不同生境中灰飞虱种群的消长动态及灰飞虱的寄主适合性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灰飞虱传播的水稻条纹叶枯病近年来在江淮稻区大发生,导致了水稻大面积减产甚至绝收。为探明灰飞虱的发生规律及其对不同寄主植物的适应性情况,系统调查了田间不同生境中灰飞虱种群动态,研究了不同寄植物对灰飞虱的适合度及解毒酶和靶标酶在灰飞虱寄主适应中的作用。主要结果如下:
     1.通过大田不同生境中灰飞虱的调查,明确了浙江富阳市灰飞虱的年发生世代及消长动态。灰飞虱在浙江富阳田间1年发生6代。小麦和杂草为主要越冬寄主植物。越冬代若虫于2月下旬~4月中上旬羽化。第1代若虫于4月中旬~5月上旬孵化,主要为害小麦。第2代若虫发生于5月下旬~6月下旬,主要分布于早稻、中稻上,由小麦及杂草上迁移而来,于6月中旬出现虫量高峰。第3代发生于在7月初至8月上旬,主要见于中稻、直播晚稻及生长茂盛的禾本科杂草地(如闲置稻田稗草)。第4代发生在8月上旬至9月上旬,主要在晚稻及闲置稻田稗草等生境,田边杂草上数量很少。第5代发生于9月上旬,主要分布于中稻、晚稻、闲置田和田边杂草地。第3、4、5代峰期分别在7月中旬、8月上旬,9月中旬。第5代成虫除杂草地上的仍可能留在原地之外,稻田中多数成虫转移到周边的麦地或杂草上,继续繁殖第6代(越冬代)。全年灰飞虱成虫有3次迁移过程。2006~2007年,富阳麦田虫量在14.9~22.7头/10m~2,稻田虫量在6.6~55头/10m~2。可见,麦田及稻田灰飞虱发生量比条纹叶枯病大发生地区少。
     2.通过室内笼罩饲养方法观察了水稻、玉米、高粱、稗草等57种供试植物上灰飞虱的生长发育繁殖情况。结果表明:不同供试植物上灰飞虱羽化率、若虫历期、初羽化成虫重量、成虫寿命、产卵量等参数均存在不同程度的差异。结合主成分分析和种群趋势指数分析,发现57种供试植物中,适宜灰飞虱生存的寄主植物有稗草等5种供试植物,其上灰飞虱羽化率介于59.4% -86.9%,种群趋势指数在27.8以上;较适宜灰飞虱生存的寄主植物有黑麦草等9种供试植物,灰飞虱羽化率在27.0% -64.5%之间,种群趋势指数多在10以上;较不适宜灰飞虱生存的寄主植物有牛筋草等5种供试植物,羽化率介于13.0% -35.6%,种群趋势指数在1-10之间;不适宜灰飞虱生存的植物有无芒雀麦等13种植物,羽化率在10%以下,种群趋势指数在1以下;玉米等25种植物上灰飞虱若虫则不能羽化为成虫。其中黑麦草、棒头草、菵草、白顶早熟禾、野燕麦、荠菜等为新证实寄主植物。
     3.以褐飞虱为对照,测定了灰飞虱在经历水稻与稗草转换后,体内解毒酶(羧酸酯酶和谷胱甘肽S-转移酶)和靶标酶(乙酰胆碱酯酶)的活力,以明确解毒酶和靶标酶在灰飞虱寄主适应中的作用。结果表明:两种飞虱取食稗草后,体内的解毒酶比活力存在着显著差异。取食稗草后,灰飞虱体内的α-羧酸酯酶比活力显著高于褐飞虱的;与褐飞虱相比,有更多灰飞虱个体的酶比活力分布于高酶比活力区域。取食稗草后,灰飞虱雄虫体内β-羧酸酯酶比活力及雌虫体内的谷胱甘肽S-转移酶比活力显著高于褐飞虱的;但两种飞虱的β-羧酸酯酶及谷胱甘肽S-转移酶比活力频率分布存在较广范围的重叠区域。取食稗草后,两种飞虱体内的乙酰胆碱酯酶比活力无显著差异。因此,灰飞虱体内的解毒酶尤其是α-羧酸酯酶在其寄主适应中起着重要的作用。
Rice stripe disease, caused by Rice stripe virus (RSV), led to severe or even crippling losses in JiangHuai rice region in recent years. As the most important vector of RSV, the small brown planthopper (SBPH) (Laodelphax striatellus) is largely responsible for the epidemic phase of the disease. In order to clarify the occurrence regularity and host adaptation of SBPH, the population dynamic of SBPH in different habitats, the fitness of SBPH on different plants and the effect of detoxifying enzymes and target enzymes on host adaptation of SBPH were studied in this paper. The main results were as followings:
     1. The population dynamic of SBPH in different habitats was investigated. The results showed that SBPH occurred six generations a year and overwintered mainly on wheat and weeds in Fuyang county, Zhejiang province. The overwintering generation adults emerged from late February to middle April. The first generation nymphs hatched from middle April to early May, and mainly damaged wheat. The second generation nymph occurred from late May to late June and mainly infested the early rice and Mid-rice. The peak of this generation appeared in the middle June. The third generation occurred from early July to early August, mainly infested Mid-rice, direct seeding late rice and the Gramineous weeds of idle field(e.g. Echinochloa crusgalli of wild land). The fourth generation occurred from early August to early September, mainly damaged late rice, and a few pests were observed on weeds. The fifth generation occurred in early September, mainly distributed in Mid-rice, late rice, idle field and weeds land. The fastigium of the third, fourth and fifth generation took place in middle July, early August and mid September respectively. The fifth generation adults in the paddy field immigrated to the wheat yard and weeds, but the adult in the weeds yard did not immigrate and went on developing. The adult of SBPH could immigrate three times in whole year. The number of SBPH was 14.9 to 22.7 individuals/10m~2 in wheat yield and 6.6~55 individuals/10m~2 in rice yield respectively in 2006~2007. The average quantity of SBPH in Fuyang was lower than that in the heavy disaster areas of rice stripe disease.
     2. The development and reproduction of SBPH on 57 different plants including Oryza sativa, Zea mays, Sorghum vulgare and E. crusgalli etc were studied by caging method in laboratory. The results indicated that nymphal development duration, emergence rate, adult weight, adult longevity and fecundity of SBPH on different plants were significantly different. According to principal component analysis and population trend index analysis, five plants (E. crusgalli etc.) were the most suitable host plants, with the emergence rates of SBPH on these plants ranging from 59.4% to 86.9%, and the population trend indexes above 27.8. Nine plants (Lolium perenne etc.) were also suitable for the small brown planthopper, 27.0% - 64.5% individuals on those plants can emerge, and the population trend indexes were above 10. Five plants such as Eleusine indica were scarcely suitable for the survival of SBPH, 13.0% - 35.6% emergence rates were observed, and population trend index were 1-10. Thirteen plants (Bromus inermi etc.) were unfit for SBPH’s survival, less than 10% individuals on them can emerge, and the population increase could not reach 1. Nymphs of SBPH on the other twenty-five plants such as Zea mays could not emerge. Lolium maloiforam, Beckmannia syzigachne, Polypogon fugax, Poa acroleuca, Avena fatua and Capsella bursapastoris were the newly confirmed host plants.
     3. The activity of detoxifying enzymes and target enzymes in SBPH, compared with BPH, which fed on E. crusgalli but firstly on rice, were measured to study the effect of those enzymes on the host adaptation of the pest. The results indicated that the activities of detoxifying enzymes in SBPH were significantly different from those in BPH. Theα-NA esterase activity in SBPH was significantly higher than that in BPH, and there were more SBPH individuals having highα-NA esterase activity. Theβ-NA esterase activity in male of SBPH and glutathione S-transferase activity in female of SBPH were apparently higher than those in BPH, but the distribution of the enzyme activity in both planthoppers seriously overlapped. Few differences were observed in acetylcholinesterase activity testing. The results indicated that carbaxylesterase especiallyα-NA esterase played an important role in host adapting in SBPH.
引文
1.蔡邦华,黄复生,冯维熊,等.华北稻区灰稻虱的研究.昆虫学报,1964,13(4):552-571.
    2.曹松涛,陈海新,徐金妹.灰飞虱暴发原因及防治技术.安徽农业科学, 2007,35(20):6175-6177.
    3.陈洪国,袁天文.寄主植物对斜纹夜蛾药剂敏感性及中肠羧酸酯酶等的影响.湖北农业科学,2003(6):65-67.
    4.陈建明,俞晓平,吕仲贤,等.白背飞虱取食抗虫品种过程中体内保护酶和自由基的变化.华东昆虫学报,2002,11(2):41-45.
    5.褚庆全,齐成喜,杨飞,等.我国杂交水稻发展现状、问题及对策.作物杂志,2005,(1):9-11.
    6.丁锦华主编.农业昆虫学.江苏:江苏科学技术出版社,1995,203-207.
    7.丁锦华,苏建亚主编.农业昆虫学(南方本),北京:中国农业出版社,2002,174-176.
    8.董国堃,沈建新,张惠琴,等.水稻黑条矮缩病回升流行原因及防治对策.安徽农业科学,2001,29(5):615-616,619.
    9.段灿星,张世贤,陈青,等.水稻种质资源抗灰飞虱评价及抗性机制分析.中国水稻科学,2007,21(4):425-430.
    10.高希武,董向丽,郑炳宗,等.棉铃虫的谷胱甘肽S-转移酶(GSTs):杀虫药剂与植物次生性物质的诱导与GSTs对杀虫药剂的代谢.昆虫学报,1997,40(2):122-127.
    11.高希武,董向丽,宗静,等.寄主植物及其次生物质对棉铃虫解毒酶系和乙酰胆碱酯酶的诱导作用//中国有害生物综台治理论文集.北京:中国农业出版社,l996,635-638.
    12.高希武,马军.害虫的化学防治与作物抗虫性.中国农业大学学报,1998,3(1):78-82.
    13.高希武. Gorun等改进的Ellman胆碱酯酶活性测定方法介绍.昆虫知识,1987,24(4):245-246.
    14.高希武.寄主对棉蚜羧酸酯酶活性的影响.昆虫学报,1992,35(3):267-272.
    15.顾本奇,顾卫中.灰飞虱重发原因及水稻条纹叶枯病控制技术.上海农业科技,2006,(6):120.
    16.顾伯良,薛萍霞,施文贤,等.水稻灰飞虱转移穗部为害及其对产量损失的观察.中国植保导刊,2005,25(5):7-8.
    17.郝丹青,顾才东,洪波.灰飞虱发生规律与防治.宁夏农学院学报,1995,16(1):74-78.
    18.侯茂林,盛承发.食物对棉铃虫生长发育及萦殖的影响.昆虫学报,2000,43 (2):168-175.
    19.华南农学院主编.农业昆虫学.北京:农业出版社,1981,160.
    20.黄水金,唐秋庚.寄主植物对斜纹夜蛾酯酶和乙酰胆碱酯酶活性的影响.华东昆虫学报,2006,15(3):174-178.
    21.嵇朝球,钟环,钟佩英,等.水稻条纹叶枯病病毒RT-PCR快速检测研究.上海交通大学学报(农业科学版),2005,23(2):188-191.
    22.江苏省水稻条纹叶枯病协作攻关课题组.江苏省水稻条纹叶枯病协作攻关研究进展.江苏农业科学,2003,(S):1-10.
    23.李伟.寄主植物对灰飞虱生态适应性影响的研究[硕士学位论文].安徽:安徽农业大学,2007.
    24.李博,杨持,林鹏.生态学.北京:高等教育出版社,2000,110.
    25.李洪山,赵阳,李红阳,等.水稻条纹叶枯病传毒介体灰飞虱种群转移扩散规律及控制技术研究.中国植保导刊,2004,24(4):39-40.
    26.李济宸,李桂珍,高立起,等.灰飞虱发生规律的研究.北京农业科学,1998,16(6):24-27.
    27.李显春,王荫长主编.农业病虫抗药性问答.北京:中国农业出版社,1997,21-48.
    28.李云寿,罗万春,赵善欢.不同寄主植物对小菜蛾羧酸酯酶活性的影响.山东农业大学学报,1996,27(2):147-151.
    29.林友伟,张晓梅,沈晋良.亚洲稻区灰飞虱抗药性研究进展.昆虫知识,2005,42(1):28-30.
    30.林志伟,刘洋,辛惠普.寒地稻田灰飞虱生物学特性初步研究.黑龙江八一农垦大学学报,2004,16(2):15-18.
    31.刘芳,宋英,包善微,等.水稻品种对灰飞虱的抗性及其机制.植物保护学报,2007,34(5):449-454.
    32.刘洪义,张明厚.黑龙江省小麦丛矮病发生规律的研究.东北农业大学学报,2002,33(1):19-23.
    33.刘芹轩,张桂芬,孙万启.河南省三种稻飞虱的发生和生物学特性.昆虫知识,1982,19(5):1-5.
    34.刘琴,王兆唐,杨根,等.水稻条纹叶枯病大爆发因缘与防治对策.河南科技学院学报(自然科学版),2005,33(2):68-70.
    35.刘向东,翟保平,刘慈明.灰飞虱种群暴发成灾原因剖析.昆虫知识,2006,43(2):141-146.
    36.刘宗镇,王菊明,郑海柔,等.上海地区灰飞虱与水稻条纹叶枯病、黑条矮缩病的防治.上海农业学报,2005,21(3):36-45.
    37.吕仲贤,俞晓平,郑许松,等.褐飞虱致害性变异过程及体内酶的变化.昆虫学报,1997,40(S):122-127.
    38.马崇勇,高聪芬,韦华杰,等.灰飞虱对几类杀虫剂的抗性和敏感性中国水稻科学,2007,21(5):555-558.
    39.钦俊德.昆虫与寄主植物的适应性及协调进化.生物学通报,1996,31(1):1-3.
    40.钦俊德.昆虫与植物的关系.北京:科技出版社,1987.
    41.钦俊德.植食性昆虫食性的生理基础.昆虫学报,1980,1:106-118.
    42.邱鸿贵,等.螟长距茧蜂对植物挥发物质的行为反应.昆虫学报,1989,32 (2):129-135.
    43.阮义理,蒋文烈,林瑞芬,等.稻病毒病介体昆虫灰飞虱的研究.昆虫学报,1981,24(3):283-290.
    44.沈永山,孙朝晖,袁士荣,等.苏北沿海地区灰飞虱发生规律及影响因素分析.垦殖与稻作,2006,(3):48-50.
    45.施燕.灰飞虱种群消长规律及传毒特性研究[硕士学位论文].扬州:扬州大学, 2007.
    46.宋春满,高家合,邓建华,等.寄主植物对云南烟蚜解毒酶和靶标酶活力的影响.西南农业大学学报,2002,24(3):241-243.
    47.孙炳剑,袁虹霞,邢小萍,等.水稻条纹叶枯病暴发原因分析与综合防治技术.河南农业科学,2005,(5):39-41.
    48.孙俊铭.水稻条纹叶枯病发生规律及防治对策.安徽农业科学,2006,34(17):4351-4352,4407.
    49.谭维嘉,杨雪梅,郭予元.寄主植物对棉铃虫生理代谢的影响.植物保护学报, 1993,20(2):147-153.
    50.谭维嘉,赵焕香.取食不同寄主植物的棉铃虫对溴氰菊酯敏感性的变化.昆虫学报,1990,33 (2):155-160.
    51.唐振华,吴士雄.昆虫抗药性的遗传与进化.上海:上海科技文献出版社,2000, 120-156.
    52.唐振华.昆虫抗药性及其治理.北京:农业出版社,1993a.
    53.唐振华.杀虫剂作用的分子行为.上海:远东出版社,1993b.
    54.汪恩国.灰飞虱种群数量变动规律与模型测报技术研究.植物保护,2007,33(3):102-107.
    55.王琛柱,钦俊德.昆虫与植物相互作用的研究进展.世界农业,1998,(4):33-35.
    56.王红,王冬生,杨益众,等.寄主植物对烟粉虱后代种群抗性相关酶活性的影响.植物保护,2007,33(3):36-39.
    57.王建军,戴志一,杨益众.寄主植物对棉铃虫体内解毒酶活性的影响.江苏农业研究,2000,21(2):58-61.
    58.王开运,姜兴印,仪美芹,等.取食不同寄主植物对棉蚜后代抗药性的影响.昆虫学报,2001,44(4):469-475.
    59.王藕芳,包生土.小麦不同栽培方式对水稻黑条矮缩病及传毒昆虫灰飞虱发生的影响.植保技术与推广,2001,21(1):13.
    60.王泉章,丁志宽,李瑛,等.灰飞虱发生期对水稻条纹叶枯病发生型影响的研究初报.植保技术与推广,2003,23(10)11-14.
    61.王诗白,陈昌龙,徐守明,等.灰飞虱与玉米粗缩病的关系.上海农业科学,1999,(6):37-38.
    62.王书林,顾卫中,程兆榜.不同籼粳种植比例与越冬代灰飞虱数量之间的关系.现代农业科技,2006,(4):35-36.
    63.王艳青.近年来中国水稻病虫害发生及趋势分析.中国农学通报,2006,22(2):343-347.
    64.王幼辉主编.河北水稻栽培.石家庄:河北科学技术出版社,1991,330.
    65.魏勇良,李秉均,李亚哲.武威地区谷子作茬初步研究(二):传毒媒介灰飞虱(Laodelphax striatellus)生活史观察.甘肃农大学报,1984,(2):118-122.
    66.夏温树.武昌灰稻虱的初步研究.昆虫学报,1962,11(2):105-117.
    67.咸阳,吴定邦,谷爱娣.浅析灰飞虱重发原因及综合防治对策.上海农业科技,2005,(5):94-95.
    68.谢佳燕,何风琴,冯国蕾.寄主植物对棉蚜酯酶的影响.武汉工业学院学报,2007,26(3):13-15.
    69.杨秀清,高希武,郑炳宗.烟粉虱与温室白粉虱羧酸酯酶、谷胱甘肽转移酶和乙酰胆碱酯酶性质的比较研究.农药学学报,2001,3(4):38-43.
    70.姚洪渭.白背飞虱抗药性机理的研究——药剂敏感性变化的生物学与生理生化基础[博士学位论文].浙江:浙江大学,2001.
    71.张国鸣,王华弟,戴德江.浙江省水稻条纹叶枯病发生发展态势与防控对策措施.中国植保导刊,2006,26(7):20-21.
    72.张宏.寄主植物对灰飞虱种群的影响及翅型分化机制研究[硕士学位论文].扬州:扬州大学,2006.
    73.张景飞,龚林根,瞿燕,等. 2004年常熟市5、6代灰飞虱严重为害水稻穗部.中国植保导刊,2005,25(5):39.
    74.张炬红,郭建英,万方浩,等.转Bt基因抗虫棉对棉蚜的杀虫剂敏感性及解毒酶系的影响.昆虫学报,2006,49(6):938-943.
    75.张宗炳著.杀虫剂的分子毒理学.北京:农业出版社,1987.
    76.赵善欢,张兴.从植物与昆虫的关系谈害虫防除.百科知识,1986,(8):54-57.
    77.赵士熙,吴中孚,吴刚,等.水稻品种抗性对虫体酯酶的影响.植物保护学报,1993,20(3):193-198.
    78.郑许松,俞晓平,吕仲贤,等.茭白田中灰飞虱Laodelphax striatellus发生规律的初步研究//李典模等编.当代昆虫学研究-中国昆虫学会成立60周年纪念大会暨学术讨论会论文集.北京:农业科技出版社,2004,333-336.
    79.周亦红,韩召军,张小敏,等.水稻品种对褐飞虱代谢酶的影响.南京农业大学学报,2003,26(2):24-28.
    80. Abd-Elghafar SD. et al. In vivo penetration and metabolison of methyl parathion in larvae of the Tobacco budworm, Heliothis vinescens( F.) fed different host plants. Pesticide Biochemistry Physiology. 1989, 33: 49-56.
    81. Bae SD. Kim DK. Occurrence of small brown planthopper (Laodelphax striatellus Fallén) and incidence of rice virus disease by different seeding date in dry seeded rice. Korean Journal of Applied Entomology, 1994, (33)3: 173-177.
    82. Booth J., Boyland E., Sims P. An enzyme from rat liver catalyzing conjugations with glutathione. Biochemical Journal. 1961, 79: 516-524.
    83. Bradford MM. A rapid and sensitive method for the quatitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 1976, 72: 248-254.
    84. Bratsten LB. Biochemical defense mechanisms inherbivores against plant allelochemicals. In: Rosenhtal GA, Janzen DH eds. Herbivores: their interactionwith second-ary plant meatbolites. New York: Academic Press. 1979, 199-270.
    85. Brattsten LB. Holyoke CW., Raffa KF. Insecticide resistance: challenge to pest management and basic research. Science, 1986, 231: 1256-1260.
    86. Brattsten, LB. Wilkinson CF, Eisner T. Herbivore-plant interaction: mixed function oxidases and secondary plant substances. Science, 1977, 196: 1349.
    87. Chapman RF. The chemical inhibition of feeding by phytophagous insects: A review. Bull Entomol Res, 1974, 64: 339-363.
    88. Dauterman WC. In: Kerkut GA. Gilbert LI. eds. Comprehensive Insect Physiology, Biology and Pharmacology. New York: Pergamon Press, 1985, l2: 713- 730.
    89. Ling DL, Qu ZC, Ma XG. Detection and Localization of Rice stripe virus Gene Products In Vivo. Virus Genes. 2005, 31: 2, 211-221.
    90. Dowd PF, Smith CM, Sparks TC. Influence of sybean leaf extracts on ester clevaage in cabbage and soybean loopers (Lepidoptera: Noctuidae). Journal of Economic Entomology, 1983, 76: 700-703.
    91. Ehrlich PR. Raven PH. Butterflies and plants: A study in coevolution. Evolution, 1964, 18: 586-608.
    92. Endo S, Tokahashi A, Tsurumachi M, et a1. Insecticide susceptibility of the small brown planthopper. Laodelphax striatellus Fallén (Hornoptera: Delphacidae), collected from East Asia. Applied Entomology Zoology, 2002, 37(1): 79-84.
    93. Endo S, Tsurumachi M. Insecticide resistance and insensitive acetylcholinesterse in small brwon planthopper (Laodelphax striatellus). Journal of Pesticide Science, 2000, 25(4): 395-397.
    94. Feng QL, Davey KG, Pang A S D, et al. Develnpmental expression and stress induction of glutathione S-transferases in the spruce budworm, Choristoneura fumiferana (Clemens). Journal of Insect Physiology, 2001, 47: 1-10.
    95. Fraenkel G. 1953. The nutritional value of green plants for insects//Trans.Ⅸth International Congress of Entomology, Amsterdam, 1951, 2: 90-100.
    96. Fraenkel G. 1959. The raison d’etre of secondary plant substance. Science, 129: 1466-1470.
    97. Gingery RE. The rice stripe virus group. The plant viruses. New York: PlenumPress, 1988, 4: 297-329.
    98. Gray SM. Plant virus proteins involved in natural vector transmission. Trends Microbiol, 1996, 4: 259-264.
    99. Zhang HM. Yang J., Sun HR., et al. Genomic analysis of rice stripe virus Zhejiang isolate shows the presence of an OTU-like domain in the RNA1 protein and a novel sequence motif conserved within the intergenic regions of ambisense segments of tenuiviruses. Archives of Virology, 2007, 152: 1917-1923.
    100.Hama H. Mechanism of fenitrothion-and diazinon-resistance in the green rice leafhopper, Nephotettix cincticeps Uhler (Hemiptera: Deltocephalidae) the role of aliesterase. Jpn. Journal of Applied Entomology Zoology, 1984, 28(3): 176-179.
    101.HamaH, Hosoda A. High aliesterase activity and low acetylcholinesterase sensitivity involved in organophosphorus and carbamate resistance of the brown planthopper, Nilaparvata lugens St?l (Homoptera: Delphacidae). Applied Entomology and Zoology, 1983, 18 (4): 475-485.
    102.Haukioja E. Induction of defenses in trees. Annual Review of Entomology, 1990, 36: 25-42.
    103.Hibino H. Insect borne viruses of rice. Advance in Disease Vector Research, 1989, 6: 209-241.
    104.Hinks CF. Spurr DT. Effect of food plants on the susceptibility of migratory grasshopper (Orthoptera: acrididae) to delamethrin and dimethoate. Journal of Economic Entomology, 1989, 82(3): 721-726.
    105.Hiro J., Ito K. Observations on rice planthoppers collected over the East China Sea in June and July. Journal of Applied Entomology Zoology, 1974, 24: 121.
    106.House HL. Nutrition. In: The Physiology of insect, ed. M. Rockstein. Acad. Press. 1974.
    107.Liu HJ., Wei CH., Zhong YG., et al. Rice black-streaked dwarf virus outer capsid protein P10 has self-interactions and forms oligomeric complexes in solution. Virus Research, 2007, 27: 34-42.
    108.Hunter MD, Biddinger DJ, Carlini EJ,et al. Efects of apple leaf allelochemiry on tufted apple budmoth (Lepidoptera: Tortricidae) resistance to azniphosmethyl.Journal of Economic Entomology, 1994, 87(6): 1423-1429.
    109.Isogai M., Uyeda I., Lee BC. Detection and assignment of proteins encoded by rice black streaked dwarf fijivirus S7, S8, S9 and S10.Journal of General Virology, 1998, 79: 1487-1494.
    110.Jermy T. Feeding inhibitors and food preference in chewing phytophagous insects. Entomology Experimentalis Et Applicata, 1966, 9: 1-12.
    111.Kao LR, Motoyama N, Dauterman WC. The purification andcharacterization of esterase from insecticide resistance and susceptible house flies. Pesticide Biochemistry and Physiology, 1985. 23: 228-239.
    112.Kimura Y, Nakazawa K. Local variations of susceptibility to organophosphorus insecticides in the green rice leafhopper in Hiroshima prefecture. Chugoku Agric, 1973, 47: 100-102.
    113.Kimura Y. Resistance to malathon in the small brown planthopper, Laodelphax striatellus Fallén. Jpn. Journal of Applied Entomology Zoology, 1965, 9: 25l-258.
    114.Kirby W., Spence W. Introduction to Entomology. London.1815:26.
    115.Kisimoto R., On the transovarial passage of the rice strip virus through the small brown planthopper, Laodelphax striatellus (Fallén). In: Conference on Relationships between Arthropods and plant-Pathogenic Viruses. Suppl. Tokyo, 1965, 73-90.
    116.Kisimoto R, Yamada Y. A planthopper-rice virus epidemiologymodel: Rice stripe and small brown planthopper, Laodelphax striatellus Fallén. In: McLean GD, Garrett RG, Ruesink WG eds. Plant virus epidemics: monitoring, modeling and predicting outbreaks. Academic Press, Sydney, 1986. 327-344.
    117.Kisimoto R. Characteristics of Laodelphax striatellus transmiting rice stripe virus. Applied Entomology and Zoology,1989, 24(l): 157-159.
    118.Kisimoto R. Synoptic weather conditions inducing long-distance immigration of planthoppers, Sogatella frucifera (Horváth) and Nilaparvata lugens (St?l). Journal of Ecological Entomology, 1976, 1: 95.
    119.Lal R. Nayak GN. Effects of host plant on the development of caterpillars Prodenia litura Fabricus and their susceptibility to different insecticides. Indian. Journal ofEntomology, 1963, 25: 299-306.
    120.Li F., Han ZJ. Mutations in acetylcholinesterase associated with insecticide resistance in the cotton aphid, Aphis gossypii Glover. Insect Biochemistry and Molecular Biology, 2004, 34: 397-405.
    121.Li XC, Schuler MA., Berenbaurn MR. Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes. Nature, 2002, 419: 7l2-715.
    122.Lindorth RL. Chemical ecology of the luna moth: effects of host plant on detoxication enzyme acitvity. Journal of Chemical Ecology, 1989, 15 (7): 2020-2029.
    123.Lindroth RL. Differential toxicity of Plant allelochemicals to insects: roles of enzymatic detoxication systems. In: Bernecys Eed. Insect-plant interactions, CRCPress. 1991a, 111, 1-33.
    124.Lindroth RL., Barman MA., Weisbord AV. Nutrient deficiencies and the gypsy moth, Lymantria dispar: effects on larval performance and detoxication enzyme activities. Journal of Insect Physiology, 1991b, 37(1): 45-52.
    125.Lindroth RL. Host plant alteration of detoxication activity in Papilio glarecusg laucus. Entomology Experimentalis Et Applicata, 1989, 50: 29-35.
    126.Lindsten K., Lindsten B. Wheat dwarf - an old disease with new outbreaks in Sweden. In: Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 1999, 106(3): 325-332.
    127.Luisoni E, Milne G, Boccardo G. Rice black-streaked dwarf virus: Its properties, morphology and intracellular localization. Virology, 1977, 77(2): 826-842.
    128.Takahashi M., Toriyama S., Hamamatsu C., et al. Nucleotide sequence and possible ambisense coding strategy of rice stripe virus RNA segment 2. Journal of General Virology, 1993, 74, 769-773.
    129.Markos BG. Campell FL. Effects of host plants on the susceptibility of the southern armyworm to calcium asenate. Journal of Economic Entomology, 1943, 36: 662-665.
    130.Mattson WJ. Sciber JM. Nutriitonal ecology of insect folivores of woody plants: nitrogen, water, filter, and Mineral considerations. In Nutritional Ecology Insects, ijiMites and Spiders (eds.), Wiley, New York. 1987, 105-146.
    131.McKenzie CL., Cartwright B. Susceptibility of Aphis Gossypii (Glover) to Insecticides as affected by Host Plant Using A Rapid Bioassay. Journal of Entomology Science, 1994, 29(3): 289-300.
    132.Miyata J. Problems in the Control of Insecticide-Resistant Rice. Plant and Leafhoppers. Pesticide Science, 1989, 26: 261-269.
    133.Mullin. C. A. Molecular aspects of insect-plant associations. Plenum Press. New York. 1986, 346.
    134.Murakami M, Suzuki K Fundamental study on forecasting of the small brown planthopper. II. Developmental rate of overwintering nymphs (in Japanese). Annu Rep Plant Prot Kanto-Tosan, 1971, 18: 79.
    135.Nagata T. and Ohira Y. Insecticide resistence of the small brown planthopper, Laodelphax striatellus Fallén (Hemiptera: Delphacidae), collected in Kyushu and on the East China Sea. Applied Entomology and Zoology, 1986, 21: 216-219.
    136.Naibo, B. Multiple effectiveness of a seed treatment with imidaclopirid in maize culture. In: Phytoma, 1994, 465.
    137.Noda H. Pre-mating flight of rice planthopper migrants (Homoptera: Delphacidae) collected on the East China Sea. Systema Zoology, 1986, 35: 608-617.
    138.Okuyama S., Kajino Y. Studies on the control of the small brown planthopper transmitting rice stripe disease: I. Disease occurrence and the rate of infective vectors. Hokuno Northern Agriculture. 1980, 47(7): 10-22.
    139.Oppenoorth FJ. Biochemistry and genetics of insecticide resistance In: Kerkut GA, Gibert LI eds. Comprehensive Insect Physiology. Biochemistry and Pharmacology, Oxford: Pergamon Perss. 1985, 12, 731-773.
    140.Ozaki K, Kassai T. Pattern of insecticide restance in field populations of the smaller brown planthopper, Laodelphax striatellus Fallén. Proe. Assoc. PlantProt.Shikoku, 1971, 6: 81-87.
    141.Barbier P., Takahashi M., Nakamura I., et al. Solubilization and Promoter Analysis of RNA Polymerase from Rice Stripe Virus. Journal of Virology, 1992, 6171-6174.
    142.Rauch N. Nauen R. Characterization and molecular cloning of a glutatbne S-transferase from the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). InsectBiochemistry and Molecular Biology, 2004, 34: 321-329.
    143.Rhoades DF. Pheromonal communication between plants: Recent Adv Phytochem, 1985, 19: 195-218.
    144.Riskallah MR., Dauterman WC., Hodgson E. Host plant induction of microsomal monooxygenase activity in relation to diazinon metabolism and toxicity in larvae of the tobacco budworm Heliothis virescens (F). Pesticide Biochemistry physiology, 1986, 25: 2 33-247.
    145.Rogers ME., Jani MK., Vogt RG. An olfactory-specific glutathione-Sqransferases in the sphinx mnth Manduea sexta. J. Exp. Bid, 1999, 202: 1625-l637.
    146.Sharzei A., Izadpanah K. Transmission of Iranian wheat stripe tenuivirus by Laodelphax striatellus. In: Iranian Journal of Plant Pathology, 1998, 34(1/2): 119.
    147.Shikata E. Studies of plant viruses in Japan. Food Fertilizer Technology Center, Technical, Bulletin, 1980, 54: 1-11.
    148.Shinkai A. Studies on insect transmission of rice virus diseases in Japan. Bulletin of the National Institute of AgriculturalSciences (Japan), Series C, 1962, (14): 1–112.
    149.Snyder MJ., Walding JK., Feyerisen R. Metabolic fate of the allelochemical nicotine in the tobacco hornworm Manduca sexta. Insect Biochemistry and Molecular Biology 1994, 24(8): 837-846.
    150.Soderfund DM., Bloomguist JR. Molecular Resistance in Arthropods. 1n: Roush R T, Tabashnik B E eds. NewYork J Chapman & Hall Press. 1990. 58-96.
    151.Sone S., Hattori Y., Tsuboi S. et al. Difference in susceptibility to imidacloprid of the population of the small brown planthopper (Laodelphax striatellus Fallén) from various localities in Japan. Pesticide Science, 1995, 20(4): 541-543.
    152.Sone S., Tsuboi S., Otsu Y. et al. Mechanisms of low susceptibility to imidacloprid in a laboratory strain of the small brown planthopper, Laodelphaxs triatellus Fallén. Journal of Pesticide Science, 1997, 22 (3): 236-23.
    153.Sugihiko Hoshizaki. Allozyme Polymorphism and Geographic Variation in the Small Brown Planthopper, Laodelphax striatellus (Homoptera: Delphacidae). Biochemical Genetics, 1997, 35: 283-293.
    154.Swingle, MC. The effect of previous diet on the toxication of lead arsenate to aleaf-feeding insect. Journal of Economic Entomology, 1939, 32: 884.
    155.Taira M., Ichihashi H., Yamada H. Computer simulatio nmodel in the small brown planthopper (Laodelphax striatellus Fallén) and rice stripe (in Japanese). Bull Gifu Agr Res C, 1995, 8: 1–22.
    156.Teotia TPS, Gupta GP. Effect of host plants on the susceptibility of larval of Athalia proxima Klug to insecticides. Indian Journal of Entomology, 1970, 32: 140-144.
    157.Terrier LC. Induction of detoxication enzymes in insects. Annal Review of Entomology, 1984, 29: 71-88.
    158.Kakutani T., Hayano Y., Hayashit T., et al. Ambisense segment 4 of rice stripe virus: possible evolutionary relationship with phleboviruses and uukuviruses (Bunyaviridae) Journal of General Virology, 1990, 71, 1427-1432.
    159.Kakutani T., Hayano Y., Hayashit T., et al. Ambisense segment 3 of rice stripe virus: the first instance of a virus containing two ambisense segments. Journal of General Virology, 1991, 72, 465-468.
    160.Thresh JM. Rice viruses and The Green Revolution. Aspects of Applied Bio1ogy, 1988, 17: 187-194.
    161.Toriyama S. Rice Stripe Virus. CMI/AAB Descriptions of plant viruses, 1983, 269: 1-5.
    162.Toriyama S. Rice stripe virus: prototype of a new group of viruses that replicate in plants and insects. Microbiology Science. 1986, (3): 347-351.
    163.TóthováM., Tóth P., Cagáň?. Leafhoppers, planthoppers, froghoppers and cixiids (auchenorrhyncha) on pigweeds as vectors of plant diseases. Acta fytotechnica et zoot echnica, 2004, 7: 322-326.
    164.Uvarov. Insect nutrition and metabolism. Transcactions of the Entomology Society of London, 1929, 76: 255-343
    165.Wilson MR., Claridge MF. Handbook for the identification of leafhoppers and planthopper of rice. C.A.B.Intenational, UK, 1991, 142.
    166.Yamamura K, Yokozawa M, Nishimori M, et al. How to analyze long-term insect population dynamics under climate change: 50-year data of three insect pests in paddy fields. Population Ecology, 2006, 48: 31–48.
    167.Yamashina T. Rice insect pest resistence to insecticides in Japan. Pesticide Science, 1974, 2: 91-106.
    168.Yu S J, Hsu E LI . Induction of hydrolases by allelochemicals and host plants in fall armywom (Lepidoptera: Noctuidae) larvae. Enviornmental Entomology, 1985, 14: 512-515.
    169.Yu SJ. Induction of new glutathione S-transferase isozymes by alleochemicals in the fall armyworm. Pesticide Biochemistry Physiology.1999, 63: l63-171.
    170.Yu SJ, Hsu ELI. Induction of hydrolases by allelochemicals and host plants in fall armyworm (Lepidoptera: Noctuidae) larvae. Enviornmental Entomology, 1985, 14: 512-515.
    171.Yu SJ. Induction of microsomal oxidases by host plants in the fall armyworm, Spodoptera frugiperda (J. E. Smith). Pesticide Biochemistry Physiology, 1982a, 17: 59-67.
    172.Yu SJ. Host plant induction of glutathione S-Transferase in the fall armyworm, Spodoptera frugiperda (J. E. Smith). Pesticide Biochemistry Physiology, 1982b, 18: 101-106.
    173.Yu SJ. Induction of detoxifying enzymes by alleochenicals and host plants in the fall armyworm. Pesticide Biochemistry Physiology, 1983, 19: 330-336.
    174.Yu SJ. Insect glutathione S-Transferases. Zoological Studies, 1996, 35(1): 9-19.
    175.Yu SJ. Interaction of alleochenicals with detoxication enzymes of insecticide-susceptible and resistant fall armyworm. Pesticide Biochemistry Physiology, 1984, 22: 60-68.
    176.Wang ZH., Fang SG., Zhang ZY., et al. Development of an ID-ELISA for the detection of Rice black-streaked dwarf virus in plants. Journal of Virological Methods, 2006, 134: 61-65.
    177.奈须壮兆.ウンカの越冬.植物防疫,1959,13(7):289-297.
    178.石原保.ウンカ类の分布.植物防疫,1959,13(7):389-390.
    179.新海昭.イネ缟叶枯病あめぐ诸情势と问题点.植物防疫,1985,39(1):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700