挤压变形Mg-Al和Mg-Zn系镁合金的力学行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于镁合金在降低产品重量、节省能源及增强产品可靠性等方面所具有的优势,镁合金的开发应用引起了人们的高度重视。近年来,随着汽车工业和电子工业的迅速发展,大量的镁合金结构件被生产出来,代替塑料、铝合金甚至钢制零件,预计镁合金将成为本世纪最重要的商用轻质金属结构材料。由于变形镁合金比铸造镁合金具有更高的强度和塑性,因此,变形镁合金已经在镁质材料的未来广泛应用中呈现出越来越大的潜力。显然,针对变形镁合金的组织、结构与性能开展研究不仅可为新型变形镁合金的开发奠定理论基础,也可为变形镁合金结构件的安全设计和合理使用提供可靠的理论依据。为此,本文主要针对不同加工处理状态的挤压变形AM50和AZ91合金的拉伸行为和低周疲劳行为进行了研究,确定了试验温度和热处理对挤压变形AM50和AZ91合金的拉伸性能和疲劳性能的影响。此外,还针对挤压变形AZ81合金以及等通道转角挤压ZK40合金的超塑性变形行为进行了研究,并探讨了试验温度对两种合金的超塑性能的影响以及相应的超塑性变形机制。
     拉伸行为研究结果表明,随着试验温度的升高,不同加工处理状态的挤压变形AM50和AZ91合金的抗拉强度和屈服强度降低,而断裂伸长率则不断增大。经固溶处理(T4)的挤压变形AM50和AZ91合金的晶粒发生了长大,导致力学性能有所下降;若固溶处理后再进行时效处理(T6),因为有弥散细小的第二相(Mg_(17)Al_(12))析出,可起到强化作用,两种合金的抗拉强度和屈服强度得以提高;热挤压后直接进行人工时效处理(T5),可导致强化相析出,故可有效地提高AM50合金的室温和高温拉伸性能以及AZ91合金的室温拉伸性能。对不同加工处理状态的挤压变形AM50和AZ91合金的拉伸断口形貌分析显示,室温下,合金表现出韧性和脆性混合断裂特征,而在高温下,韧窝数量多且较深,可以确定合金基本发生韧性断裂。
     低周疲劳行为研究结果表明,挤压变形AM50与AZ91镁合金的循环应力响应行为与外加总应变幅及其加工处理状态密切相关。在较大的外加总应变幅下,不同加工处理状态的挤压变形镁合金可表现为循环应变硬化及循环稳定;而在较低的外加总应变幅下,这些合金在疲劳变形初期常表现为循环稳定,甚至呈现循环软化,但是在疲劳变形后期则发生比较明显的循环应变硬化;固溶处理和时效处理均可在一定程度上改变挤压变形AM50与AZ91镁合金的循环应力响应行为。对于不同加工处理状态的挤压变形AM50与AZ91镁合金而言,其弹性应变幅、塑性应变幅与断裂时的反向循环周次之间的关系表现为单斜率线性行为,并分别服从Basquin和Coffin-Manson公式。在较高的外加总应变幅下,两种挤压变形镁合金的循环滞后回线上对应于压缩变形部分的宽度明
Due to their superior performances in weight reductions, energy source saving and reliability enhancement, both development and applications of magnesium alloys have been considerably focused. In recent years, with the rapid progress of automotive and electronic industries, a number of magnesium alloy components have been manufactured to replace those made of plastics, aluminum alloy and steel ones. It can be expected that magnesium alloys will become the most important lightweight structural materials in commercial metal materials. Wrought magnesium alloys can exhibit the higher strength and better plasticity than cast magnesium alloys, and show the more significant potential in further applications of magnesium based materials. Obviously, researches on microstructures and properties of wrought magnesium alloys can not only establish theoretical foundation for new development of wrought magnesium alloys, but also provide reliable bases for safe design and reasonable usage of wrought magnesium alloy components.
    In this paper, the tensile and low cycle fatigue behaviors of extruded AM50 and AZ91 magnesium alloys with different processing statuses are investigated. The influence of testing temperature and heat treatment on both tensile and fatigue properties of extruded AM50 and AZ91 magnesium alloys are determined. Moreover, the superplastic deformation behavior of extruded AZ81 and equal-channel-angular-pressed ZK40 magnesium alloys has also been studied. The effect of testing temperature on the superplastic property of two alloys and corresponding superplastic deformation mechanism are discussed.
    The tensile experimental results show that for the AM50 and AZ91 alloys subjected to different processing and treatment, the ultimate tensile and yield strengths decrease while elongation to failure obviously increases with increasing test temperature. After the solid solution treatment (T4), the growth of grains occurs, which leads to a decrease in mechanical properties of two alloys. When the aging is applied following solid solution treatment (T6), the ultimate tensile and yield strengths of two alloys will get enhanced because the fine secondary phase particles precipitate The aging directly following hot extrusion (T5) can result in the precipitation of those strengthening phases such as Mg_(17)Al_(12), and thus the tensile properties of the AM50 alloy at room and elevated temperatures as well as the tensile properties of the AZ91 alloy at room temperature get increased. Fracture surface analysis revealed that the extruded AM50 and AZ91 alloys with different processing statuses exhibit a characteristic of mixed ductile and brittle fracture during tension at room temperature. At
引文
[1] 马图哈 K H主编.丁道云译.非铁合金的结构与性能.北京:科学出版社,1999.
    [2] 张津,章宗和.镁合金及应用.北京:化学工业出版社,2004.
    [3] 张诗昌,段汉桥,蔡启舟等.主要合金元素对镁合金组织和性能的影响.铸造,2001,50(6):310-315.
    [4] 于琨,黎文献,李松瑞.变形镁合金材料的研究进展.轻合金加工技术.2001,29(7):6-11.
    [5] 刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社,2002.
    [6] 《轻金属材料加工手册》编写组.轻金属材料加工手册.北京:冶金工业出版社,1979.
    [7] 《工程材料实用手册》编辑委员会.工程材料实用手册(第三卷:铝合金、镁合金).北京:中国标准出版社,2002.
    [8] 曾正明.实用工程技术手册.北京:机械工业出版社,2000.
    [9] Kainer K U. Magnesium alloys and technology. Weinheim: Wiley-Vch Verlag GmbH & Co. KGaA, 2003.
    [10] 陈振华,严红革,陈吉华等.镁合金.北京:化学工业出版社,2004.
    [11] 闵学刚,孙扬善,杜温文等.Ca,Si和RE对AZ91合金的组织和性能的影响.东南大学学报,2002,32(3):409-414.
    [12] 袁广银,孙扬善,王震.Sb低合金化对Mg-9Al基合金显微组织和力学性能的影响.中国有色金属学报,1999,9(4):779-784.
    [13] 孙扬善,翁坤忠,袁广银.Sn对镁合金显微组织和力学性能的影响.中国有色金属学报,1999,9(1):55-60.
    [14] 袁广银,孙扬善,张为民.Bi对铸造镁合金组织和力学性能的影响.铸造,1998,(5):5-7.
    [15] Polmear I J. Magnesium alloys and applications. Materials Science and Technology, 1994, 10: 1-16.
    [16] William U. A New magnesium alloy for automobile applications. Light Metal Age, 1987, (7): 10-13.
    [17] 王渠东,吕宜振,曾小勤等.稀土在铸造镁合金中的应用.特种铸造及有色合金,1999,(1):40-43.
    [18] William U. Meeting the high temperature aerospace challenge. Light Metal Age, 1986, (8): 15-18.
    [19] 马春江,张荻,张国定.超轻型Mg-Li合金.宇航材料工艺,1998,(2):27-32.
    [20] 曹富荣,崔建忠.超轻Mg-8Li合金超塑性力学性能的研究.稀有金属材料与工程,1997,26(2):27-30.
    [21] 陈振华.变形镁合金.北京:化学工业出版社,2005.
    [22] Nie J F, Muddle B C. Precipitation hardening of Mg-Ca(-Zn) alloys. S cripta Materialia, 1997, 37(10): 1475-1481.
    [23] 陈存中.有色金属熔炼与铸锭.北京:冶金出版社,1987.
    [24] Luo A, Pekguleryuz M O. Review cast magnesium alloys for elevated temperature applications. Journal of Materials Science, 1994, 29: 5259-5271.
    [25] 张诗昌,段汉桥,蔡启舟等.主要合金元素对镁合金组织和性能的影响.铸造,2001,50(6):310-315.
    [26] Pekguleryuz M O. Magnesium alloys, some potentials for alloy development. Light Metal, 1992, (12): 679-686.
    [27] Garboggini A, Mcshane H B. Effect of Zn and Si additions on structure and properties of rapidly solidified Mg-Al alloys. Materials Science and Technology, 1994, 10(9): 763-769.
    [28] Wei L Y. Development of microstructure in cast Mg-Al-RE alloys. Materials Science and Technology, 1996, 12(9): 741-750.
    [29] American Society for Metals. Metals handbook. Metals Park: American Society for Metals, 1973.
    [30] Hollrigl-Rosta F, Just E. Magnesium in the volkswagen. Light Metal Age, 1980, (8): 22-29.
    [31] Petterson G, Westengen H, Hcpier R. Microstructure of pressure die cast magnesium-4wt.% aluminium alloy modified with rare earth additions. Materials Science and Engineering, 1996, A207: 115-120.
    [32] Li Y. Effect of RE and silicon additions on structure and properties of melt spun Mg-9%Al-1%Zn alloy. Materials Science and Technology, 1996, 12(8): 651-659.
    [33] Unsworth W M, King J F. A new magnesium alloy system. Light Metal Age, 1979, (8): 29-32.
    [34] Wei L Y, Dunlop D L. Precipitation hardening of Mg-Zn and Mg-Zn-RE alloys. Metallurgical and Materials Transactions, 1995, 26A (7): 1705-1716.
    [35] 李亚国,段劲华,刘海林等.钇稀土在Mg-Zn-Zr镁合金中的强化作用.现代机械,2003,(5):86-88.
    [36] Caceres C H, Rovera D M. Solid solution strengthening in concentrated Mg-Al alloys. Journal of Light Metals, 2001, 1: 151-156.
    [37] 卫爱丽.镁合金的生产及应用.铸造设备研究,2003,(1):34-37.
    [38] 刘祚时,谢旭红.镁合金在汽车工业中的开发与应用.轻金属,1999,(1):55-58.
    [39] Mabuchi M, Kubota K, Higashi K. New recycling process by extrusion for machined chips of AZgl magnesium and mechanical properties of extruded bars. Materials Transactions, JIM, 1995, 36(10): 1249-1257.
    [40] Abdel-Raouf H, Plumtree A. The influence of deformation rate on the cyclic behavior of pure iron. Metallurgical Transaction. 1971, 2A: 1863-1867.
    [41] Mukai T, Watanabe H, Higashi K. Grain refinement of commercial magnesium alloy for high-strain-rate-superplastic forming. Material Science Forum, 2000, 350-351: 159-170.
    [42] Watanabe H, Mukai T, Higashi K. Superplasticity in a ZK60 magnesium alloy at low temperatures. Scripta Materialia, 1999, 40(4): 477-484.
    [43] Ravi Kumar N V, Blandin J J, C. Desrayaud et al. Grain refinement in AZgl magnesium alloy during thennomechanical processing. Materials Science and Engineering, 2003, A359: 150-157.
    [44] Mohri T, Mabuchi M, Saito N, et al. Microstructure and mechanical properties of a Mg-4Y-3RE alloy processed by thermo-mechanical treatment. Materials Science and Engineering, 1998, A257(2): 287-295.
    [45] Bohlen J, Yi S B, Swiostek Jet al. Microstructure and texture development during hydrostatic extrusion of magnesium alloy AZ31. Scripta Materialia, 2005, 53: 259-264.
    [46] Murai T, Matsuoka S, Miyamoto S et al. Effects of extrusion conditions on microstructure and mechanical properties of AZ31B magnesium alloy extrusions. Journal of Materials Processing Technology, 2003, 141: 207-212.
    [47] 吕炎.锻件组织性能控制.北京:国防工业出版社,1988.
    [48] Sandor B I. Fundamentals of cyclic stress and strain. Madison: University of Wisconsin Press, 1972.
    
    [49] Kwadjo R, Brown L M. Cyclic hardening of magnesium single crystals. Acta Metallurgica 1978, 26(7): 1117-1132.
    
    [50] Liu Z, Wang Z G, Wang Y et al. Cyclic deformation behaviour and fatigue crack propagation in AZ91HP and AM50HP. Materials Science and Technology, 2001, 17(3): 264-268.
    
    [51] Stephens R I, Schrader C D, Lease K B. Corrosion fatigue of AZ91E-T6 cast magnesium alloy in a 3.5% aqueous environment. Journal of Engineering Materials & Technology, 1995, 117: 293-298.
    
    [52] Wolf B, Fleck C, Eifler D. Characterization of the fatigue behaviour of the magnesium alloy AZ91D by means of mechanical hysteresis and temperature measurements. International Journal of Fatigue, 2004, 26: 1357-1363.
    
    [53] Lee R E, Jones J D. Microplasticity and fatigue of some magnesium-lithium alloys. Journal of Materials Science, 1974, 9: 469-475.
    
    [54] Ogarevic V V, Stephens R I. Fatigue of magnesium alloys. Annual Review of Materials Science, 1990, 20: 141-177.
    
    [55] Goodenberger D L, Stephens R I. Fatigue of AZ91E-T6 cast magnesium alloy. Journal of Engineering Materials & Technology, 1993, 115: 391-397.
    
    [56] Polmear I J. Light alloys-Metallurgy of the light metals. London: Arnold Press, 1995.
    
    [57] Clark J B. Age hardening in a Mg-9wt.%Al alloy. Acta Metallurgica 1968, 16(2): 141-152.
    
    [58] Srivatsan T S, Wei L, Chang C F. The cyclic strain resistance, fatigue life and final fracture behavior of magnesium alloys. Engineering Fracture Mechanics, 1997, 56(6): 735-758.
    
    [59] Emley E F. Fatigue and corrosion fatigue. Oxford: Pergamon Press, 1966.
    
    [60] Mayer H, Papakyriacou M, Zettl B, et al. Inflounce of porosity on the fatigue limit of die-casting magnesium and alluminum alloys. International Journal of Fatigue, 2003, 25: 245-256.
    
    [61] Potzies C, Kainer K U. Fatigue of magnesium alloys. Advanced Engineering Materials, 2004, 6(5): 281-289.
    
    [62] Eisenmeier G, Holzwarth B, H6ppel H W et al. Cyclic deformation and fatigue behavior of the magnesium alloy AZ91. Materials Science and Engineering, 2001, A319-321: 578-582.
    
    [63] Gall K, Biallas G, Maier H J et al. In-situ observations of high cycle fatigue mechanisms in cast AM60B magnesium in vacuum and water vapor environments. International Journal of Fatigue, 2004, 26: 59-70.
    
    [64] Gall K, Biallas G, Maier H J et al. In-situ observations of low-cycle fatigue damage in cast AM60B magnesium in an environmental scanning electron microscope. Metallurgical and Materials Transactions, 2004, 35A: 321-331.
    
    [65] Bhambri A K, Kattamis T Z. Cast microstructure and fatigue behavior of a grain-refined Mg-Zn-Zr alloy. Metallurgical Transactions, 1971, 2A: 1869-1874.
    
    [66] Horstemeyer M F, Yang N, Gall K et al. High cycle fatigue mechanisms in a cast AM60B magnesium alloy. Fatigue and Fracture of Engineering Materials & Structures, 2002, 25: 1045-1056.
    
    [67] Lee S G, Patel G R, Gokhale A M. Inverse surface macro-segregation in high-pressure die-cast AM60 magnesium alloy and its effects on fatigue behavior. Scripta Materialia, 2005, 52: 1063-1068.
    
    [68] Shih T S, Liu W S, Chen Y J. Fatigue of as-extruded AZ61A magnesium alloy. Materials Science and Engineering, 2002, A325: 152-162.
    [69] Nan Z Y, Ishihara S, Goshima T et al. Scanning probe microscope observations of fatigue process in magnesium alloy AZ31 near the fatigue limit. Scripta Materialia, 2004, 50(4): 429-434.
    [70] 高洪涛,吴国华,丁文江.镁合金疲劳性能的研究现状.铸造技术,2003,24(4):266-268.
    [71] Venkateswaran P, Ramana S G S, Pathak S D et al. Fatigue crack growth behaviour of a die-cast magnesium alloy AZ91D. Materials Letters, 2004, 58: 2525-2529.
    [72] Gall K, Biallas G, Maier H J et al. Environmentally influenced microstructurally small fatigue crack growth in cast magnesium. Materials Science and Engineering, 2005, A396: 143-154.
    [73] Horstemeyer M F, Yang N, Gall K et al. High cycle fatigue of a die cast AZ91E-T4 magnesium alloy. Acta Materialia, 2004, 52(5): 1327-1336.
    [74] Lee S, Lee S H, Kim D H. Effect of Y, Sr and Nd additions on the microstructure and microfracture mechanism of squeeze-cast AZ91-X magnesium alloys. Metallurgical and Materials Transactions, 1998, 29A: 1221-1235.
    [75] Perov S N, Ogarevic V V, Stephens R I. Application and verification of fatigue life calculation methods for AZ91E-T6 cast magnesium alloy under variable amplitude loading. Journal of Engineering Materials & Technology, 1993, 115: 385-390.
    [76] Ferguson W G, Liu W, J McCulloch. Corrosion-fatigue performance of magnesium alloys. International Journal of Modern Physics B, 2003, 17(8-9): 1601-1607.
    [77] Song G L, Atrens A. Corrosion mechanisms of magnesium alloys. Advanced Engineering Materials, 1999, 1:11-33.
    [78] Eliezer A, Gutman E M, Abramov E et al. Corrosion fatigue of die-cast and extruded magnesium alloys. Journal of Light Metals, 2001, 1 : 179-186.
    [79] Hilpert M, Wagner L. Corrosion fatigue behavior of the hilgh strength magnesium alloy AZ80. Journal of Material Engineering and Performance, 2000, 9 (4): 402-407.
    [80] 曾荣昌,韩恩厚,柯伟等.变形镁合金AZ80的腐蚀疲劳机理.材料研究学报,2004,18(6):561-567.
    [81] Unigovski Y, Eliezer A, Abramov E et al. Corrosion fatigue of extruded magnesium alloys. Materials Science and Engineering, 2003, A360: 132-139.
    [82] Kobayashi Y, Shibusawa T, Ishikawa K. Environmental effect of fatigue crack propagation of magnesium alloy. Materials Science and Engineering, 1997, A234-236: 220-222.
    [83] Kusukawa K, Takao K. Fatigue crack initiation behavior and notch sensitivity of AZ92A magnesium alloy. Transactions of the Japan Society of Mechanical Engineers A, 2002, 68(7): 1092-1097.
    [84] Eifert A J, Thomas J P, Rateick R G Influence of anodization on the fatigue life WE43A-T6 magnesium. Scripta Materialia, 1999, 40(8): 929-935.
    [85] May U, Berg-Pollack A. Fatigue simulation of light weight components of magnesium. Advanced Engineering Materials, 2003, 5(12): 906-910.
    [86] Sertsyuk V A, Grinberg N M, Ostapenko I L. Fatigue fracture of some magnesium alloys in vacuum at room and low temperatures. Materials Science, 1980, 16(4): 362-365.
    [87] Grinberg N M, Serdyuk V A, Ostapenko I L et al. Effect of low temperature on fatigue failure of magnesium alloy MA12. Materials Science, 1979, 15(1): 17-21.
    [88] Maeng D Y, Kim T S, Lee J H et al. Microstructure and strength of rapidly solidified and extruded Mg-Zn alloys. Scripta Materialia, 2000, 43: 385-389.
    [89] 胡赓祥,蔡徇.材料科学基础.上海:上海交通大学出版社,2000.
    [90] Prasad Y V R K, Seshacharyulu T. Modelling of hot deformation for microstructural control. International Materials Reviews, 1998, 43: 243-258.
    [91] 沈健.AA7005铝合金的热加工变形特性.中国有色金属学报,2001,(11):593-597.
    [92] 崔约贤,王长利编著.金属断口分析.哈尔滨:哈尔滨工业大学出版社,1998.
    [93] Raske D T, Morrow J. Mechanics of Materials in Low Cycle Fatigue Testing. ASTM STP 465. Philadelphia: American Society for Testing and Materials, 1969.1-25.
    [94] Coffin L F. Fatigue at high temperatures. ASTM STP 520. Philadelphia: American Society for Testing and Materials, 1973.5-34.
    [95] Zenner H, Renner F. Cyclic material behavior of magnesium die castings and extrusions. International Journal of Fatigue, 2002, 24: 1255-1260.
    [96] Mulford R A, Kocks U F. New observations on the mechanisms of dynamic strain aging and jerky flow. Acta Metallurgica, 1979, 27:1125-1134.
    [97] Zhu S M, Nie J F. Serrated flow and tensile properties of a Mg-Y-Nd alloy. Scripta Materialia, 2004, 50: 51-55.
    [98] Choudhary B K, Rao K B S, Mannan S L et al. Serrated yielding in 9Cr-1Mo ferritic steel. Materials Science and Technology, 1999, 15(7): 791-797.
    [99] Chen L J, Liaw P K, Wang Het al. Cyclic deformation behavior of HAYNES~(?) HR-120~(?) superalloy under low-cycle fatigue loading, Mechanics of Materials, 2004, 36: 85-98.
    [100] Rao K B S, Schiffers H, Schuster H et al. Influence of time and temperature dependent processes on strain controlled low cycle fatigue behavior of alloy 617. Metallurgical Transactions, 1988, 19A(2): 359-371.
    [101] Ostergren W J. A damage function and associated failure equations for predicating hold time and frequency effects in elevated temperature low cycle fatigue, Journal of Testing and Evaluation, 1976, (4): 327-339.
    [102] Halford G. R., The energy required for fatigue. Journal of Materials, 1966, (1): 3-18.
    [103] Agnew S R, Tome C N, Brown D Wet al. Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling. Scripta Materialia, 2003, 48(8): 1003-1008.
    [104] Emley F E. Principle of magnesium technology. Oxford: Pergamon, 1999.65-71
    [105] 哈宽富.金属力学性质的微观理论.北京:科学出版社,1983.
    [106] 陈文哲,彭开萍,钱匡武.动态应变时效对不锈钢高温强度的影响.机械工程学报,1992,28(2):34-38.
    [107] Valsan M, Sastry D H, Rao K B S et al. Effect of strain rate on the high-temperature low-cycle fatigue properties of a Nimonic PE- 16 alloy. Metallurgical and Materials Transactions, 1994, 25A: 159-171.
    [108] 郑子樵,刘明桂,尹登峰.Al-Li合金的锯齿屈服现象.中南工业大学学报,1995,26(1):87-91.
    [109] 钱匡武,李效琦,彭开萍等.高强度铝合金LC4中锯齿屈服特征的研究.福州大学学报,1995,23(2):53-58.
    [110] Hong S G, Lee S B. Dynamic strain aging under tensile and LCF loading conditions and their comparison in cold worked 316L stainless steel. Journal of Nuclear Materials, 2004, 328: 232-242.
    [111] Couling S L. Yield points in a dilute magnesium-thorium alloy. Acta Metallurgica, 1959, 7:133-134.
    [112] Chatuverdi M C, Lloyd D J. Onset of serrated yielding in Mg-10Ag alloy. Philosophical Magazine, 1974, 30: 1199-1207.
    [113] Zhu S M, Nie J F. Serrated flow and tensile properties of a Mg-Y-Nd alloy. Scripta Materialia, 2004, 50: 51-55.
    [114] Corby C, Caceres C H, Lukac P. Serrated flow in magnesium alloy AZ91. Materials Science and Engineering, 2004, A387-389: 22-24.
    [114] Cottrell A H. A note on the Portevin-Le Chatelier effect. Philosophical Magazine, 1953, 44: 829-832.
    [116] McCormigk P G A model for the Portevin-Le Chatelier effect in substitutional alloys. Acta Metallurgica, 1972, 20(3): 351-354.
    [117] Korbel A, Zasadzinski J Sieklucka Z. A new approach to the Portevin-LeCatelier effect. Acta Metallurgica, 1976, 24(10): 919-923.
    [118] Schoeck G. The Portevin-Le Chatelier effect-A kinetic theory. Acta Metallurgica, 1984, 32(8): 1229-1234.
    [119] 王仁智,吴培远.疲劳失效分析.北京:机械工业出版社,1987
    [120] 黄彩蛾.超塑性及超塑性合金的应用.青海大学学报,1995,13(1):29-34.
    [121] 何景素,王燕文.金属的超塑性.北京:科学出版社,1986.
    [122] Segal V M. Materials processing by simple shear. Materials Science and Engineering, 1995, A 197(2): 157-164.
    [123] Lee S M, Langdon T G. High strain rate superplasticity in a Zn-22%Al alloy after equal-channel angular pressing. Material Science Forum, 2001, 357-359:321-326.
    [124] Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation. Progress in Materials Science, 2000, 45(2): 103-189.
    [125] Furukawa M, Iwahashi Y, Horita Z et al. The shearing characteristics associated with equal-channel angular pressing. Materials Science and Engineering, 1998, A257: 328-332.
    [126] Iwahashi Y, Horita Z, Nemoto M et al. The process of grain refinement in equal- channel angular pressing. Acta Materialia, 1998, 46(9): 3317-3331.
    [127] Yamashita A, Horita Z, Langdon T G. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Materials Science and Engineering, 2001, A300: 142-147.
    [128] Watanabe H, Mukai T, Mabuchi M et al. High-strain-rate superplasticity at low temperature in a ZK61 magnesium alloy produced by powder metallurgy. Scripta Materialia, 1999, 41 : 209-217.
    [129] Watanabe H, Mukai T, Ishikawa K et al. Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion. Scripta Materialia, 2002, 46(3): 851-856.
    [130] Mabuchi M, Ameyama K, Iwasaki H, Higashi K. Low temperature superplasticity of AZ91 magnesium alloy with non-equilibrium grain boundaries. Acta Materialia, 1999,47: 2047-2055.
    [131] Ashby M F, Verrall R A. Diffusion-accommodated flow and superplasticity. Acta Metatlurgica, 1973, 21: 149-163.
    [132] Gifkins R C. Grain-boundary sliding and its accommodation during creep and superplasticity. Metallurgical Transactions, 1976, 7A : 1225-1233.
    [133] Chang T C, Wang J Y, Lee S et al. Grain refining of magnesium alloy AZ31 by rolling. Journal of Materials Processing Technology, 2003, 140: 588-591.
    [134] Mukai T, Watanabe H, Higsahi K. Grain refinement of commercial magnesium alloys for high-strain-superplastic forming. Materials Science Forum, 2000, 350-351:159-165.
    [135] Wei Y H, Wang Q D, Zhu Y P. Superplasticity and grain boundary sliding in rolled AZ91 magnesium alloy at high strain rates. Materials Science and Engineering, 2003, A360:107-115.
    [136] Tan J C, Tan M J. Superplastic deformation behavior of AZ31 magnesium sheet. The International Workshop on Advances in Materials Science and Technology. Singapore: Institute of Materials Research & Engineering, Materials Research Society, 2000, 173-182.
    [137] Bussiba A, Artzy A B, Shtechman Aet al, Grain refinement of AZ31 and ZK60 Mg alloys-towards superplasticity studies. Materials Science and Engineering, 2001, A302: 56-64.
    [138] Watanabe H, Mukai T, Ishikawa K et al. Superplasticity of a particle-strengthened WE43 magnesium alloy. Materials Transactions, 2001, 42: 157-162.
    [139] Mabuchi M, Higashi K. Strengthening mechanisms of Mg-Si alloys. Acta Materialia, 1996, 44: 4611-4618.
    [140] Yu K, Li W, Zhao J et al. Plastic deformation behaviors of a Mg-Ce-Zn-Zr alloy. Scripta Materialia, 2003, 48: 1319-1323.
    [141] Higashi K. Recent advances and future directions in superptasticity. Materials Science Forum, 2001, 357-359: 345-356.
    [142] Higashi K, Mabuchi M, Langdon T G. High-strain-rate superplasticity in metallic materials and the potential for ceramic materials. The Iron and Steel Institute of Japan International, 1996, 36(12): 1423-1438.
    [143] Kim W J, Chuang S W, An C W, Higashi K. Superplasticity in a relatively coarse-grained AZ61 magnesium alloy. J. Mater. Sci. Letters, 2001, 20: 1635-1637.
    [144] 陈浦泉.组织超塑性.哈尔滨:哈尔滨工业大学出版社,1988.
    [145] 刘满平,马春江,王渠东等.工业态AZ31镁合金的超塑性变形行为.中国有色金属学报,2002,12(4):797-801.
    [146] Wu X, Liu Y. Superplasticity of coarse-grained magnesium alloy. Scripta Materialia, 2002, 46(1):269-274.
    [147] McCormick P G. The Portvein- Le Chatelier effect in an Al-Mg-Si alloy loaded in torsion. Acta Metallurgica, 1982, 30: 2079-2083.
    [148] Kubin L P, Estrin Y. Evolution of dislocation densities and the critical conditions for the Portvein-Le Chatelier effect. Acta Metallurgica, 1990, 38: 697-708.
    [149] Louat N. On stress relaxation in dislocation solute atmosphere. Philosophical Magazine, 1981, A44: 223-228
    [150] Watanabe H, Mukai T, Kohzu Met al. Effect of temperature and grain size on the dominant diffusion process for superplastic flow in an AZ61 magnesium alloy. Acta Materialia, 1999, 47:3753-3758
    [151] Vagarali S S, Langdon T G. Deformation mechanism in H.C.P. metals at elevated temperatures, 1. —Creep behavior of Magnesium. Acta Metallurgica, 1981, 29:1969-1982
    [152] Sherby O D, Wadsworth J. Deformation processing and structure. Metals Park: ASM International, 1982.
    [153] Yavari Y, Mohamed F A, Langdon T G. Creep and substructure formation in an Al-5%Mg solid solution alloy. Acta Metallurgica, 1981, 29:1495-1507
    [154] Oliver W C, Nix W D. High-temperature deformation of oxide dispersion strengthened Aluminum and Al-Mg solid solutions. Acta Metallurgica 1982, 30: 1335-1347
    
    [155] Bowen J R, Prangnell P B, Humphreys F J. Microstructural evolution during the formation of ultra-fine grain structures by severe deformation. Materials Science and Technology, 2000, 16: 1246-1250
    
    [156] Horita Z, Smith D J, Furukawa M et al. An investigation of grain boundaries in submicron-grained Al-Mg solid solution alloys using high-resolution electron microscopy. Journal of Materials Research, 1996,11: 1880-1890.
    
    [157] Sevillano J G, Van Houtte P, Aernoudt E. Large strain work hardening and texture. Progress in Materials Science, 1980, 25: 69-412.
    
    [158] Hughes D A, Hansen N. High angle boundaries formed by grain subdivision mechanisms. Acta Materialia, 1997,45: 3871-3886.
    
    [159] Bowen J R, Prangnell P B, Humphreys F J. Microstructural evolution of the deformed state during severe plastic deformation of an ECAE processed Al-0.13%Mg alloy. Materials Science Forum, 2000, 545-550:331-337.
    
    [160] Iwahashi Y, Furukawa M, Horita Z et al. Microstructural characteristics of ultrafine-grained aluminum processed using equal channel angular pressing. Metallurgical Transactions, 1998, 29A: 2245-2252
    
    [161] Sakai T, Belyakov A, Miura H et al. Strain-induced submicrocrystalline grains developed in austenitic stainless steel under severe warm deformation. Philosophical Magazine Letters, 2000, 80: 711-718
    
    [162] Ferrasse S, Segal V M, Hartwig K T et al. Microstructure and properties of copper and aluminum alloy 3003 heavily worked by equal channel angular extrusion. Metallurgical Transactions, 1997, 28A: 1047-1057
    
    [163] Oh-Ishi K, Horita Z, Furukawa M et al. Optimizing the rotation conditions for grain refinement in equal channel angular extrusion. Metallurgical Transactions, 1998, 29A: 2011-2013
    
    [164] Rauch E F, Schmitt H. Dislocation substructures in mild steel deformed in simple shear. Materials Science and Engineering, 1989, A113: 441-448.
    
    [165] Raj R, Ashby M F. On grain boundary sliding and diffusional creep. Metallurgical Transactions, 1971,2: 1113-1127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700