarada HK,Ravindranath V.Administration of testosterone alleviates the constitutive sex difference in rat brain cytochrome P-450.Neurosci Lett.1991;125(2):238-40.
    6.Bhamre S,Anandatheerthavarada HK,Shankar SK,Ravindranath V.Microsomal cytochrome P450 in human brain regions.Biochem Pharmacol.1992;44(6):1223-5.
    7.Miksys S,Rao Y,Hoffmann E,et al.Regional and cellular expression of CYP2D6 in human brain:higher levels in alcoholics.J Neurochem 2002;82(6):1376-87.
    8.Siegle I,Fritz P,Eckhardt K,et al.Cellular localization and regional distribution of CYP2D6mRNA and protein expression in human brain.Pharmacogenetics 2001;11:237-45.
    9.Huang P,Rannug A,Ahlbom E,et al.Effect of,3,7,8-tetrachlorodibenzo-p-dioxin on the expression of cytochrome P450 1A1,the aryl hydrocarbon receptor,and the aryl hydrocarbon receptor nuclear translocator in rat brain pituitary.Toxicol Appl Pharmacol 2000;169:159-67.
    10. Morse DC, Stein AP, Thomas PE, Lowndes HE. Distribution and induction of cytochrome P450 1A1 and 1A2 in rat brain.Toxicol Appl Pharmacol 1998;152:232-9.
    11. Volk B, Hettmannsperger U, Papp T, et al. Mapping of phenytoin-inducible cytochrome P450 immunoreactivity in the mouse central nervous system. Neurosci 1991 ;42:215-35.
    12. Miksys S, Rao Y, Sellers EM, et al. Regional and cellular distribution of CYP2D subfamily members in rat brain. Xenobiotica 2000;30:547-64.
    13. Norris PJ, Hardwick JP, Emson PC. Regional distribution of cytochrome P450 2D1 in the rat central nervous system. J Comp Neurol 1996;366:244-58.
    14. Farin FM, Omiecinski CJ. Regiospecific expression of cytochrome P-450s and microsomal expoxide hydrolase in human brain tissue. J Toxicol Environ Health 1993;40:317-35.
    15. Riedl AG, Watts PM, Edwards RJ, et al. Selective localisation of P450 enzymes and NADPHP450 oxidoreductase in rat basal ganglia using anti-peptide antisera. Brain Res 1996;743:324-8.
    16. Schilter B, Omiecinski CJ. Regional distribution and expression modulation of cytochrome P-450 and epoxide hydrolase mRNAs in the rat brain. Mol Pharmacol 1993;44:990-6.
    17. Agundez JA, Gallardo L, Martinez C, et al. Modulation of CYP1A2 enzyme activity by indoleamines: inhibition by serotonin and tryptamine. Pharmacogenetics 1998;8:251-8.
    18. Yun C-H, Park H-J, Kim S-J, Kim H-K. Identification of cytochrome P450 1A1 in human brain. Biochem Biophys Res Commun 1998;243:808-10.
    19. McFadyen MCE, Melvin WT, Murray GI. Regional distribution of individual forms of cytochrome P450 mRNA in normal adult human brain. Biochem Pharmacol 1998;55:825-30.
    20. Murray GI, Taylor MC, McFadyen MC, et al. Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Res 1997;57:3026-31.
    21. Rieder CRM, Parsons RB, Fitch NJS, et al. Human brain cytochrome P450 1B1: immunohistochemical localization in human temporal lobe and induction by dimethylbenz(a)anthracene in astrocytoma cell line (MOG-GCCM).Neurosci Lett 2000;278:177-80.
    22. Rieder CRM, Ramsden DB, Williams AC. Cytochrome P4501B1 mRNA in the human central nervous system. Mol Pathol 1998;51:138-42.
    23. Muskhelishvili L, Thomplson PA, Kusewitt DF, Wang C. Insitu hybridization and immunohistochemical analysis ofcytochrome P450 1B1 expression in human normal tissues. J Histochem Cytochem 2001;49:229-36.
    24. Anandatheerthavarada HK, Shankar SK, Ravindranath V. Rat brain cytochromes P450: catalytic, immunochemical properties and inducibility of multiple forms. Brain Res 1990;536:339-43.
    25. Chinta SJ, Kommaddi RP, Turman CM, et al. Constitutive expression and localization of cytochrome P-450 1A1 in rat and human brain: presence of a splice variant form in human brain. J Neurochem. 2005 ;93(3):724-36.
    26. Rosenbrock H, Hagemeyer CE, Ditter M, et al. Expression and localization of the CYP2B subfamily predominantly in neurones of rat brain. J Neurochem 2001 ;76:332-40.
    27. Bhagwat SV, Boyd MR, Ravindranath V. Multiple forms of cytochrome P450 and associated monooxygenase activities in human brain mitochondria. Biochem Pharmacol 2000;59:573-82.
    28. Sorensen JS, Forbey KC, Tanquay RL, McLeod B.Tissue distribution of cytochrome P450 3A (CYP3A) in brushtail possums (Trichosurus vulpecula) exposed to Eucalyptus terpenes. Comp Biochem Physiol C Toxicol Pharmacol. 2007; [Epub ahead of print]
    29. Gervot L, Rochat B, Gautier JC, et al. Human CYP2B6 expression, inducibility and catalytic activities. Pharmacogenetics 1999;9:295-306.
    30. Miksys SL, Schoedel KA, Mash DC, Tyndale RF. Nicotine metabolizing CYP2B6 enzyme in human brain regions: higher levels in smokers and smoking alcoholics. FASEB J 2001;15:A573.
    31. Huang CB. Immunohistochemical localization of cytochrome P450 enzymes 2C and 4A in the normal rat brain. Clin Med J 1998;111:1007-12.
    32. Luo G, Zeldin DC, Blaisdell JA, et al. Cloning and expression of murine CYP2Cs and their ability to metabolize arachadonic acid. Arch Biochem Biophys 1998;357:45-57.
    33. Riedl AG, Watts PM, Douek DC, et al. Expression and distribution of CYP2C enzymes in rat basal ganglia. Synapse 2000;38:392-402.
    34. Klose TS, Blaisdell JA, Goldstein JA. Gene structure of CYP-2C8 and extrahepatic distribution of the human CYP2Cs. JBiochem Mol Toxicol 1999;13:289-95.
    35. Watts PM, Riedl AG, Douek DC, et al. Co-localization of P450 enzymes in the rat substantia nigra with tyrosine hydroxylase. Neurosci 1998,86:511-9.
    36. Chinta SJ, Pai HV, Ravindranath V. Presence of splice variant forms of cytochrome P4502D1 in rat brain but not in liver. Brain Res Mol Brain Res. 2005 ;135(1-2):81-92.
    37. Iba MM, Storch A, Ghosal A, et al. Constitutive and inducible levels of CYP1A1 and CYP1A2 in rat cerebral cortex and cerebellum.Arch Toxicol. 2003 Oct;77( 10):547-54.
    38. Hansson T, Tindberg N, Ingelman-Sundberg M, Kohler C. Regional distribution of ethanol-inducible cytochrome P450 IIEI in the rat central nervous system. Neuroscience 1990;34:451-63.
    39. Sohda T, Shimizu M, Kamimura S, Okumura M. Immunohistochemical demonstration of ethanol-inducible P450 2E1 in rat brain. Alcohol Alcohol Suppl 1993;1B:69-75.
    40. Tindberg N, Ingelman-Sundberg M. Expression, catalytic activity,and inducibility of cytochrome P450 2E1 (CYP2E1) in the rat central nervous system. J Neurochem 1996;67:2066-73.
    41. Yoo M, Ryu HM, Shin SW, et al. Identification of cytochrome P450 2E1 in rat brain. Biochem BiophysRes Commun 1997;231:254-6.
    42. Upadhya SC, Tirumalai PS, Boyd MR, et al. Cytochrome P4502E (CYP2E) in brain: constitutive expression, induction by ethanol and localization by fluorescence in situ hybridization. Arch Biochem Biophys 2000;373:23-34.
    43. Agundez JA.Cytochrome P450 gene polymorphism and cancer.Curr Drug Metab. 2004 Jun;5(3):211-24.
    44. Brzezinski MR, Boutelet-Bochan H, Person RE, et al. Catalytic activity and quantitation of cytochrome P450 2E1 in prenatal human brain. J Pharmacol Exp Ther 1999;289:1648-53.
    45. Dai D, Bai R, Hodgson E, Rose RL. Cloning, sequencing, heterologous expression, and characterization of murine cytochromeP450 3a25*(Cyp3a25), a testosterone 6a-hydroxylase. JBiochem Mol Toxicol 2001;15:90-9.
    46. Wang PN, Liu HC, Liu TY, et al..Estrogen-metabolizing gene COMT polymorphism synergistic APOE epsilon4 allele increases the risk of Alzheimer disease.Dement Geriatr Cogn Disord. 2005;19(2-3):120-5.
    47. Chuang SS, Helvig C, Taimi M,et al.CYP2Ul, a novel human thymus- and brain-specific cytochrome P450, catalyzes omega- and (omega-1)-hydroxylation of fatty acids.J Biol Chem. 2004;279(8):6305-14.Gellner K, Eiselt R, Hustert E, Arnold H, Koch I, Haberl M, et al. Genomic organization of the human CYP3A locus: identification of a new, inducible CYP3A gene. Pharmacogenetics 2001;11:111-21.
    48. Murray GI, Pritchard S, Melvin WT, Burke MD. Cytochrome P450 CYP3A5 in the human anterior pituitary gland. FEBS Lett 1995;364:79-82.
    49. Kawashima H, Strobel HW. cDNA cloning of three new forms of rat brain cytochrome P450 belonging to the CYP4F subfamily. Biochem Biophys Res Comm 1995;217:1137-44.
    50. Stromstedt M, Warner M, Gustafsson JA. Cytochrome P450s of the 4A subfamily in the brain. J Neurocheml994;63:671-6.
    51. Walther B, Ghersi-Egea JF, Minn A, Siest G. Subcellular distribution of cytochrome P-450 in the brain. Brain Res 1986;375:338-44.
    52. Bhagwat SV, Leelavathi BC, Shankar SK, et al. Cytochrome P450 and associated monooxygenase activities in the rat and human spinal cord: induction, immunological characterization and immunocytochemical localization.Neuroscience 1995;68:593-601.
    53. Iscan M, Reuhl K, Weiss R, Maines MD. Regional and subcellular distribution of cytochrome P-450-dependent drug metabolism in monkey brain: the olfactory bulb and the mitochondrial fraction have high levels of activity. Biochem Biophys Res Comm 1990;169:858-63.
    54. Walther B, Ghersi-Egea JF, Jayyosi Z, et al. Ethoxyresorufin O-deethylase activity in rat brain subcellular fraction. Neurosci Lett 1987;76:58-62.
    55. Vasiliou V, Ziegler TL, Bludeau P,_et al. CYP2E1 and catalase influence ethanol sensitivity in the central nervous system.Pharmacogenet Genomics. 2006; 16(1):51-8.
    56. Harada N, Honda S. Analysis of spatiotemporal regulation of aromatase in the brain using transgenic mice.J Steroid Biochem Mol Biol. 2005;95(1-5):49-55.
    57. Boopathi E, Anandatheerthavarada HK, Bhagwat SV, et al. Accumulation of mitochondrial P450MT2, NH2-terminal truncated cytochrome P4501A1 in rat brain during chronic treatment with β-naphthoflavone. J Biol Chemistry 2000;275:34415-23.
    58. Kawashima H, Sequeira DJ, Nelson DR, Strobel HW. Genomic cloning and protein expression of a novel rat brain cytochrome P-450 CYP2D18 catalyzing imipramine N-demethylation. J Biol Chem 1996,271:28176-89.
    59. Ghersi-Egea JF, Walther B, Perrin R, et al. Inducibility of rat brain drug-metabolizing enzymes. Eur J Drug Metab Pharmacokinet 1987; 12:263-5.
    60. Schilter B, Anderson MR, Acharya C, Omiecinski CJ. Activation of cytochrome P450 gene expression in the rat brain by phenobarbital-like inducers. J Pharmacol Exp Ther 2000;294:916-22.
    61. Liu L, Bridges RJ, Eyer CL. Effect of cytochrome P450 1A induction on oxidative damage in rat brain. Mol Cell Biochem 2001 ;223:89-94.
    62. Kempermann G, Knoth R, Gebicke-Haerter PJ, et al. Cytochrome P450 in rat astrocytes in vivo and in vitro: intracellular localization and induction by phenytoin. J Neurosci Res 1994;39:576-88.
    63. Rosenbrock H, Hagemeyer CE, Singec I, et al. Testosterone metabolism in rat brain is differentially enhanced by phentoin-inducible cytochrome P450 isoforms. J Neuroendocrinol 1999; 11:597-604.
    64. Baum LO, Strobel HW. Regulation of expression of cytochrome P-450 2D mRNA in rat brain with steroid hormones. Brain Res 1997;765:67-73.
    65. Anandatheerthavarada HK, Shankar SK, Bhamre S, et al. Induction of brain cytochrome P-450IIEI by chronic ethanol treatment. Brain Res 1993;601-.279-85.
    66. Montoliu C, Sancho-Tello M, Azorin I, et al. Ethanol increases cytochrome P4502E1 and induces oxidative stress in astrocytes. J Neurochem 1995;65:2561-70.
    67. Montoliu C, Valles S, Renau-Piqueras J, Guerri C. Ethanolinduced oxygen radical formation and lipid peroxidation in rat brain: effect of chronic alcohol consumption. J Neurochem 1994;63:1855-62.
    68. Warner M, Gustafsson JA. Effect of ethanol on cytochrome P450 in the rat brain. Proc Natl Acad Sci U S A 1994;91:1019-23.
    69. Schoedel KA, Sellers EM, Tyndale RF. Induction of CYP2B1/2 and nicotine metabolism by ethanol in rat liver but not rat brain. Biochem Pharmacol 2001 ;62:1025-36.
    70. Miksys S, Hoffmann E, Tyndale RF. Regional and cellular induction of nicotine-metabolizing CYP2B1 in rat brain by chronic nicotine treatment. Biochem Pharmacol 2000;59:1501-11.
    71. Anandatheervarada HK, Williams JF, Wecker L. Differential effect of chronic nicotine administration on brain cytochrome P4501A1/2 and P4502E1. Biochem Biophys Res Commun 1993; 194:312-8.
    72 Hedlund E,Gustafsson J-A, Warner M. Cytochrome P450 in the Brain; A Review.Current Drug Metabolism, 2001, 2, 245-263
    73. Thompson CM, Kawashima H, Strobel HW. Isolation of partially purified P450 2D18 and characterization of activity toward the tricyclic antidepressants imipramine and desipramine. Arch Biochem Biophys 1998;359:115-21.
    74. Anandatheerthavarada HK, Williams JF, Wecker L. The chronic administration of nicotine induces cytochrome P450 in rat brain. J Neurochem 1993;60:1941-4.
    75. Dhawan A, Parmar D, Dayal M, Seth PK. Cytochrome P450 (P450) isoenzyme specific dealkylation of alkoxyresorufins in rat brain microsomes. Mol Cell Biochem 1999;200:169-76.
    76. Parmar D, Dhawan A, Seth PK. Evidence for O-dealkylation of 7-pentoxyresorufin by cytochrome P450 2B1/2B2 isoenzymes in brain. Mol Cell Biochem 1998; 189:201-5.
    77. Tyndale RF, Li Y, Li N-Y, et al. Characterization of cytochrome P-450 2D1 activity in rat brain;high-affinity kinetics for dextromethorphan. Drug Metab Dispos1999;27:924-30.
    78. Jolivalt C, Minn A, Vincent-Viry M, et al. Dextromethorphan O-demethylase activity in rat brain microsomes. Neurosci Lett 1995;187:65-8.
    79. Voirol P, Jonzier-Perey M, Porchet F, et al. Cytochrome P-450 activities in human and rat brain microsomes. Brain Res 2000;855:235-43.
    80. Coleman T, Spellman EF, Rostami-Hodjegan A, et al. The 1'-hydroxylation of Rac-bufuralol by rat brain microsomes. Drug Metab Dispos 2000;28:1094-9.
    81. Narimatsu S, Yamamoto S, Koitabashi T, et al. Biphasic kinetics of imipramine N-oxidation in rat brain microsomes. Biol Pharm Bull 1999;22:253-6.
    82. Hansson T, vonBahr C, Marklund M, et al. Different regiospecificity in the hydroxylation of the antidepressant desmethylimipramine between rat brain and liver. Pharmacol Toxicol 1992;71:416-9.
    83. Crooks PA, Li M, Dwoskin LP. Metabolites of nicotine in rat brain after peripheral nicotine administration. Drug Metab Dispos 1997;25:47-54.
    84. Jacob P 3rd, Ulgen M, Gorrod JW. Metabolism of (-)-(S)-nicotine by guinea pig and rat brain: identification of cotinine. Eur J Drug Metab Pharmacokinet 1997;22:391-4.
    85. Laurenzana EM, Owens SM. Brain microsomal metabolism of phencyclidine in male and female rats. Brain Res 1997;756:256-65.
    86. Chen AR, Irvine RJ, Bochner F, Somogyi AA. Morphine formation from codeine in rat brain: a possible mechanism of codeine analgesia. Life Sciences 1990;46:1067-74.
    87. Lin LY, Kumagai Y, Cho AK. Enzymatic and chemical demethylenation of (methylenedioxy)amphetamine and (methylenedioxy)methamphetamine by rat brain microsomes. Chem Res Toxicol 1992;5:401-6.
    88. Forsyth CS, Chambers JE. Activation and degradation of the phosphorothionate insecticides parathion and EPN by rat brain. Biochem Pharmacol 1989,38:1597-603.
    89. Hecht SS. Biochemistry, biology, and carcinogenicity of tobaccospecific N-nitrosamines. Chem Res Toxicol 1998; 11:559-603.
    90. Pellinen P, Kulmala L, Konttila J, et al. Kinetic characteristics of norcocaine N-hydroxylation in mouse and human liver. Arch Toxicol 2000;74:511-20.
    91. Poet TS, Brendel K, Halpert JR. Inactivation of cytohromes P450 2B protects against cocaine-mediated toxicity. Toxicol Appl Pharmacol 1994; 126:26-32.
    92. Albores A, Ortega-Mantilla G, Sierra-Santoyo A, et al. Cytochrome P450 2B (CYP2B)-mediated activation of methyl-parathion in rat brain extracts. Toxicol Lett 2001;124:l-10.
    93. Niznik HB, Tyndale RF, Sallee FR, et al. The dopamine transporter and cytochrome P450IID1 (debrisoquine 4-hydroxylase) in brain: resolution and identification of two distinct [3H]GBR-12935 binding proteins. Arch Biochem Biophys 1990;276:424-32.
    94. Hiroi T, Imaoka S, Funae Y. Dopamine formation from tyramine by CYP2D6. Biochem Biophys Res Commun 1998;249:838-43.
    95. Martinez C, Agundez JAG, Gervasini G, et al. Tryptamine: a possible endogenous substrate for CYP2D6. Pharmacogenetics 1997;7:85-93.
    96. Thompson CM, Capdevila JH, Strobel HW. Recombinant cytochrome P450 2D18 metabolism of dopamine and arachadonic acid. J Pharmacol Exper Ther 2000;294:1120-30. 97.Nissbrandt H, Bergquist F, Jonason J, Engberg F. Inhibition of cytochrome P450 2E1 induces an increase in extracellular dopamine in rat substanti nigra: a new metabolic pathway?Synapse 2001;40:294-301.
    98. Boustead C, Taber H, Idle JR, Cholerton S. CYP2D6 genotype and smoking behaviour in cigarette smokers. Pharmacogenetics 1997;7:411-4.
    99. Saarikoski ST, Sata F, Husgafvel-Pursiainen K, et al. CYP2D6 ultrarapid metabolizer genotype as a potential modifier of smoking behaviour. Pharmacogenetics 2000; 10:5-10.
    100. Akhmedova SN, Pushnova EA, et al. Frequency of a specific cytochrome P4502D6B (CYP2D6B) mutant allele in clinically differentiated groups of patients with Parkinson disease. Biochem Mol Med 1995;54:88-90.
    101. Kurth MC, Kurth JH. Variant cytochrome P450 CYP2D6 alleleic frequencies in Parkinson's disease. Am J Med Genet 1993; 48:166-8.
    102. Tsuneoka Y, Matsuo Y, Iwahashi K, et al. A novel cytochrome P-450IID6 mutant gene associated with Parkinson's disease. J Biochem 1993;114:263-6.
    103. Yoshino H, Hattori Y, Imai H, et al. Sparteine oxidation by hepatic cytochrome P-450 in patients with Parkinson's disease [In Japanese]. Rinsho Shinkeigaku 1993;33:261-5.
    104. Gervasini G, Martinez C, Agundez AAG, Garcia-Gamito FJ,Benitez J. Inhibition of cytochrome P450 2C9 activity in vitro by 5-hydroxytryptamine and adrenaline. Pharmacogenetics,2001 ;11:29-37.
    105.Ellis EF, Police RJ, Yancey L, et al. Dilation of cerebral arterioles by cytochrome P-450 metabolites of arachidonic acid.Am J Physiol. 1990 ;259(4 Pt 2):H1171-7.
    106. Daikh BE, Lasker JM, Raucy JL, Koop DR. Regio- and stereoselective epoxidation of arachidonic acid aby human cytochromes P450 2C8 and 2C9. J Pharmacol Exp Ther 1994;271:1427-33.
    107. Qu W, Bradbury JA, Tsao C, et al. Cytochrome P450 CYP2J9, a new mouse arachidonic acid -1 hydroxylase predominantly expressed in brain. J Biol Chem 2001 ;276:25467-79.
    108. Rifkind AB, Lee C, Chang TK, Waxman DJ. Arachidonic acid metabolism by human cytochrome P450s 2C8, 2C9, 2E1, and 1A2: regioselective oxygenation and evidence for a role for CYP2C enzymes in arachidonic acid epoxygenation in human liver microsomes. Arch Biochem Biophys 1995;320:380-9.
    109. Simpson AE. The cytochrome P450 4 (CYP4) family. Gen Pharmac 1997;28:351-9.
    110. Zeldin DC, DuBois RN, Falck JR, Capdevila JH. Molecular Miksys and Tyndale cloning, expression and characterization of an endogenous human cytochrome P450 arachidonic acid epoxygenase isoform. Arch Biochem Biophys 1995;322:76-86.
    111. Zeldin DC, Foley J, Ma J, et al. CYP2J subfamily P450s in the lung: expression, localization, and potential functional significance. Mol Pharmacol 1996;50:1111-7.
    112. Zeldin DC, Plitman JD, Kobayashi J, et al. The rabbit pulmonary cytochrome P450 arachidonic acid metabolic pathway; characterization and significance.J Clin Invest 1995;95:2150-60.
    113. Capdevila JH, Zeldin D, Makita K, et al. Cytochrome P450 and the metabolism of arachidonic acid and oxygenated eicosanoids. In: Ortiz de Montellano PR, editor. Cytochrome P450: structure, mechanism, biochemistry. New York:Plenum Press; 1995. p. 443-71.
    114. Alkayed NJ, Birks EK, Hudetz AG, et al. Inhibition of brain P-450 arachidonic acid epoxygenase decreases baseline cerebral blood flow. Am J Physiol 1996;271:1541-6.
    115. Alkayed NJ, Narayanan J, Gebremedhin D, et al. Molecular characterization of an arachidonic acid epoxygenase in rat brain astrocytes. Stroke 1996;27:971-9.
    116. Gebremedhin D, Lange AR, Lowry TF, et al. Production of 20-HETE and its role in autoregulation of cerebral blood flow. Circ Res 2000;87:60-5.
    117. Harder DR, Roman RJ, Gebremedhin D, et al. A common pathway for regulation of nutritive blood flow to the brain: arterial muscle membrane potential and cytochrome P450 metabolites. Acta Physiol Scand 1998;164:527-32.
    118.. Junier MP, Dray F, Blair I, et al. Epoxygenase products of arachidonic acid are endogenous constituents of the hypothalamus involved in D2 receptormediated, dopamine-induced release of somatostatin. Endocrinology 1990; 126:1534-40.
    119. Junier MP, Israel JM, Dray F, Vincent JD. Contribution of arachidonate metabolites to basal and thyrotropin releasinghormone-stimulated release of prolactin from purified lactotrophs in primary culture. Life Sci 1990;47:1829-36.
    120. Gebremedhin D, Lange AR, Narayanan J, et al. Cat cerebral arterial smooth muscle cells express cytochrome P450 4A2 enzyme and produce the vasoconstrictor 20-HETE which enhances L-type Ca2+ current. J Physiol 1998;507:771-81.
    121. Stoffel-Wagner B. Neurosteroid metabolism in the human brain. Eur J Endocrinol 2001;145:669-79.
    122. Tsutsui K, Ukena K, Takase M, et al. Neurosteroid biosynthesis in vertebrate brains. Comp Biochem Physiol C 1999;124:121-9.
    123. Warner M, Gustafsson J-A. Cytochrome P450 in the brain: neuroendocrine functions. Front Neuroendocrinol 1995; 16:224-36.
    124. Kimoto T, Tsurugizawa T, Ohta Y, et al. Neurosteroid synthesis by cytochrome p450-containing systems localized in the rat brain hippocampal neurons:N-methyl-D-aspartate and calcium-dependent synthesis. Endocrinology 2001;142:3578-89.
    125. Zwain IH, Yen SS. Dehydroepiandrosterone: biosynthesis and metabolism in the brain. Endocrinology 1999;140:880-7.
    126. Zwain IH, Yen SS. Neurosteroidogenesis in astrocytes, oligodendrocytes and neurons of cerebral cortex of rat brain. Endocrinolgy 1999;140:3843-52.
    127. Badawi AF, Cavalieri EL, Rogan EG. Role of human cytochrome P450 1A1, 1A2, 1B1 and 3A4 in the 2-, 4-, and 16alphahydroxylation of 17beta-estradiol. Metabolism 2001;50:1001-3.
    128. Doostzadeh J, Cotillon AC, Morfin R. Dehydroepiandrosterone 7alpha- and 7beta-hydroxylation in mouse brain micrsomes.Effects of cytochrome P450 inhibitors and structure-specific inhibition by steroid hormones. J Neuroendocrinol 1997;9:923-8.
    129. Doostzadeh J, Morfin R. Effects of cytochrome P450 inhibitors and of steroid hormones on the formation of 7-hydroxylated metablites of pregnenolone in mouse brain microsomes. J Endocrinol 1997; 155:343-50.
    130. Doostzadeh J, Urban P, Pompon D, Morfin R. Pregnenolone-7 beta-hydroxylating activities of yeast expressed mouse cytochrome P450-1A1 and mouse-tissue microsomes. Eur J Biochem 1996;242:641-7.
    131. Hiroi T, Kishimoto W, Chow T, et al. Progesterone oxidation by cytochrome P450 2D isoforms in the brain. Endocrinology 2001;142:3901-8.
    132. Wang H, Napoli KL, Strobel HW. Cytochrome P450 3A9 catalyzes the metabolism of progesterone and other steroid hormones.Mol Cell Biochem 2000;213:127-35.
    133. Bean R, Seckl JR, Lathe R, Martin C. Ontogeny of the neurosteroid enzyme Cyp 7b in the mouse. Mol Cell Endocrinol 2001; 174:137-44.
    134. Rose K, Allan A, Gauldie S, et al. Neurosteroid hydroxylase CYP7B vivd reporter activity in dentate gyrus of gene-targeted mice and abolition of a widespread pathway of steroid and oxysterol hydroxylation. J Biol Chem 2001;276:23937-44.
    135. Bhagwat SV, Leelavathi BC, Shankar SK, et al. Cytochrome P450 and associated monooxygenase activities in the rat and human spinal cord: induction, immunological characterization and immunocytochemical localization.Neuroscience. 1995 Sep;68(2):593-601.
    136.1m JY, Paik SG, Han PL. Cadmium-induced astroglial death proceeds via glutathione depletion.J Neurosci Res. 2006 Feb 1;83(2):301-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700