尿毒清颗粒对慢性肾功能衰竭药理作用的分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
慢性肾功能衰竭(Chronic Renal Failure, CRF)见于各种慢性肾脏疾病的晚期,为各种原发和继发性慢性肾脏疾病持续发展的共同转归。发病率大约万分之一,死亡率高达67.6%,占人群死亡率的10%,只有20%的患者在排除可逆因素后获得缓解。当患者进入慢性肾功能衰竭终末期(尿毒症)阶段后,治疗棘手,全身各系统都会受损,严重危害人类的健康和生命。西药治疗常采用血管紧张素转换酶抑制剂(ACEIs)和血管紧张素受体拮抗剂(ARBs),但这两种药物只能达到缓解慢性肾功能衰竭的作用,而无法阻断慢性肾功能衰竭的进程;随着技术的发展出现了透析和移植两个肾脏替代治疗方式,但是价格昂贵,供肾不足等因素又限制了其应用。因此,探求中医疗法是一条重要途径。尿毒清颗粒(Uremic Clearance Granule)主要用于慢性肾功能衰竭氮质血症期和尿毒症早期、中医辨证属脾虚湿浊症和脾虚血瘀症者的治疗,已有十余年的临床应用历史,但大多数研究属于临床疗效观察,对于作用机理方面的研究较少,动物实验研究尚缺乏深度,为了使其得到广泛的推广应用,利用现代科学技术手段与多学科方法研究该方的有效成分和作用机理就成了当务之急。
     本论文以腺嘌呤饲喂法建立的慢性肾功能衰竭Wistar大鼠模型为实验材料,采用分子生物学的方法从DNA甲基化修饰、关键基因的mRNA及蛋白表达,以及疾病相关代谢产物三个层次系统地研究了尿毒清颗粒对慢性肾功能衰竭治疗的分子机制,研究结果为尿毒清颗粒在临床治疗上的应用提供了理论依据。主要结果如下:
     1.通过本研究发现尿毒清颗粒可以在mRNA和蛋白质水平减少转化生长因子-β1 (TGF-β1)的表达。TGF-β1是引起肾小球硬化的主要介质,以其为靶向的治疗已成为近年来的研究热点。我们用SYBR Green实时荧光定量PCR技术检测了正常对照组大鼠、病理对照组大鼠和经尿毒清治疗后大鼠肾皮质TGF-β1及其下游基因mRNA的表达。为了确证TGF-β1 mRNA在本实验中表达升高是否引起了TGF-β1蛋白表达的增多,我们用免疫组织化学技术检测了大鼠肾皮质TGF-β1蛋白的表达。为了进一步研究各实验组TGF-β1表达变化出现的原因,我们用甲基化特异性PCR技术检测单基因TGF-β1启动子甲基化状态的变化,发现慢性肾功能衰竭大鼠TGF-β1启动子有些位点出现了去甲基化现象,而尿毒清颗粒治疗组该位点甲基化状态得到恢复。结果表明尿毒清颗粒对慢性肾功能衰竭的治疗是通过下调以TGF-β1为中心的多基因表达来进行的。
     2.生化试验研究发现尿毒清颗粒可以降低慢性肾功能衰竭大鼠血清中同型半胱氨酸浓度,减轻高同型半胱氨酸血症。慢性肾功能衰竭患者血清同型半胱氨酸水平升高发生率高达82.5%,其水平为正常人的2-3倍。高同型半胱氨酸可能通过损害血管内皮,刺激血管平滑肌增殖等原因在慢性肾功能衰竭发病机制中起重要作用。我们用高效液相色谱检测了正常组对照大鼠、病理对照组大鼠和经尿毒清治疗后大鼠血清中同型半胱氨酸的含量,发现与病理对照组相比,经尿毒清治疗的大鼠血清同型半胱氨酸浓度显著下降。此结果揭示了尿毒清颗粒可以通过提高对同型半胱氨酸的清除达到恢复慢性肾功能衰竭大鼠肾功能的作用。
     3.DNA甲基化研究发现尿毒清颗粒可以使慢性肾功能衰竭大鼠基因组DNA从低甲基化状态恢复到正常水平。同型半胱氨酸的积累会导致体内DNA甲基化异常,本实验对各组大鼠肾皮质基因组DNA甲基化状态进行甲基化敏感扩增多态性分析,结果发现慢性肾功能衰竭大鼠肾皮质基因组DNA出现了低甲基化现象,尿毒清颗粒治疗可以使其恢复为正常水平。结果揭示尿毒清颗粒可以通过表观遗传机制调节基因组DNA的甲基化状态来对慢性肾功能衰竭进行治疗。
     上述研究结果表明:尿毒清颗粒能明显改善腺嘿吟诱导的慢性肾功能衰竭大鼠的肾功能,在mRNA和蛋白水平下调TGF-β1的表达,并通过对同型半胱氨酸的清除,缓解高同型半胱氦酸血症,改变慢性肾功能衰竭大鼠的去甲基化状态关闭TGF-β1基因的表达,通过多成分协作达到治疗作用。
Chronic Renal Failure (CRF) is a clinical syndrome associated with fluid, electrolyte, and hormone imbalances and metabolic abnormalities, which is a progressive loss of renal function over a period of months or years. There is no specific treatment unequivocally shown to slow the worsening of chronic kidney disease. The number of patients with end-stage renal disease (ESRD) has increased rapidly over the last three decades, and prior to the advent of renal replacement therapy (dialysis and transplant), some treatments including dietary control, drug therapy with a spherical carbonaceous absorbent, and anti-hypertensive drugs including ACEIs (angiotensin converting enzyme inhibitors) and ARBs (angiotensin receptor blockades) have shown some inhibition of the progression of CRF. These treatments are still not effective enough to curtail this increase. Therefore, the development of new effective drugs preventing the progression of CRF is still urgently required. In the present article, we show the first indication that Uremic Clearance Granule could be such a candidate.
     Uremic Clearance Granule (Niaoduqing Keli in Chinese) (GUANGZHOU CONSUN PHARMACEUTICAL CO., LTD, CHINA) is one of traditional Chinese herbal medicine having been used for treatment of CRF in clinic for many years. To explore the mechanism relates to therapeutic effects of Uremic Clearance Granules on CRF and provide the academic evidences for clinical application, we had done some researches at DNA methylation modification, key gene mRNA and protein expression and disease-related metabolic products three levels using the Wister rats as the CRF model. The major results are shown as following:
     Firstly, we examined the mRNA expression of the TGF-β1 and its downstream genes by SYBR Green Real-time fluorescent quantitative PCR, the protein expression of the TGF-β1 gene by Immunohistochemistry. A high level of TGF-(31 protein and mRNAs expression were identified in pathological control group while the level of TGF-β1 protein and mRNAs expression decreased comparatively in Uremic Clearance Granule-treatment group. The methylation status of TGF-β1 promoter in three groups was analyzed by methylation-specific PCR. There were three loci demethylated in TGF-β1 promoter of pathological rats, they were remathylated in Uremic Clearance Granule treatment group. The results showed that the treatment mechanism of Uremic Clearance Granule on CRF was to reduce expression of multiple genes which take the gene TGF-β1 as the center.
     Secondly, Uremic Clearance Granule treatment could reduce the Homocysteine in rats blood, relieve Hyperhomocysteinemia (hHcys). The prevalence of hHcys in CRF patients is 82.5%, which is 2 to 3 times of normal level. Clinical and experimental studies suggested that hHomocysteine is also a risk factor for CRF. The Homocysteine (Hey) concentration in three different groups was determined by High Performance Liquid Chromatography. The data showed that the homocysteine concentration in Uremic Clearance Granule treatmeat rats reduced obviously compared to that in pathological control rats. The results indicate that Uremic Clearance Granule restore the renal function by homoeysteine clearing.
     Thirdlv, the data showed that Uremic Clearance Granule restored genomic DNA methvlation to normal level. The accumulation of Homoevsteine in vivo leads to abnormal DNA methylation. Compared with normal control rats, we found the renal genomic DNA hypomethylation in pathological rats by MSAP analysis. Uremic Clearance Granule therapy restored it to normal level. The results reveal epigenetic mechanisms of Uremic Clearance Granule for treatment on Chronic Renal Failure.
     As a summary, we educed that Uremic Clearance Granule treatment could clear the Homocysteine, restore DNA methylation to normal level and correct the patterns of gene expression. Clearance of Homocysteine has leaded to recovery of some genes methylation status may be one of molecular mechanisms of Uremic Clearance Granule as an effective treatment for CRF.
引文
[1]朱吉莉,贾汝汉,王学玉.局灶性节段性肾小球硬化发病机制的研究现状[J].国外医学:泌尿系统分册,2001,21(5):224-227
    [2]Wogensen L, Krag S, Chai Q, et al. The use of transgenic animals in the study of diabetic kidney disease [J]. Horm Metab Res,2005,37(suppl 1):S17-S25
    [3]Brunner ER, Laragh JH, Baer L, et al. Essential hypertension:rennin and aldosterone, heart attack and stroke [J]. N Engl J Med,1972,286(9):441-449.
    [4]VidottiDB, Casarini DE, Cristovam PC, et al. High glucose concentration stimulates intracellular rennin activity and angiotensin Ⅱ generation in rat mesangial cells [J]. Am J Physiol Renal Physiol,2004,286(6):F1039-1045
    [5]Andrade AQ, Casarini DE-Schor N, et al. Characterization of renin mRN A expression and enzyme activity in rat and mouse mesangial cells[J]. Braz J Med Biol Res,2002,35(1):17-24
    [6]Nobel NA. Border WA. Angiotensin Ⅱ in renal fibrosis:Should TGF-beta rather than blood pressure be the therapeutic target? Semin Nephrol,1997-17(5):455-466
    [7]Gaedeke J, Peters H, Noble NA, et al. Angiotensin Ⅱ, TGF-β and renal fibrosis[J]. Contrib Nephrol,2001,135(1):153-160
    [8]Border WA, Noble NA. Interaction of transforming growth factor-beta and angiotensin Ⅱ in renal fibrosis [J]. Hypertension,1998,31(1):181-188
    [9]Laviades C, Varo N, Diez J. Transforming growth factor-beta in hypertensives with cardiorenal damage [J]. Hypertension,2000,36(4):517-522
    [10]van Kesteven CA, Danser AH, Derkx FH, et al. Mannose 6-phosphate receptor-mediated intemalization and activation of prorenin cardiac cells[J]. Hypertensin,1997,30(6):1389-1396
    [11]Admiraal PJ, van Kesteven CA, Danser AH, et al. Uptake and proteolytic activation of prorenin by cultured human endothelial cells [J]. J Hypertens,1999,17(5):621-629
    [12]Nguyen G, Delarue F, Burckle C, et al. Pivotal role of the renin/prorenin receptor in angiotensin Ⅱ production and cellular responses to renin [J]. J Clin Invest,2002,109(11): 1417-1427
    [13]Ichihara A, Hagashi M, Kaneshiro Y, et al. Inhibition of diabetic nephropathy by a decoy peptide corresponding to the "handle" region for nonproteolytic activation of prorenin[J]. J Clin Invest,2004,114(8):1128-1135
    [14]Cheng HF, Wang SW, Zhang MZ, et al. Prostaglandins that increase renin production in response to ACE inhibition are not derived from cyclooxygenase-1 [J]. Am J Physiol Regul Integr Comp Physiol,2002,283(3):R638-646
    [15]Tsuchida S, Matsusaka T, Chen X, et al. Murine double nullizygotes of the angiotensin type 1A and 1B receptor genes duplicate severe abnormal phenotypes of angiotensinogen nullizygotes [J]. J Clin Invest,1998,101(4):755-760
    [16]Huang Y, Wongamorntham S, Kasting J, et al. Renin increases mesangial cell TGF-betal and matrix proteins through receptor-mediated, angiotensin Ⅱ-independent mechanism [J]. Kidney Int,2006,69(1):105-113
    [17]Border WA, Noble NA. Maximizing hemodynamic-independent effects of angiotensin Ⅱ antagonists in fibrotic diseases [J]. Semin Nephrol,2001, 21(6):563-572
    [18]Azizi M, Bissery A, Lamarre-Cliche M, et al. Integrating drug pharmacokinetics for phenotyping individual renin response to angiotensin Ⅱ blockade in humans [J]. Hypertensin, 2004,43(4):785-790
    [19]Coughlin SR. Protease-activated receptor in hempstasis, thrombosis and vascular biology [J]. J Thromb Haemost,2005,3(8):1800-1814
    [20]Danser AH, Deinum J. Renin, Prorenin and the putative (pro) renin receptor [J]. Hypertension,2005,46(6):1069-1076
    [21]Veniant M, Menard J. Bruneval P, et al. Vascular damage without hypertension in transgenic rats expression prorenin exclusively in the liver [J]. J Clin Invest,1996,98(9):1966-1976
    [22]Oliver JA. Receptor-mediated actions of renin and prorenin [J]. Kidney Int,2006,69(1): 105-113
    [23]David PB. The transforming growth factor beta system in kidney disease and repair:recent progress and future directions [J]. Curr Opin Nephrol Hypertens,1999,8(1):21-30
    [24]金红,莫新民.肾小球系膜细胞增殖相关因子及中医药防治机制研究进展[J].湖南中医学院学报,2006,26(4):62-64
    [25]楚非,孙锁柱,魏民,等.益肾活血泄浊汤对大鼠系膜细胞转化生长因子β1表达的影响[J].北京中医药大学学报,2000,23(1):22-24
    [26]Choi ME, Kim EG, Huang Q, et al. Rat mesangial cell hypertrophy in response to transforming growth factor-β1 [J]. Kidney Int,1993,44(3):948-958
    [27]Border WA, Noble NA. TGF-beta in kidney fibrosis:a target for gene therapy [J]. Kidney Int,1997,51(5):1388-1396
    [28]Piek E, HeMin CH, Ten-Dijke P. Specificity, diversity, and regulation in TGF-beta superfamily signaling [J]. FASEBJ,1999,13(15):2105-2124
    [29]Fukatsu A, Matsuo S, Yuzawa Y, et al. Distribution of IL-6 in normal and diseased human kidney [J]. Labln-vest,1991,65(1):61
    [30]楚非,魏民,王谦,等.炎症因子及益肾活血泄浊汤对大鼠肾小球系膜细胞生长的影响[J].中国中西医结合杂志,2000,20(2):132-135
    [31]史伟,何朝生,刘双信,等.转化生长因子β1及SMAD信号转导通路在肾小球硬化中的作用[J].中华肾脏病杂志,2005,21(5):270-273
    [32]王凯旋,洪小苏.转化生长因子β与SMAD7在肾脏疾病中的作用[J].国外医学·内科学分册,2004,31(12):535-537
    [33]杨琛,戴璐,黄瑾,等.TGF-β1对转染SMAD4/SMAD7基因的大鼠系膜细胞、Ⅳ型胶原表达的影响[J].复旦学报,2004,31(2):115-118
    [34]Ponlet AC, de Caestecker MP, Schnaper HW. The transforming growth TGF-β/SMAD signaling pathway is present and functional in human mesangial cells [J]. Kidney Int,1999, 56(4):1354-1365
    [35]Chen R, Huang C, MofineUi TA, et al. Blockade of the effects of TGF-beta 1 on mesangial cells by overexpression of SMAD 7 [J]. J Am Soe Nephrol,2002,13(4):887-893
    [36]卢向阳,何小解,刘永乐,等.儿茶素对肾病综合征大鼠系膜细胞增生的影响[J].食品科学,2003,24(7):120-124
    [37]万毅刚,孙伟,清水不二雄,等.雷公藤多苷对不可逆性肾小球硬化模型系膜损伤的抑制作用[J].中国中药杂志,2005,30(5):361-365
    [38]王丽,田毅华,梅长林.红曲提取物对肾病综合征血清脂谱和肾小球硬化的影响[J].中国中西医结合肾病杂志,2000,1(3):154-156
    [39]孙林,易著文,虞佩兰.川芎嗪对人胎肾小球系膜细胞增殖的影响及其机理探讨[J].中国中西医结合杂志,1995,15(3):134-136
    [40]陈丽,刘晓城,宁勇.姜黄素对糖尿病大鼠肾脏病变的作用及对肾脏SMAD 7表达的影响[J].华中科技大学学报,2004,33(4):438-440
    [41]杨倩春,杨霓芝,陈伯钧.黄苠注射液治疗慢性肾小球肾炎气虚血瘀证临床观察[J].中国中医药信息杂志,2004,11(3):253-254
    [42]包岜,毛炜,庞嶷.黄芪、雷公藤多甙对大鼠肾小球系膜细胞分泌IL-6的影响[J].中医研究,2005,18(4):9-11
    [43]黄怀鹏,陈志强,杨洪涛,等.肾疏宁对体外培养肾小球系膜细胞系膜基质的实验研究[J].中国中西医结合肾病杂志,2003,4(3):141-142
    [44]于为民,李荣山,王利华,等.肾康治疗大鼠抗Thy-1抗体系膜增殖性肾炎的实验研究[J].中国中西医结合肾病杂志,2004,5(4):197-199
    [45]王亚利,赵玉庸,陈志强,等.肾络通对大鼠系膜细胞外基质分泌及转化生长因子β1表达的影响[J].中国中药杂志,2005,30(3):201-203
    [46]易岚,万展旭,王钢.健肾片对膜性肾病大鼠血清IL-6、TGF-β1的影响[J].国医论坛,2005,20(2):21-23
    [47]李宁军,李京学,辛岗,等.黄芪当归合剂对肾病综合征大鼠脂蛋白脂酶和卵磷脂胆固醇酰基转移酶的影响[J].中国中西医结合杂志,1999,19(8):484-486
    [48]丁炜,李惊子,邹万忠,等.黄芪当归合剂对肾病综合征鼠转化生长因子β1的影响[J].中华肾脏病杂志,1998,14(4):229
    [49]王景明,孙奕,叶传蕙.中药肾衰宁对体外培养人肾小球系膜细胞增殖及产生白介素8的影响[J].中国中西医结合急救杂志,2000,7(4):197-199
    [50]王谦,耿益民,魏民,等.几种中药有效成分对大鼠系膜细胞IL-6 mRNA表达的影响[J].中国病理生理杂志,2001,17(1):23-24
    [51]全世建,李政木,谢桂权,等.加味猪苓汤治疗原发性系膜增殖性肾炎的实验研究[J].广州中医药大学学报,2004,21(2):140-142
    [52]王伟铭,姚建.肾间质细胞培养的研究[J].上海第二医科大学学报,1998,18(6):455-457
    [53]陈广平,郭慕依.血小板衍生性生长因子对体外培养人肾小球系膜细胞生长的影响 [J].中华病理学杂志,1997,26(4):200-202
    [54]Perna AF,De Santo NG,Ingrosso D. Adverse effects of hyperhomocysteinemia and their management by folic acid [J]. Miner Electrol Metab,1997,23(1):174-178
    [55]郑法雷,章有康,陈香美,等.肾脏病临床与进展[M].北京:人民军医出版社,2005:239-257
    [56]白发臣,阮诗玮.慢性肾功能衰竭与同型半胱氨酸[J].广州医药,2006,37(6):1-4
    [57]路建饶,武立群.老年慢性肾功能衰竭血液透析患者血浆同型半胱氨酸的临床研究[J].中国老年学杂志,2005,25(3):519-521
    [58]Bostom AG, Lathrop Lor. Hyperhomocysteinemia in endstage renal disesse:prevalence, etiology and prtential relationship to arterlscleroneoutcomes [J]. Kidney Int,1997,52(1): 10-20
    [59]丁少波,郑东文.慢性肾功能衰竭患者血浆同型半胱氨酸水平和血清叶酸、维生素B12的关系[J].中国医院药学杂志,2004,24(9):519-521
    [60]余月明,张明,侯凡凡,等.慢性肾功能衰竭病人高同型半胱氨酸血症及其影响因素[J].西南国防医药,2004,14(5):487-490
    [61]余海峰,李春胜.慢性肾功能衰竭对血浆同型半胱氨酸水平的影响[J].实用医学杂志,2005,21(3):275-276
    [62]Peter WF. Homocysteine and coronary heart disease how great is the hazard? JAMA,2002, 288(5):2042-2043
    [63]余月明,侯凡凡,张训,等.慢性肾功能衰竭竭患者高同型半胱氨酸血症、氧化应激和微炎症反应间的关系及其在动脉粥样硬化中的作用[J].中华内科杂志,2004,43(4):292-295
    [64]Buccianti G, Baragetti I, Bamonti F, et al. Plasma homocysteine levels and cardiovascularmortality in patients with end-stage renal disease [J]. J Nephrol,2004,17(3): 405-410
    [65]余海峰,陈军斌,李招云,等.慢性肾功能衰竭者同型半胱氨酸与心衰指数关系研究[J].中华现代临床医学杂志,2004,2(5):586-587
    [66]Most SJ, Long D, ML Dowell lFW, et al. Folate, homocysteine, endodaelial function and cardiovascular disease [J]. J Nutr Biochem,2004,15(1):64-79
    [67]Qutinen PA, Sod SK, Pfeir SI, et al. Homocysteine-induced endoplasma reticulum stress and growth arrest leads to specific changes in gene expression in human vascular endothelial cells [J]. Blood,1999,94(3):959-967
    [68]Faraci FM, Lent I SR. Hyperhomocysteinemia, oxidative stress, and cerebral vascular dysfunction [J]. Stroke,2004,35(2):345-347
    [69]Homocysteine and the production of collagens. Proliferation and apoptosis in human arterial smooth muscle cells [J]. APMIS,2004,112(9):598-604
    [70]Ingram AJ, Krepinsky JC, James L, et al. Activation of mesangial cell MAPK in response to homocysteine [J]. Kindey Int,2004,66(2):733-745
    [71]梁敏,余月明.同型半胱氨酸诱导心肌细胞增殖并增加细胞内游离钙浓度[J].中华 肾脏病杂志,2003,19(2):71-74
    [72]Lange H, Suryapranata H, De Luca G, et al. Folate therapy and instent restenosis after coronary steinting [J]. New Engl J Med,2004,350(4):2673-2681
    [73]Ungyarl SJ, Arkadi E, Zaolt B, et al. Simultaneously increased TXA2 activity in isolated arterioles and platlets of rats with hyperhomocysteinemia [J]. Arterioscler Thromb Vase Biol, 2000,20(5):1203-1208
    [74]Joseph J, Josephy L. Hyperhomocysteinemia and cardiovascular disease:New mechanisms beyond atherosclerosis [J]. Metabolic Syndmme and Related Disorders,2003,1(2):97-104
    [75]王淑秀,邹飞雁.同型半胱氨酸促进内皮细胞表达巨噬细胞炎性蛋白1α[J].中华病理学杂志,2005,34(7):425-426
    [76]朱建华,张力.同型半胱氨酸对血管平滑肌白细胞介素6表达和转录因子κB活性的影响[J].中华心血管病杂志,2002,30(9):554-558
    [77]徐涛,王晓峰.B族维生素在肾移植受者高同型半胱氨酸血症及内皮功能异常治疗中的应用[J].中华外科杂志,2005,43(14):940-943
    [78]左力,王梅.维持性血液透析患者高同型半胱氨酸血症的影响因素和大剂量叶酸治疗的效果[J].中华肾脏病杂志,2002,18(5):327-330
    [79]Van Tellingen A, Grooteman MP, Ridgway EC et al. long-term reduction of plasma homocysteine levels by Superflux dialyzers in hemodialysis patients [J]. Kidney Int,2001, 59(1):342-347
    [80]Guttormsem AB, Ue jand PM, Svarslad E. Kinetic basis of hyperhomocystinema in patients with chronic renal failure [J]. Kindey Int,1997,52(2):495-502
    [81]Skoupy S, Fodinger M, Ohno T, et al. Riboflavin is a determinant of total homocysteine plasma concentrations in end-stage renal disease patients [J]. J Am Soc Nephrol,2002,3(5): 1331-1337
    [82]严卉,胡晓晟,陈君柱,等.血浆同型半胱氨酸和冠状动脉粥样硬化严重程度与中医证型的关系[J].中国中西医结合杂志,2002,22(11):813-815
    [83]项志兵,梁知.血浆同型半胱氨酸水平与高血压中医证型的相关性研究[J].中华现代中西医杂志,2003,1(5):394-396
    [84]Russo V E, Martienssen, Riggs A D. Epigenetic mechanisms of gene regulation [M]. NY: Cold Spring Harbor Laboratory Press,1996:566-572
    [85]Jablonka E, Lamb M J. The changing concept of epigenetics[J]. Ann NY Acad Sci,2002, 981(1):82-96
    [86]Couzin J. Breakthrough of the year. Small RNAs make big splash [J]. Science,2002, 298(5602):2296-2297
    [87]Fitzpatrik DR, Wilson CB. Methylation and demethylation in the regulation of genes, cells, and responses in the immune system [J]. Clin Immunol,2003,109(1):37-45
    [88]Eckhardt F, Beck S, Gut IG, et al. Future potential of the Human Epigenome Project [J]. Expert Rev Mol Diagn,2004,4(5):609-618
    [89]Singal R, Ginder GD. DNA methylation [J]. Blood,1999,93(7):4059-4070
    [90]余月明,侯凡凡,张训,等.慢性肾功能衰竭患者的高同型半胱氨酸血症[J].中华肾脏病杂志,2002,18(1):34-37
    [91]Ingrosso D, Cimmino A,Perna AF, et al. Folate treatment and unbalanced methylation and changes of allelic expression induced by hyperhomocysteinaemia in patients with uraemia [J]. Lancet,2003,361(3):1693-1699
    [92]Murrell A, Rakyan VK, Beck S. From genome to epigenome [J]. Hum Mol Genet,2005, 14(5):R3-R10
    [93]Hsu DW, Lin MJ, Lee TL, et al. Two major forms of DNA (cytosine-5) methyltransferase in human somatic tissues [J]. PNAS USA,1999,96(17):9751-9756
    [94]Yoder JA, Bestor TH. A candidate mammalian DNA methyltransferase related to of fission yeast [J]. Hum Mol Genet,1998,7(2):279-284
    [95]Finnegan EJ, Dennis ES. Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana [J]. Nucleic Acids Res,1993,21(10): 2383-2388
    [96]Rountree MR, Bachman KE, Baylin SB. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci [J]. Nat Genet,2000,25(3):269-277
    [97]Finnegan EJ, Peacock WJ, Dennis ES. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development [J]. PNAS USA,1996,93(16):8449-8454
    [98]Xie S. Wang Z, Okano M, et al. Cloning, expression and chromosome locations of the human DNMT3 gene family [J]. Gene,1999,236(1):87-95
    [99]Hata K, Okano M, Lei H, et al. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice[J]. Development,2002,129(8): 1983-1993
    [100]Bestor TH. The DNA methyltransferases of mammals [J]. Hum Mol Genet,2000,9(16): 2395-2402
    [101]Lyko F, Whittaker AJ, Orr-Weaver TL, et al. The putative Drosophila methyltransferase gene Dnmt2 is contained in a transposon-like element and is expressed specifically in ovaries [J]. Mech Dev,2000,95(1-2):215-217
    [102]Wijmenga C, van den Heuvel LP, Strengman E, et al. Localization of the ICF syndrome to chromosome 20 by homozygosity mapping [J]. Am J Hum Genet,1998,63(3):803-809
    [103]Hermann A, Schmitt S, Jeltsch A. The human Dnmt2 has residual DNA-(cytosine-C5) methyltransferase activity [J]. J Biol Chem,2003,278(34):31717-31721
    [104]Lin MJ, Tang Y, Reddy N, et al. DNA methyltransferase gene Dnmt2 and longevity of Drosophila [J]. J Biol Chem,2005,280(2):861-864
    [105]Yoder JA, Walsh CP, Bestor TH. Cytosine methylation and the ecology of intragenomic parasites [J]. Trends Genet,1997,13(8):335-340
    [106]Bestor T, Laudano A, Mattaliano R, et al. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases [J]. J Mol Biol,1988,203(4): 971-983
    [107]Chuang LS, Ian HI, Koh TW, et al. Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21 WAF1[J]. Science,1997,277(5334):1996-2000
    [108]Okano M, Xie S,Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases [J]. Nat Genet,1998,19(3):219-220
    [109]Ulla Aapolab, Kazunori Shibuya, Hamish S Scotte, et al. Isolation and initial characterization of a novel zinc finger gene, DNMT3L, on 21q22.3, related to the cytosine-5-methyltransferase 3 gene family [J]. Genomics,2000,65(3):293-298
    [110]Hansen R S, Wijmenga C, Luo P, et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome [J]. PNAS USA,1999,96(25):14412-14417
    [111]Rhee I, Bachman KE, Park BH, et al. DNMT1 and DNMT3b cooperate to genes in human cancer cells [J]. Nature,2002,416(6880):552-556
    [112]Fabienne M, Lisa B, Judith B. An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation [J]. The EMBO Journal-2002,21 (24):6842-6852
    [113]Zhu B,Benjamin D,Zhang Y.et al. Overexpression of 5-methylcytosine DNA glycosylase in human embryonic kidney cells EcR293 demethylates the promoter of a hormone-regulated reporter gene [J]. PNAS USA,2001,98(9):5031-5036
    [114]Bird AP, Wolffe AP. Methylation-induced repression-belts, braces, and chromatin [J]. Cell,1999,99(5):451-454
    [115]Baylin S B. Tying it all together epigenetics, genetics, cell cycle, and cancer[J]. Science, 1997,277(5334):1948-1949
    [116]Carpenter NJ, Filipovich A, Blaese RM, et al. Variable immunodeficiency with abnormal condensation of the heterochromatin of chromosomes 1,9, and 16 [J]. J Pediatr,1988,12(5): 757-760
    [117]Hassan KM, Norwood T, Gimelli G, et al. Satellite 2 methylation patterns in normal and ICF syndrome cells and association of hypomethylation with advanced replication [J]. Hum Genet,2001,109(4):452-462
    [118]Okano M, Bell DW, Haber DA, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development[J]. Cell,1999,99(3):247-257
    [119]Xu GL, Bestor TH, Bourc'his D, et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene[J]. Nature,1999,402(6758): 187-191
    [120]Bestor TH, Tycko B. Creation of genomic methylation patterns [J]. Nat Genet,1996, 12(4):363-367
    [121]Robertson KD, Ait-Si-Ali S, YokochiT, et al. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters [J]. Nat Genet,2000, 25(3):338-342
    [122]Rountree MR, Bachman KE, Herman JG, et al. DNA methylation, chromatin inheritance, and cancer [J]. Oncogene,2001,20(24):3156-3165
    [123]Knox JD, Araujo FD, Bigey P, et al. Inhibition of DNA methyltransferase inhibits DNA replication [J]. J Biol Chem,2000,275(24):17986-17990
    [124]Bird A. DNA methylation patterns and epigenetic memory [J]. Genes Dev,2002,16(1) 6-21
    [125]Dennis KT, Fan T, Geiman T, et al. Lsh, a member of the SNF2 family, is required for genome-wide methylation [J]. Genes Dev,2001,15(22):2940-2944
    [126]Robertson KD, Wolffe AP. DNA methylation in health and disease [J]. Nat Rev Genet, 2000,1(1):11-19
    [127]Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development [J]. Science,2001,293(5532):1089-1093
    [128]Ohki I, Shimotake N, Fujita N, et al. Solution structure of the methyl-CpG binding domain of human MBDI in complex with methylated DNA [J]. Cell,2001,105(4):487-497
    [129]Peters AH, Mermound JE, Jenuwein T. Histone H3 lysine 9 methylations is an epigenetic imprint of facultative heterochromatin [J]. Nat Genet,2002,30(1):77-80
    [130]Shemer R, BirgerY. Dean WL. Dynamic methylation adjustment and counting as part of imprinting mechanisms [J]. Genetics,1996,93(13):6371-6376
    [131]Guillemot F, Caspary T, Tilghman SM. Genomic imprinting of Mash2, a mouse generequired for trophoblast development [J]. Nat Genet,1995,9(2):235-242
    [132]Vanyushin BF. DNA methylation in Plants [J]. CTMI,2006,301(1):67-122
    [133]Weiss A, Keshet I, Razin A, et al. DNA demethylation in vitro:involvement of RN A [J]. Cell,1996,86(6):709-718
    [134]Cui H, Fedoroff NV. Inducible DNA demethylation mediated by the maize Suppressor-mutator transposon-encoded Tnp A protein [J]. Plant Cell,2002,14(13):2883-2899
    [135]Lan Wang, Guang-Biao Zhou, Ping Liu, et al. Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia [J]. PNAS USA,2008,105(12):4826-4831
    [136]QY Zhang, JH Mao, P Liu, et al. A systems biology understanding of the synergistic effects of arsenic sulfide and Imatinib in BCR/ABL-associated leukemia [J]. PNAS USA,2009, 106(9):3378-3383
    [137]Zhao J, Jiang P, Zhang W. Molecular networks for the study of TCM [J]. Brief Bioinform,2009,0(0):bbp063v1-bbp063
    [138]杨剑华.尿毒清颗粒冲剂治疗46例慢性肾功能衰竭的疗效评价[J].安徽医科大学学报,1998,33(1):17-19
    [139]Yokozawa T, Zheng PD, Oura H, et al. Animal model of adenine-induced chronic renal failure in rats [J]. Nephron,1986,44(2):230-234
    [140]郑平东,朱燕俐.用腺嘌呤制作慢性肾功能衰竭动物模型[J].中华肾脏病杂志,1989,6(5):342-344
    [141]Nobuaki Eto, Yoko Miyata, Hiroaki Ohno, et al. Nicotinamide prevents the development of hyperphosphataemia by suppressing intestinal sodium-dependent phosphate transporter in rats with adenine-induced renal failure [J]. Nephrol Dial Transplant,2005,20(7):1378-1384
    [142]于世林编著.高效液相色谱方法及应用[M].北京:化学工业出版社,2005:394-408
    [143]Arya M, Shergill IS, Williamson M, et al. Basic principles of real-time quantitative PCR [J]. Expert RevMol Diagn,2005,5(2):209-219
    [144]Yin JL, Shackel NA, Zekry A, et al. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) for measurement of cytokine and growth factor mRNA expression with fluorogenic probes or SYBR Green I [J]. Immunol Cell Biol,2001,79(3):213-221
    [145]Walker NJ. Real-time and quantitative PCR:applications to mechanism-based toxicology [J]. J Biochem Mol Toxicol,2001,15(3):121-127
    [146]Lindstedt KA,Wang Y, Shiota N,et al. Activation of paracrine TGF-betal signaling upon stimulation and degranulation of rat serosal mast cells:a novel function for chymase[J]. FASEB J,2001.15(8):1377-1388
    [147]Reyna-Lopez GR, Simpson J, Ruiz-Herrera J. Differences in DNA methyiation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphism [J]. Molecular Genetics and Genomics,1997.253(11):703-710
    [148]Herman JG, Graff JR, Myohanen S, et al. Methylation-specific PCR:a novel PCR assay for methylation status of CpG islands [J]. PNAS USA,1996,93(18):9821-9826
    [149]Liu ZJ, Maekawa M. PCR-based methods of DNA methylation analysis [J]. Anal Biochem,2003,317(2):259-265
    [150]张云,刘泽军.DNA甲基化测定法引物的网上设计[J].中华检验医学杂志,2004,27(7):426
    [151]Portis E, Acquadro A, Comino C, et al. Analysis of DNA methyla-tion during germination of pepper (Capsicum annuum L) seeds using methylation-sensitive amplification polymorphism (MSAP) [J]. Plant Sci,2004,166(1):169-178
    [152]邢静萍,陈楠.SMAD与肾纤维化[J].中国中西医结合肾病杂志,2005,6(5):302-304
    [153]王延叶,李荣山.TGF-β1/SMAD与肾脏间质纤维化[J].国外医学泌尿系统分册,2005,25(6):840-844
    [154]Isao Matsuil, Takayuki Hamano 1, Satoshi Mikami 1, et al. Fully phosphorylated fetuin-A forms a mineral complex in the serum of rats with adenine-induced renal failure[J]. Kidney Int, 2009,75(9):915-928
    [155]Maeda A, Horikoshi S, Gohda T, et al. Pioglitazone attenuates TGF-beta(1)-induction of fibronectin synthesis and its splicing variant in human mesangial cells via activation of peroxisome proliferator-activated receptor (PPAR)y [J]. Cell Biol Int,2005,29(6):422-428
    [156]于力,翁志媛,钟志敏,等.肾病综合征患儿外周血单个核细胞转化生长因子-β1的变化及意义[J].中华儿科杂志,2003,41(7):534-537
    [157]史伟,梁馨苓,刘双信,等.转化生长因子β1反义RNA对肾小球系膜细胞基质合成及分泌的影响[J].中华肾脏病杂志,2002,18(2):103-105
    [158]刘国元,蒋涛,曾文姣,等.转染人TGF-β1基因对大鼠系膜细胞基质表达的影响[J].复旦学报:医学版,2004,31(1):9-11
    [159]Blush J, Lei J, Ju WJ, et al. Estradiol reverses renal injury in Alb/TGF-β1 transgenic mice [J]. Kidney Int,2004,66(6):2148-2154
    [160]Krag S, Danielsen CC, Carmeliet P, et al. Plasminngen activator inhibitor-1 gene deficiency attenuates TGF-β1-induced kidney disease [J]. Kidney Int,2005,68(6):2651-2666
    [161]Kim HW, Kim BC, Song CY, et al. Heterozygous mice for TGFⅡR gene are resistant to the progression of streptozotocin-induced diabetic nephropathy [J]. Kidney Int,2004,66(5): 1859-1865
    [162]Benigni A, Zoja C, Corn D, et al. Add-on anti-TGF-β antibody to ACE inhibitor arrests progressive diabetic nephropathy in the rat [J]. J Am Soc Nephrol,2003,14(7):1816-1824
    [163]Ma LJ, Jha S, Ling H, et al. Divergent effects of low versus high dose anti-TGF-β antibody in puromycin aminonucleoside nephropathy in rats [J]. Kidney Int,2004,65(1):106-115
    [164]Kutz SM, Providence KM, Higgins PJ. Antisense targeting of c-fos transcripts inhibits serum and TGF-betal-stimulated PAI-1 gene expression and directed motility in renal epithelial cells [J]. Cell Motil Cytoskeleton,2001,48(3):163-174
    [165]Kutz SM, Hordines J, McKeown-Longo PJ, et al. TGF-β1 induced PAI-1 gene expression requires MEK activity and cell-to-substrate adhesion[J]. J Cell Sci,2001,114(21):3905-3914
    [166]Hage FG, Venkataraman R, Zoghbi GJ, et al. The scope of coronary heart disease in patients with chronic kidney disease [J]. J Am Coll Cardiol,2009,53(23):2129-2140
    [167]Zhou W, Chai H, Lin PH, et al. Features, symptoms and neurophysiological findings in stroke associated with hyperhomocysteinemia [J]. Vasc Surg,2005,41(5):861-868
    [168]Fort J. Chronic renal failure:a cardiovascular risk factor [J]. Kidney Int Suppl,2005, 99(6):S25-S29
    [169]Huang T, Yuan G, Zhang Z, et al. Cardiovascular pathogenesis in hyperhomocysteinemia [J]. Asia Pac J Clin Nutr,2008,17(1):8-16
    [170]Hultberg B, Andersson A, Amadottir M. Reduced free and total fractions of homocysteine and other thiol compounds in plasma from patients with renal failure[J]. Nephron,2001,87(1): 56-62
    [171]Bostom AG, Culleton BF. Hyperhomocysteinemia in chronic renal disease [J]. J AM Soc Nephron,2003,22(6):984-989
    [172]傅雷,杜同信,王书奎,等.荧光偏振免疫法测定血同型半胱氨酸在临床中的应用[J].江西医学检验,2007,25(5):513-514
    [173]罗丹,鄢盛恺,程歆琦,等.中国北方汉族人高同型半胱氨酸血症与Ⅱ型糖尿病并发冠心病的研究[J].现代检验医学杂志,2007,22(5):91-93
    [174]Francis ME. Association between serum homocysteine and markers of impaired kidney function in adults in the United States [J]. Kidney Int,2004,66(2):303-312
    [175]陈灏珠主编.内科学[M].北京:人民卫生出版社,1998:187-192
    [176]Duclox D, Motte G, Laws ER, et al. Serum total homocysteine and cardiovascular disease occurrence in chronic stable renal transplant recipients; a prospective study [J]. J Am Soc Nephrol,2000.11(1):134-137
    [177]Yu HH, Joubran R, Asmi M, et al. Agreement among four homocysteine assays and results in patients with coronary atherosclerosis and controls [J]. Clin Chem,2000,46 (2):258-263
    [178]Bostom AG. Homocysteinermia and vascular disease in end-stage renal disease [J]. Atherosclerosis,2001,132(3):379-384
    [179]Manns BJ, Burgges ED, Hyndman ME, et al. Hyperhomocysteinemia an d the prevalence of atherosclerotic vascular disease in patients with end-stage renal disease [J]. Am J Kidney Dis,2002,43(6):656-660
    [180]杨凌,侯凡凡.慢性肾功能不全患者血浆同型半胱氨酸水平检测[J].中国临床药学杂志,2001,10(2):277-279
    [181]王兴木,叶飞,李永涛.血浆HCY检测在慢性肾功能衰竭血透患者中的临床意义[J].放射免疫学杂志,2005,18(1):79-80
    [182]Zaina S, Lindholm MW, Lund G. Nutrition and aberrant DNA methylation patterns in atherosclerosis:more than just hyperhomocysteinemia? J Nutr,2005,135(1):5-8
    [183]Yi F, Li PL. Mechanisms of homocysteine-induced glomerular injury and sclerosis [J]. Am J Nephrol.2008,28(2):254-264
    [184]Yi F, Xia M, Li N, et al. Contribution of guanine nucleotide exchange factor Vav2 to hyperhomocysteinemic glomerulosclerosis in rats [J]. Hypertension,2009,53(1):90-96
    [185]Li PL,Yi F, Li N. Hyperhomocysteinemia-association with renal transsulfuration and redox signaling in rats [J]. Clin Chem Lab Med,2007,45(14):1688-1693
    [186]Guttormsen AB, Ueland PM, Svarstad E, et al. Kinetic basis of hyperhomocysteinemia in patients with chronic renal failure [J]. Kidney Int,1997,52(2):495-502
    [187]James SJ, Melnyk S, Pogribna M, et al. Elevation in S-Adenosylhomocysteine and DNA Hypomethylation:Potential Epigenetic Mechanism for Homocysteine-Related Pathology [J]. J Nutr,2002,132(25):2361S-2366S
    [188]Perna AF, Ingrosso D, Castaldo P, et al. Homocysteine, a new crucial element in the pathogenesis of uremic cardiovascular complications[J]. Miner Electrolyte Metab,1999,25(1): 95-99
    [189]Perla-Kajan J, Twardowski T, Jakubowski H et al. Mechanisms of homocysteine toxicity in humans [J]. Amino Acids,2007,32(4):561-572
    [190]Kruman Ⅱ, Culmsee C, Chan SL, et al. Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity [J]. J Neurosci,2000, 20(13):6920-6926
    [191]Perna AF, Capasso R, Lombardi C, et al. Hyperhomocysteinemia and macromolecule modifications in uremic patients [J]. Clin Chem Lab Med,2005,43(6):1032-1038
    [192]Perrna AF, Ingrosso D, Zappia V, et al. Enzymatic methyl esterification of erythrocyte membrane proteins is impaired in chronic renal failure:vidence for high levels of the natural inhibitor S-adenosylhomocysteine [J]. J Clin Invest,1993,91(11):2497-2503
    [193]Perrna AF, Ingrosso D, De Santo NG, et al. Mechanism of erythrocyte accumulation of methylation inhibitor S-adenosylhomocysteine in uremia [J]. Kidney Int,1995,47(2):247-253
    [194]Perrna AF, Ingrosso D, Satta E, et al. Homocysteine metabolism in renal failure[J]. Curr Opin Clin Nutr Metab Care,2004,7(1):53-57
    [195]van Guldener C, Stam F, Stehouwer CD. Hyperhomocysteinaemia in chronic kidney disease:focus on transmethylation [J]. Cli Chem Lab Med,2005,43(6):1026-1031
    [196]David Rodenhiser, Mellissa Mann. Epigenetics and human disease:translating basic biology into clinical applications [J]. CMAJ,2006,174(3):341-348
    [197]Md S Jamaluddin, Irene Chen, Fan Yang, et al. Homocysteine inhibits endothelial cell growth via DNA hypomethylation of the cyclin A gene [J]. Blood,2007,110(11):3648-3655
    [198]De Smet C, Loriot A. DNA hypomethylation in cancer:Epigenetic scars of a neoplastic journey [J]. Epigenetics,2010,5(3):648-655
    [199]梁敏,余月明.同型半胱氨酸诱导心肌细胞增殖并增加细胞内游离钙浓度[J].中华肾脏病杂志,2003,19(1):71-74
    [200]David J Grainger, Kirsten Heathcote, Mathias Chiano, et al. Genetic control of the circulating concentration of transforming growth factor type β1 [J]. Human Molecular Genetics, 1999,8(1):93-97
    [201]Peng Qi, Yue Ming Chen, Hao Wang, et al.-509C>T polymorphism in the TGF-β1 gene promoter, impact on the hepatocellular carcinoma risk in Chinese patients with chronic hepatitis B virus infection [J]. Cancer Immunol Immunother,2009,114(21):3905-3914
    [202]Jinesh N Shah, Genze Shav, Tom K Hei, et al. Methylation screening of the TGF-β1 promoter in human lung and prostate cancer by methylation-specific PCR [J]. BMC Cancer, 2008,284(8):1471-1482
    [203]Bjornsson HT, Sigurdsson MI, Fallin MD, et al. Intra-individual change over time in DNA methylation with familial clustering [J]. JAMA,2008,299(24):2877-2883
    [204]黄兆胜,王宗伟.大黄素基源及药理作用研究[J].国外医学中医中药分册,1997,19(5):9-12
    [205]邱阳,杨玉秀,任青,等.大黄素对慢性肾功能衰竭患者肿瘤坏死因子产生的抑制作用[J].中华肾脏病杂志,1998,14(3):188-189
    [206]吴喜利,孙万森,乔成林.大黄素对大鼠肾小球系膜细胞增殖及IL-6的影响[J].中药材,2006,29(1):53-55
    [207]陈高翔,屈燧林,方勤.大黄索对人胚肾成纤维细胞产生纤溶酶原激活物抑制剂的影响[J].交通医学,2000,14(6):576-580
    [208]李元,郭顺根,吴宇泽,等.大黄素抗肝纤维化作用机制研究进展[J].中国组织化学与细胞化学杂志,2007,16(2):378-381
    [209]展玉涛,刘宾,李定国,等.大黄素抗肝纤维化的作用机制[J].中华肝脏病杂志,2004,12(2):245-246
    [210]梁晓强,章学林,顾宏刚,等.大黄素对大鼠胰腺星状细胞TGF-β1含量的影响[J].世界华人消化杂志,2009,17(10):1018-1020
    [211]杨霓芝,包岜,王立新,等.通脉口服液对慢性肾炎气虚血瘀证大鼠模型的药效学研究[J].广州中医药大学学报,2000,17(4):332-336
    [212]杨霓芝,王立新,林启展,等.通脉口服液治疗慢性肾炎气虚血瘀证32例疗效观察[J].新中医,2003,1(1):19.
    [213]包昆,毛炜,庞嶷,等.黄芪和雷公藤多甙对大鼠肾小球系膜细胞增殖及分泌IL-6影响[J].广州中医药大学学报,2005,22(4):292-295
    [214]周钦,曹文富,李荣亨.大剂量黄芪注射液对慢性肾功能不全患者血浆、尿液内皮素的影响[J].中国中药杂志,2001,26(3):39-42
    [215]黄进字,单江,徐耕,等.黄芪抑制血管平滑肌增殖及其作用机制[J].中国现代应用药学杂志,2003,4(2):277
    [216]Movassagh M, Choy MK, Goddard M, et al. Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PLoS One,2010,5(1):e8564

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700