有机非线性光学材料的TDDFT-SOS理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代光通讯、光计算和光信号处理等领域的高速发展,越来越需要一些具有大的非线性光学系数的材料作为光子器件的基础。有机π电子共轭体系具有较大的非线性光学系数、响应速度快、成本低、容易加工、结构可调性好、高的损伤阈值,因此受到了人们广泛的关注。另一方面,理论计算可以直接获得非线性光学系数张量的各个分量,不像光学实验得到的只是一个宏观量,从而成为研究分子性质的有效工具。由于分子间的相互作用或集体效应,通常一个宏观量不能直接转换成微观量,因此,计算分子的非线性光学系数并与实验值进行比较,对建立结构和性质之间的关系以及理解这些效应对分子光学非线性响应影响的程度意义重大。
     本论文利用密度泛函理论结合完全态求和方法研究了系列新型有机非线性光学材料。通过理论计算详细地给出并五苯-金异构体、酚基吡啶硼配合物、有机胺六钼酸盐衍生物、螺旋硅双芴体系的几何结构、电子光谱、电荷传输机理和非线性光学性质等信息,这为结构—非线性光学性质间关系的建立奠定了基础,并且为实验提供了有价值的理论依据,为进一步探索具有较大的非线性光学系数的有机材料奠定了基础。研究工作主要包括以下五部分。
     1.用时间相关密度泛函理论结合完全态求和方法(TDDFT-SOS)计算系列有机小分子体系的非线性光学系数,与文献报道的理论值和实验值相比较,结果显示TDDFT-SOS方法计算的非线性光学系数与实验值得到较好的符合,并与CCSD(T)方法计算精确度相当,表明用此方法研究有机体系的非线性光学性质是可行的。同时研究12种不同泛函对TDDFT-SOS方法的影响,并从计算结果的精确度和计算效率方面进行了系统分析。
     2.用密度泛函理论研究了并五苯-金异构体的结构、电子光谱和二阶非线性光学性质。结果表明,当一个金原子加到并五苯上时,金原子与并五苯中心苯环上的碳原子相连的体系最稳定,其中金原子与碳原子形成共价σ单键,但是其它体系中金原子与碳原子存在强的给受体相互作用。此外,苯环的数目对金原子与碳原子之间的成键性质和相互作用影响较大,增加苯环的数目能够缩短Au—C键的距离和增加Au—C键的强度。但是当苯环的数目是9个时,Au—C键距离不再改变。当两个金原子加到并五苯也能缩短Au—C键的距离,并且两个金原子在并五苯异侧时形成的异构体更稳定。金原子加到并五苯上时,明显地改变了并五苯的跃迁方式,增加了可能的电子跃迁。这些异构体具有可应用的二阶非线性光学系数,分析表明从金原子到并五苯的电荷转移对非线性光学响应起主要贡献,体系4的二阶非线性光学系数是体系1的近四倍,这说明微小的结构调整,能够明显地提高非线性光学响应。
     3.用密度泛涵理论优化了可以作为单层器件的酚基吡啶硼配合物阴离子、阳离子和中性分子几何构型,在此基础上计算了吸收和发射光谱。其吸收和发射光谱主要是由三苯胺到酚基吡啶的电荷转移组成。从重组能角度看,空穴迁移率大于电子迁移率,然而电子的交换积分大于空穴的交换积分,综合这两个因素,电子和空穴的迁移率几乎相当,这从理论上解释了其可以做成单分子发光器件的原因。结合前线分子轨道和阴离子、阳离子的几何结构变化,三苯胺起到传输电子,酚基吡啶起到传输空穴的作用。鉴于其具有较大的二阶非线性光学系数、高的透明性和稳定性等优点,该体系有望成为较好的二阶非线性光学材料。
     4.用密度泛函理论方法研究六钼酸盐有机胺衍生物的电子光谱和三阶非线性光学性质,得出如下主要结论。有机胺部分作为电子给体,多阴离子作为电子受体,形成给体-受体-给体电荷转移模型。结果表明GRAC势是计算此类体系电子光谱的有效方法,六钼酸盐有机胺衍生物与六钼酸盐相比,有机胺加到六钼酸盐上增加了从基态跃迁到激发态的几率,有机胺的对位取代和直角位取代具有不同的跃迁性质。六钼酸盐有机胺衍生物具有较大的三阶非线性光学系数,有机胺到多阴离子的电荷转移对有机胺六钼酸盐衍生物的非线性光学性质起决定作用,增加π共轭长度是提高此类体系非线性光学响应的有效途径。
     5.用密度泛涵理论研究螺旋硅共轭结构体系的二阶非线性光学系数,结果表明用氮原子取代碳原子有利于提高体系的非线性光学响应,此类体系具有许多有利于作为二阶非线性光学材料的优点。与典型的尿素分子相比,该体系具有较大的二阶非线性光学系数。此类体系在较大的宽频区表现出较小的色散行为,它们可以用于频率转换材料。此类体系小的偶极矩能够保证此类材料具有较大的宏观二阶极化率。此类体系在可见光区具有较好的透明性,能够满足非线性光学材料对透明性的需求。
With the rapid development of optical telecommunication, optical computing and signal-processing devices etc, materials with larger nonlinear optical coefficient are still in great demand due to the critical role that they are playing in photoelectric devices. The organic materials are of major interest in the nonlinear optical field, due to their large nonlinear optical coefficient, fast nonlinear optical response times, relatively low cost, ease of fabrication and integration into devices, tailorability which allows one to fine tune the chemical structure and properties for a given nonlinear optical process, high laser damage thresholds. Theoretical calculation can be a good tool for obtaining some insight into molecular property, each tensor component of hyperpolarizability can be assessed directly, unlike optical experiment in which the property is obtained as macroscopic quantity. Usually, a macroscopic quantity cannot be directly converted to a microscopic one due to intermolecular or collective effects. Therefore, calculation of molecular hyperpolarizabilities and comparison of the results with corresponding experimental results are of importance in establishing the structure-property relationship and estimating the amount of such effects on molecular optical nonlinearity.
     In this thesis, we have performed systematic theoretical research of novel organic nonlinear optical materials by using time-dependent density-functional theory combined with sum-over-states method (TDDFT-SOS). Gold-pentacene complex, phenolpyridyl boron complexes, organoimide derivatives of hexamolybdates and spirosilabifluorene derivatives were optimized by density functional theory. On the basis of the optimized molecular geometries, electronic spectrum, charge transport and nonlinear optical properties of these systems are obtained and structure-property relationships are also established. These results may provide a theoretical basis of designing novel materials with large nonlinear optical coefficeents. Our work has been focus on the following five aspects:
     1. The nonlinear optical properties of a series of organic molecules are calculated by using TDDFT-SOS method and compared with the literature theoretical and experimental values. The results show that our theoretical values are in agreement with the experimental and CCSD(T) ones. This indicates we can use TDDFT-SOS method to study the NLO properties of the organic systems. The effects of different functional/basis set on NLO properties were tested. Moreover, the convergent behaviors and efficiency of various functionals are also discussed.
     2. Four isomers formed by a gold atom attached to a pentacene molecule were investigated by density functional theory due to their potential applications in molecular electronics. When attaching a gold atom to a pentacene molecule, the gold atom attached to the center benzene ring is the most stable. The gold and carbon atoms can form a covalent bond, which hasσsingle-bond character. However, there are strong donor-acceptor interactions between the gold and carbon atoms of systems 3 and 4. Moreover, the influence of the number of benzene rings on the bonding nature or interactions is great. Increasing the number of benzene rings can shorten the Au-C distance and enhance the Au-C bond strength. However, when the number of benzene rings is 9, the Au-C distance does not change. Adding a gold atom to the pentacene obviously changes the transition nature of pentacene and results in the increase of possible transitions. These systems possess moderate molecular second-order polarizabilities compared with the organometallic and organic complexes. Theβvalue of system 4 is much larger than that of system 1. Thus, subtle variations in the molecular architecture result in substantial enhancement to the second-order NLO response.
     3. The natural, cation and anion structures of 1,6-bis(2-hydroxyphenol)pyridylboron bis(4-n-butylphenyl)phenyleneamine were optimized with the B3LYP functional. The charge transport properties were investigated within the framework of the charge hopping model. The results show that 1,6-bis(2-hydroxyphenyl)pyridineboron ((dppy)BF) functions acts as a electron transport group and triphenylamine as a hole transport group; the charge transport ability for the two types of carriers is not only high but also nearly balanced, which explains why it is an efficient single-layer electroluminescent device. On the basis of the large second-order polarizability value and high transparency, this compound has the possibility to be an excellent second-order nonlinear optical material. The main origin of this large second-order nonlinear optical response is charge transfer from the triphenylamine group to (dppy)BF.
     4. Electronic spectrum of organoimide derivatives of hexamolybdates have first been calculated within the time-dependent density-functional theory. The results show that organoimide acts as donor and hexamolybdates as acceptor. Those derivatives possess donor-acceptor-donor (D-A-D) configurations. The accurate electronic absorption spectrum of organoimide derivatives of hexamolybdates can be achieved using the GRAC potential. Adding the organoimide to [Mo_6O_(19)]~(2-) can increase the transition probability compared to [Mo_6O_(19)]~(2-). The transition nature of the diagonal-substituted derivatives is different from that of the orthogonal-substituted derivatives. The organoimide derivatives of hexamolybdates are found to possess remarkably larger static third-order polarizabilities. For our studied systems, increasing the conjugation length and diagonal substituted are efficient ways to enhance the third-order polarizability.
     5. We have investigated the electronic structure and the second-order nonlinear optics properties of the asymmetric spirosilabifluorene derivatives and elucidated structure-property relationships from the micromechanism. The results show that these compounds possess many favorable features for application in the second-order nonlinear optical field. First, these compounds have remarkably larger molecular second-order polarizabilities compared with the typical organic compounds. Second, all the compounds generate large nonresonant optical nonlinearities over a wide frequency zone, which can be used for a frequency conversion optical material. Third, a small dipole moment can guarantee manifestation of the large macroscopic second-order susceptibility. Fourth, they have high transparency in the visible light area.
引文
[1] Franken P A,Hill A E,Peters C W,et al. Generation of Optical Harmonics [J]. Phys Rev Lett, 1961, 7: 118-119.
    [2] Hellwarth R W. Theory of Stimulated Raman Scattering [J]. Phys Rev, 1962,130: 1850-1852.
    [3] Chiao R Y, Townes C H, Stoicheff B P. Stimulated Brillouin Scattering and Coherent Generation of Intense Hypersonic Waves [J]. Phys Rev Lett, 1964, 12: 592-595.
    [4] Delaire J A, Nakatani K. Linear and Nonlinear Optical Properties of Photochromic Molecules and Materials [J]. Chem Rev, 2000, 100:1817-1846.
    [5] Kains D R, Ratner M A, Marks T J, Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects [J]. Chem Rev, 1994, 94: 195-242.
    [6] Coe B J. In Comprehensive Coordination Chemistry 2 [M], McCleverty J A, Meyer T J, Eds. Elsevier Pergamon: Oxford, U. K. 2004; Vol. 9, p 621-651.
    [7] Zyss J. Molecular Nonlinear Optics: Materials, Physics and Devices [M], Academic Press: New York, 1994; Vol. 1, p 12-25.
    [8] Bosshard Ch, Sutter K, Prêtre Ph, et al. Organic Nonlinear Optical Materials [M] (Advances in Nonlinear Optics, Vol. 1.), Gordon & Breach: Amsterdam, The Netherlands, 1995.
    [9] Marder S R, Organic nonlinear optical materials: where we have been and where we are going [J]. Chem Commun, 2006, 131-134.
    [10] Papadopoulos M G, Leszczynski J, Sadlej A J. Nonlinear Optical Properties of Matter: From Molecules to Condensed Phases [M], Kluwer: Dordrecht, 2006.
    [11] Gong W, Li Q Q, Li Z, et al. Synthesis and Characterization of Indole-Containing Chromophores for Second-Order Nonlinear Optics [J]. J Phys Chem B, 2006, 110: 10241-10247.
    [12] Bredas J L, Adant C, Tackx P, et al. Third-Order Nonlinear Optical Response in Organic Materials: Theoretical and Experimental Aspects [J]. Chem Rev, 1994, 94: 243-278.
    [13] DiBella S. Second-order nonlinear optical properties of transition metal complexes [J]. Chem Soc Rev, 2001, 30: 355-366.
    [14] Guieu V, Payrastre C, Madaule Y, et al. Large Quadratic Nonlinear Optical Efficiencies in Pseudosymmetric Streptocyanine Dyes [J]. Chem Mater, 2006, 18: 3674-3681.
    [15] Shelton D P, Rice J E. Measurements and calculations of the hyperpolarizabilities of atoms and small molecules in the gas phase [J]. Chem Rev, 1994, 94: 3-29.
    [16] 曹阳. 结构与材料 [M]. 北京:高等教育出版社(第一版). 2003. 270 页.
    [17] 张克从,王希敏. 非线性光学晶体晶体材料科学 [M]. 北京:科学出版社(第二版). 2005,p80.
    [18] Maier M, Kaiser W, Giordmaine J A. Intense Light Bursts in the Stimulated Raman Effect [J]. Phys Rev Lett, 1966, 17: 1275 – 1277.
    [19] Pereira S F, Ou Z Y,Kimble H J. Backaction evading measurements for quantum nondemolition detection and quantum optical tapping [J]. Phys Rev Lett,1994,72: 214-217.
    [20] Holland M J, Collett M J, Walls D F et al. Nonideal quantum nondemolition measurements [J]. Phys Rev A,1990, 42: 2995-3005.
    [21] Lai W K, Buek V, Knight P L, Interaction of a three-level atom with an SU(2) coherent state [J]. Phys Rev A, 1991, 44: 2003-2012.
    [22] Komine H, Long W H, Stappaert E A,et al. Beam cleanup and low-distortion amplification in efficient high-gain hydrogen Raman amplifiers [J]. J Opt Soc Am B ,1986, 3: 1428-1432.
    [23] Austin R, William R B. Geometrical technique to determine the influence of monochromatic aberrations on retinoscopy [J]. J Opt Soc Am A, 1996, 13: 3-18.
    [24] 沈元壤著,顾世杰译. 非线性光学原理 [M],北京:科学出版社(第一版),1987.
    [25] 刘思敏,郭儒,许京军编著. 光折变非线性光学及其应用 [M],北京:科学出版社(第一版),2004.
    [26] 李铭华,杨春晖,徐玉恒,等著. 光折变晶体材料科学导论 [M],北京:科学出版社(第一版), 2003.
    [27] Günter P. Electro-optic and photorefractive materials [M]. Berlin, Heidelberg, New York, London, Paris, Tokyo: Spinger-Verlag, 1986.
    [28] Baumert J C, Hoffnagle J, Günter P. High-efficiency intracavity frequency doubling of a styryl-9 dye laser with KNbO3 crystals [J]. Appl Optics. 1985, 24:1299-1306.
    [29] 许煜寰.铁电压电材料 [M],北京:科学出版社(第一版),1978.
    [30] 沈德忠. KTP 晶体的电光研究进展 [J]. 人工晶体学报,2001,31: 28-35.
    [31] 钱士雄,王恭明,编著. 非线性光学原理与进展 [M], 上海:复旦大学出版社(第一版),2001.
    [32] Smirnov V V. in Raman Spectroscopy, Linear and Nonlinear [M]. Ed:by J Lascombe, John Wiley &Sons,1982.
    [33] Kirschner S M, Watswon J K G., Sextic centrifugal distortion of tetrahedral molecules [J]. J Mol Spectro, 1972, 47:347-350.
    [34] 张克从,王希敏, 非线性光学晶体材料科学 [M],科学出版社(第一版),1996.
    [35] Pople J A, Krishnan R, Schlegel H B, Et Al. Electron Correlation Theories and Their Application to Study of Simple Reaction Potential Surfaces [J]. Int J Quant Chem, 1978, 14 (5): 545-560.
    [36] Xu G B, Hu D, Zhao X, et al. Fluorescence upconversion properties of a class of improved pyridinium dyes induced by two-photon absorption [J]. Optics And Laser Technology, 2007, 39 (4): 690-695.
    [37] Zhang X B, Feng J K, Ren A M. Theoretical study of one- and two-photon absorption properties of octupolar D-2d and D-3 bipyridyl metal complexes [J]. J Phys Chem A, 2007, 111 (7): 1328-1338.
    [38] Liu H P, Sun Z G, Hogan S D, et al. Photodissociation dynamics of CF3I investigated by two-color femtosecond laser pulses [J]. European Physical Journal D, 2006, 40 (3): 357-362.
    [39] Park J H, Jeon O Y, Lim H H, et al. Fluorescence by two-photon absorption in an organic single, crystal composed of excited-state intramolecular proton transfer molecules [J]. Journal of the Korean Physical Society, 2006, 49: S592-S594.
    [40] Hayek A, Bolze F, Nicoud JF, et al. Synthesis and characterization of water-soluble two-photon excitedblue fluorescent chromophores for bioimaging [J]. Photochemical & Photobiological Sciences, 2006, 5 (1): 102-106.
    [41] Collini E, Ferrante C, Bozio R, et al. Large third-order nonlinear optical response of porphyrin J-aggregates oriented in self-assembled thin films [J]. J Mater Chem, 2006, 16 (16): 1573-1578.
    [42] Frazier C C, Harvey M A, Cockerham M P, et al. Second-harmonic generation in transition-metal-organic compounds [J]. J Phys Chem, 1986, 90(22): 5703-5706.
    [43] Qin J G, Liu D Y, Dai C Y, et al. Influence of the molecular configuration on second-order nonlinear optical properties of coordination compounds [J]. Coord Chem Rev, 1999, 188: 23-34.
    [44] Weyland T, Ledoux I, Brasselet S, et al. Nonlinear Optical Properties of Redox-Active Mono-, Bi-, and Trimetallic -Acetylide Complexes Connected through a Phenyl Ring in the Cp*(dppe)Fe Series. An Example of Electro-switchable NLO Response [J]. Organometallics, 2000, 19: 5235-5237.
    [45] Curreli S, Deplano P, Faulmann C, et al. Electronic Factors Affecting Second-Order NLO Properties: Case Study of Four Different Push-Pull Bis-Dithiolene Nickel Complexes [J]. Inorg Chem, 2004, 43;5069-5079.
    [46] Clem P, Humphrey M G. Nonlinear optical properties of transition metal acetylides and their derivatives [J]. Coord Chem Rev, 2004, 248: 725-756.
    [47] Coe B J, Harris J A, Jones L A, et al. Syntheses and Properties of Two-Dimensional Charged Nonlinear Optical Chromophores Incorporating Redox-Switchable cis-Tetraammineruthenium(II) Centers [J]. J Am Chem Soc, 2005, 127: 4845-4859.
    [48] Qin J G, Su N B, Dai C Y, et al. A tetrahedral coordination compound for second-order nonlinear optics: synthesis, crystal structure and SHG of Zn(2-NH(2)py)(2)Cl-2 [J]. Polyhedron, 1999, 18 (26): 3461-3464.
    [49] Weyland T, Ledoux I, Brasselet S, et al. Nonlinear Optical Properties of Redox-Active Mono-, Bi-, and Trimetallic σ-Acetylide Complexes Connected through a Phenyl Ring in the Cp*(dppe)Fe Series. AnExample of Electro-switchable NLO Response [J]. Organometallics, 2000, 19: 5235-5237
    [50] Cifuentes Marie P, Powell C E, Humphrey M G, et al. Organometallic Complexes for Nonlinear Optics. 24. Reversible Electrochemical Switching of Nonlinear Absorption [J]. J Phys Chem A, 2001, 105:9652-9627
    [51] Benjamin J Coe. Molecular Materials Possessing Switchable Quadratic Nonlinear Optical Properties [J]. Chem Eur J, 1999, 5: 2464-2471.
    [52] Hurst S K, Cifuentes M P, Morrall J P L, et al. Organometallic Complexes for Nonlinear Optics. 22.1 Quadratic and Cubic Hyperpolarizabilities of trans-Bis(bidentate phosphine)ruthenium σ-Arylvinylidene and σ-Arylalkynyl Complexes [J]. Organometallics, 2001, 20: 4664-4675.
    [53] 游效曾,梦庆金,韩万书,主编. 配位化学研究进展 [M],北京:高等教育出版社(第一版),2000.
    [54] Cheng L T, Tam W, Stevenson S H, et al. Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives [J]. J Phys Chem, 1991, 95(26): 10631-10643.
    [55] Lucas A I, Martín N, Sánchez L, et al. The first tetrathiafulvalene derivatives exhibiting second-order NLO properties [J]. Tetrahedron, 1998, 54: 4655-4662.
    [56] 封继康, 付伟, 崔勐, 等. 给体-桥-受体型系列 C_(60)吡咯/二茂铁的电子结构及二阶非线性光学性质的理论研究 [J]. 化学学报, 2000, 58: 1112-1119.
    [57] David R K, Mark A R, Tobin J M. Calculation and electronic description of quadratic hyperpolarizabilities. Toward a molecular understanding of NLO responses in organotransition metal chromophores [J]. J Am Chem Soc, 1992, 114(26): 10338-10357.
    [58] Levine B F. Donor-Acceptor Charge Transfer Contributions to the Second Order Hyperpolarizability [J]. Chem Phys Lett, 1976, 37: 516-521.
    [59] Oudar J L. Optical Nonlinearities of Conjugated Molecules. Stibene Derivatives and Highly Polar Aromatic Compounds [J]. J Chem Phys, 1977, 67: 446-457.
    [60] Clays K, Persons A. Hyper-Rayleigh Scattering in Solution [J]. Phys Rev Lett, 1991, 66: 2980-2983.
    [61] Paley M S, Harris J M, Looser H, et al. A solvatochromic method for determining second-order polarizabilities of organic molecules [J]. J Org Chem, 1989, 54(16): 3774-3778.
    [62] Kurtz S K, Perry T T. A power Technique for the Evaluation of Nonlinear Optical Matericals [J]. J Appl Phys, 1968, 39: 3798-3813.
    [63] Maker P D, Terhune R W, Nisenoff M, et al. Effects of Dispersion and Focusing on the Production of Optical Harmonics [J]. Phys Rev Lett, 1962, 8: 21-22.
    [64] Lemoff B E, Barty C P J, Harris S E, et al. Second-Harmonic Generation and Absorption Studies of Polymer-dye Films Oriented by Corona-onset Poling at Elevated Temperatures [J]. J Opt Soc Am B, 1989, 6: 733-735.
    [65] Weber M J, Milam D, Smith W L, et al. Nonlinear refractive index of glasses and crystals [J]. Opt Eng, 1978, 17(5): 463-469.
    [66] Friberg S R, Smith P W. Nonlinear Optical-Glasses for Ultrafast Optical Switches [J]. Ieee Journal of Quantum Electronics, 1987, 23 (12): 2089-2094.
    [67] Yeh P. Exact Solution of a Nonlinear Model of 2-Wave Mixing in Kerr Media [J]. Journal of the Optical Society of America B-Optical Physics, 1986, 3 (5): 747-750.
    [68] Zyss J, Ledoux I, Nicoud J F, et al. Molecular Nonlinear Optics, J Zyss Ed., Academic Press, Boston, 1994.
    [69] Williams W E, Soileau M J, Vanstryland E W. Optical Switching and N2 Measurements In Cs2 [J]. Optics Communications, 1984, 50 (4): 256-260.
    [70] Sheikbahae M, Said A A, Vanstryland E W. High-Sensitivity, Single-Beam N2 Measurements [J]. Optics Letters, 1989, 14 (17): 955-957.
    [71] Wang J, Sheikbahae M, Said A, et al. Time-Resolved Z-Scan Measurements of Optical Nonlinearities [J]. Journal of the Optical Society of America B-Optical Physics, 1994, 11 (6): 1009-1017.
    [72] Agnesi A, Reali Gc, Tomaselli A. Beam Quality Measurement of Laser-Pulses by Nonlinear Optical Techniques [J]. Optics Letters, 1992, 17 (24): 1764-1766.
    [73] Banerjee P P, Misra R M, Maghraoui M. Theoretical and Experimental Studies of Propagation of Beams Through a Finite-Sample of a Cubically Nonlinear Material [J]. Journal of the Optical Society of America B-Optical Physics, 1991, 8(5): 1072-1080.
    [74] Castillo J, Kozich V P, Marcano A. Thermal Lensing Resulting From One-Photon and 2-Photon Absorption Studied with a 2-Color Time-Resolved Z-Scan [J]. Optics Letters, 1994, 19 (3): 171-173.
    [75] Aguilar P A M, Mondragon J J S, Stepanov S, et al. Z-Scan Experiments with Cubic Photorefractive Crystal Bi12Tio20 [J]. Optics Communications, 1995, 118 (1-2): 165-174.
    [76] Bian S, Frejlich J. Z-scan measurements of photorefractive nonlinearities for a SBN:Ce crystal [J]. Applied Physics B-Lasers And Optics, 1997, 64 (5): 539-546.
    [77] Orr B J, Ward J F. Perturbation theory of the non-linear optical polarization of an isolated system [J]. Mol Phys, 1971, 20: 513-526.
    [78] Duangthai S, Webb G A. Sum-Over-States Perturbation Calculations of F-19-C-13 Coupling-Constants for Some Carbocations and Related Fluorobenzenes [J]. Organic Magnetic Resonance, 1979, 12 (2): 98-100.
    [79] Redmon L T, Browne J C. Sum-Over-States Calculations of Polarizabilities of Ground and 1st Excited-States of Lithium Atom [J]. International Journal of Quantum Chemistry, 1977, 11: 311-319.
    [80] Prasad P N, William D J. Introduction to Nonlinear Optical Effects in Molecules and Polymer [M] (Wiley, New York, 1991).
    [81] Chemla D S, Zyss J. Nonlinear Optical Properties of Organic Moleculesand Crystals [M] (Academic, New York, 1987)
    [82] Oudar J L, Chemla D S. Hyperpolarizabilities of Nitroanilines and Their Relations to Excited-State Dipole-Moment [J]. J Chem Phys, 1977, 66(6): 2664-2668.
    [83] Albota M, Beljonne D, Bredas J L, et al. Design of organic molecules with large two-photon absorption cross sections [J]. Science, 1998, 281: 1653-1656.
    [84] Oudar J L, Leperson H. 2nd-Order Polarizabilities of Some Aromatic-Molecules [J]. Optics Communications, 1975, 15(2):258-262.
    [85] Lu D Q, Chen G H, Perry J W, et al. Valence-Bond Charge-Transfer Model for Nonlinear Optical Properties of Charge-Transfer Organic Molecules [J]. J Am Chem Soc, 1994, 116:10679-10685.
    [86] Cho M, Kim H, Jeon S J. An elementary description of nonlinear optical properties of octupolar molecules: Four-state model for guanidinium-type molecules [J]. J Chem Phys, 1998, 108:7114-7120.
    [87] Hahn S, Kim D, Cho M H. Nonlinear optical properties of the linear quadrupolar molecule: Structure-function relationship based on a three-state model [J]. J Phys Chem B, 1999, 103 (39): 8221-8229.
    [88] Cho M H, An S Y, Lee H, et al. Nonlinear optical properties of tetrahedral donor-acceptor octupolar molecules: Effective five-state model approach [J]. J Chem Phys, 2002, 116 (21): 9165-9173.
    [89] Pawel N, Morel Y, Olivier S P, et al. Two-photon absorption spectrum of poly(fluorene) [J]. Chem Phys Lett, 2001, 343: 44-48.
    [90] Kuzyk M G. Physical limits on electronic nonlinear molecular susceptibilities [J]. Phys Rev Lett, 2000, 85 (6): 1218-1221.
    [91] Kuzyk M G. Fundamental limits on third-order molecular susceptibilities [J]. Optics Letters, 2000, 25 (16): 1183-1185.
    [92] Kuzyk M G. Fundamental limits on two-photon absorption cross sections [J]. J Chem Phys, 2003, 119 (16): 8327-8334.
    [93] 徐光宪, 黎乐民. 量子化学基本原理和从头计算法(上册) [M]. 北京:科学出版社, 1981.
    [94] Schr?dinger E. Quantisierung als eigenwertproblem [M], Ann. Phys. 1926, band79: 361-376.
    [95] Schr?dinger E. An undulatory theory of the mechanics of atoms and molecules [J], Phys. Rev. 1926, 28(6): 1049-1070.
    [96] Born M, Oppenheimer J R. Zur quantentheorie der molekeln [J]. Ann. Physik. 1927, band84 (20): 457-484.
    [97] Born M, Huang K. Dynamical Theory of Crystal Lattices [M]. Oxford University Press, New York, 1954
    [98] Hartreee D R Proc Cambridge Phil Soc. 1928, 24: 89.
    [99] Fock V. Ann Phys. 1930, 61: 126.
    [100] Hartree D. Calculations of Atomic Structure [M]. Wiley, 1957.
    [101] Roothaan C C J. New developments in molecular orbital theory [J]. Rev. Mod. Phys. 1951, 23(2): 69-89.
    [102] John G C. The Transactional Interpretation of Quantum Mechanics [M]. News York: Department of Physics University of Washington, 1986.
    [103] Roothaan C C J. New developments in molecular orbital theory [J]. Rev Mod Phy, 1951, 23 (2):69-89.
    [104] Hoffmann R. An extended Hückel theory I. Hydrocarbons [J]. J Chem Phys, 1963, 39: 1397-1412.
    [105] Hoffmann R, An extended Hückel theory. I. Hydrocarbons [J]. J Cheml Phys, 1963, 39: 1397-1412.
    [106] Pople J A, Segal G A. Approximate self-consistent molecular orbital theory.Ⅱ. Calculation with complete neglect of differential overlap [J]. J Cheml Phys, 1965, 43: S136-S151.
    [107] Pople J A, Beveridge D L, 近似分子轨道理论方法 [M]. 江元生译. 北京: 科学出版社, 1976.
    [108] Ridley J E, Zerner M C, Triplet states via intermediate neglect of differential overlap: benzene, pyridine and the diazines [J]. Theoretical Chem Acta, 1976, 42: 223-236.
    [109] Stewart J J P, Optimization of Parameters for Semi-Empirical Methods I-Method [J]. J Comput Chem, 1989, 10:209–220.
    [110] Koch W, Holthausen M C, A Chemist’s Guide to Density Functional Theory [M]. Weinheim, Germany: Wiley-VCH, 2000.
    [111] Stratmann R E, Scuseria G E, Frisch M J, An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules [J]. J Chem Phys, 1998, 109: 8218-8225.
    [112] Petersilka M, Gossmann U J, Gross E K U, Excitation energies from time-dependent density-functional theory [J]. Phys Rev Lett, 1996, 76: 1212-1215.
    [113] Yang W. Direct calculation of electron density in density-functional theory [J]. Phys Rev Lett, 1991, 66: 1438-1441.
    [114] Li X P, Nunes R W, Vanderbilt D. Density-matrix electronic-structure method with linear system-size scaling [J]. Phys Rev B, 1993, 47: 10891-10894.
    [115] Mauri F, Galli G, Car R. Orbital formulation for electronic-structure calculations with linear system-size scaling [J]. Phys Rev B, 1993, 47: 9973-9976.
    [116] Ordejón P, Drabold D A, Grumbach M P, et al. Unconstrained minimization approach for electronic computations that scales linearly with system size [J]. Phys Rev B, 1993, 48: 14646-14649.
    [117] Gibson A, Haydock R, LaFemina J P. Ab initio electronic-structure computations with the recursion method [J]. Phys Rev B 1993, 47: 9229-9237.
    [118] Aoki M. Rapidly convergent bond order expansion for atomistic simulations [J]. Phys Rev Lett, 1993, 71: 3842-3845.
    [119] Goedecker S, Colombo L. Efficient linear scaling algorithm for tight-binding molecular dynamics [J]. Phys Rev Lett, 1994, 73: 122-125.
    [120] Hernádez E, Gillan M J. Self-consistent first-principles technique with linear scaling [J]. Phys Rev B, 1995, 51: 10157-10160.
    [121] Kohn W. Density functional and density matrix method scaling linearly with the number of atoms [J]. Phys Rev Lett, 1996, 76: 3168-3171.
    [122] Drabold D A, Sankey O F. Maximum entropy approach for linear scaling in the electronic structure problem [J]. Phys Rev Lett, 1993, 70: 3631-3634.
    [123] Iitaka T, Nomura S, Hirayama H, et al. Calculating the linear response functions of noninteracting electrons with a time-dependent Schr?dinger equation [J]. Phys Rev E, 1997, 56: 1222-1229.
    [124] Nakayama T, Shima H. Computing the Kubo formula for large systems [J]. Phys Rev E, 1998, 58: 3984-3992.
    [125] Yokojima S, Chen G H. Time domain localized-density-matrix method [J]. Chem Phys Lett, 1998, 292: 379-383.
    [126] Yokojima S, Chen G H. Linear scaling calculation of excited-state properties of polyacetylene[J]. Phys Rev B, 1999, 59: 7259-7262.
    [127] Liang W Z, Yokojima S, Chen G H. Generalized linear-scaling localized-density-matrix method [J]. J Chem Phys, 1999, 110: 1844-1855.
    [128] Yokojima S, Wang X J, Zhou D H. et al. Localized-density-matrix, segment-molecular-orbitals and poly(p-phenylenevinylene) aggregates [J]. J Chem Phys, 1999, 111: 10444-10451.
    [129] Liang W Z, Yokojima S, Zhou D H, et al. Localized-density-matrix method and its application to carbon nanotubes [J]. J Phys Chem A, 2000, 104: 2445-2453.
    [130] Liang W Z, Yokojima S, Chen G H. Localized-density-matrix method and nonlinear optical response [J]. J Chem Phys, 2000, 113: 1403-1408.
    [131] Pariser P, Parr R G, A Semi-Empirical Theory of the Electronic Spectra and Structure of Complex Unsaturated Molecules II [J]. J Chem Phys, 1953, 21: 767-776.
    [132] Del Bene J, Jaffé H H. Use of the CNDO method in spectroscopy. I. benzene, pyridine, and thediazines. J Chem Phys, 1968, 48: 1807-1813; Use of the CNDO method in spectroscopy. II. five-membered rings [J]. J Chem Phys, 1968, 48: 4050-4055.
    [133] Stewart J J P. Optimization of parameters for semiempirical methods. 2. applications [J]. J Comput Chem, 1989, 209: 221-264.
    [134] Yokojima S, Zhou D H, Chen G H. Photoexcitations in poly(p-phenylenevinylene) aggregates [J]. Chem Phys Lett, 2001, 333: 397-402.
    [135] Chen G H, Yokojima S, Liang W Z, et al. Localized-density-matrix method and its application to nanomaterials [J]. Pure Appl Chem, 2000, 72: 281-291.
    [136] Liang W Z, Wang X J, Yokojima S, et al. Electronic structures and optical properties of open and capped carbon nanotubes [J]. J Amer Chem Soc, 2000, 122: 11129-11137.
    [137] Takahashi A, Mukamel S. Anharmonic oscillator modeling of nonlinear susceptibilities and its application to conjugated polymers [J]. J Chem Phys, 1994, 100: 2366-2384.
    [138] Chen G H, Mukamel S. Nonlinear susceptibilities of donor-acceptor conjugated systems: coupled- oscillator representation [J]. J Am Chem Soc, 1995, 117: 4945-4965.
    [139] Ring P, Schuck P. The Nuclear Many-Body Problem [M]. New York: Springer, 1980.
    [140] Tretiak S, Chernyak V, Mukamel S, et al. Recursive density-matrix-spectral-moment algorithm for molecular nonlinear polarizabilities [J]. J Chem Phys, 1996, 105: 8914-8928.
    [1] Bredas J L, Adant C, Tackx P, et al. Third-Order Nonlinear Optical Response in Organic Materials: Theoretical and Experimental Aspects [J]. Chem Rev, 1994, 94: 243-278.
    [2] Langhoff P W, Epstein S T, Karplus M. Aspects of Time-Dependent Perturbation Theory [J]. Rev Mod Phys, 1972, 44: 602-644.
    [3] Chen X H, Wu K C. Electronic Structures and Nonlinear Optical Properties of Trinuclear Transition Metal Clusters M-(μ-S)-M (M=Mo, W; M=Cu, Ag, Au) [J]. Inorg Chem, 2003, 42: 532-540.
    [4] Buckingham A D. Direct Method of Measuring Molecular Quadrupole Moments [J]. J Chem Phys, 1959, 30: 1580-1585.
    [5] Masayoshi N, Tomoshige N, Kizashi Y, et al. Spin Multiplicity Effects on the Second Hyperpolarizability of an Open-Shell Neutral π-Conjugated System [J]. J Phys Chem A, 2004, 108: 4105-4111.
    [6] Kanis D R, Ratner M A, Marks T J. Design and Construction of Molecular Assemblies with Large Second-Order Optical Nonlinearities. Quantum Chemical Aspects [J]. Chem Rev, 1994, 94: 195-242.
    [7] Orr B J, Ward J F. Perturbation theory of the non-linear optical polarization of an isolated system [J]. Mol Phys, 1971, 20: 513-526.
    [8] Albota M, Beljonne D, Bredas J L, et al. Design of organic molecules with large two-photon absorption cross sections [J]. Science, 1998, 281: 1653-1656.
    [9] Rumi M, Ehrlich J E, Heikal A A, et al. Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives [J]. J Am Chem Soc, 2000, 122: 9500-9510.
    [10] Masunov A, Tretiak S. Prediction of Two-Photon Absorption Properties for Organic Chromophores Using Time-Dependent Density-Functional Theory [J]. J Phys Chem B, 2004, 108: 899-907.
    [11] Fiona S, Steven C, Michel D, et al. Electron correlation effects in hyperpolarizabilities of p-nitroaniline [J]. J Phys Chem, 1993, 97(6): 1158-1163.
    [12] Kamada K,Ueda M, Nagao H, et al. Molecular Design for Organic Nonlinear Optics: Polarizability and Hyperpolarizabilities of Furan Homologues Investigated by Ab Initio Molecular Orbital Method [J]. J Phys Chem A, 2000, 104: 4723-4734.
    [13] Lumbroso H, Bertin D M, Fringuelli F, et al. Comparative-Study of Electric-Dipole Moments of 2-Substituted Derivatives Of Furan, Thiophene, Selenophen, And Tellurophen [J]. Journal of the Chemical Society-Perkin Transactions, 1977, 2 (6): 775-781.
    [14] Kamada K, Ueda M, Sakaguchi T, et al. Femtosecond optical Kerr study of heavy atom effects on the third-order optical nonlinearity of thiophene homologues: Purely electronic contribution [J]. Chem Phys Lett, 1996, 263: 215-222.
    [15] Sekino H, Bartlett R J. Molecular Hyperpolarizabilities [J]. J Chem Phys, 1993, 98: 3022-3037.
    [16] van Gisbergen S J A, Snijders J G, Baerends E J. Accurate density functional calculations on frequency-dependent hyperpolarizabilities of small molecules [J]. J Chem Phys, 1998, 109: 10657-10668.
    [17] Levine B F, Bethea C G. Second and third order hyperpolarizabilities of organic molecules [J]. J Chem Phys, 1975, 63: 2666-2682.
    [18] Jansik B, Salek P, Jonsson D, et al. Cubic response functions in time-dependent density functional theory [J]. J Chem Phys, 2005, 122 (5): Art. No. 054107.
    [19] Alms G R, Burnham A K, Flygare W H. Measurement of the dispersion in polarizability anisotropies [J]. J Chem Phys, 1975, 63: 3321-3326.
    [20] Shelton D P, Palubinskas J J. Vibrational hyperpolarizabilities and the Kerr effect in CH4, CF4, and SF6 [J]. J Chem Phys, 1996, 104: 2482-2487.
    [21] Shelton D P. Dispersion Of The Nonlinear Susceptibility Measured For Benzene [J]. J Opt Soc Am B 2, 1985, 2: 1880-1882.
    [22] Ward J F, Elliott D S. Measurements of Molecular Hyperpolarizabilities for Ethylene, Butadiene, Hexatriene, And Benzene [J]. J Chem Phys, 1978, 69: 5438-5440.
    [23] Ward J F, Elliot D S. Measurements of molecular hyperpolarizabilities for ethylene, butadiene, hexatriene, and benzene [J]. J Chem Phys, 1978, 69: 5438-5440.
    [24] Kaatz P, Donley E A, Shelton D P. A comparison of molecular hyperpolarizabilities from gas and liquid phase measurements [J]. J Chem Phys, 1998, 108: 849-856.
    [25] Tran K, Scott G W, Funk D J, et al Resonantly Enhanced, Degenerate Four-Wave Mixing Measurement of the Cubic Molecular Hyperpolarizability of Squaraine Dyes at 700 nm [J]. J Phys Chem, 1996, 100: 11863-11869.
    [1] Frazier C C, Harvey M A, Cockerham M P, et al. Second-harmonic generation in transition-metal-organic compounds [J]. J Phys Chem, 1986, 90(22): 5703-5706.
    [2] Nalwa H S. Organometallic Materials for Nonlinear Optics [J]. Appl Organomet Chem, 1991, 5 (5): 349-377.
    [3] Nalwa H S. Organic Materials For 3rd-Order Nonlinear Optics [J]. Adv Mater, 1993, 5: 341-358.
    [4] Nalwa H S, Watanabe T, Miyata S. 2-D Charge-Transfer Molecules For 2nd-Order NLO - Off-Diagonal Orientation [J]. Adv Mater, 1995, 7 (8): 754-758.
    [5] Nalwa H S. X-Ray Photoelectron-Spectroscopy and Electrical-Conductivity Studies of Metallophthalocyanine Sheet Polymers [J]. Appl Organomet Chem, 1991, 5 (3): 203-206.
    [6] Kanis D R, Ratner M A, Marks T J. Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects [J]. Chem Rev, 1994, 94: 195-242.
    [7] Nalwa H S, Engel M K, Hanack M, et al. Third-order nonlinear optical properties of octa-substituted metal-free phthalocyanine thin films [J]. Appl Organomet Chem, 1996, 10 (8): 661-664.
    [8] Pal S K, Krishnan A, Das P K, et al. Schiff base linked ferrocenyl complexes for second-order nonlinear optics [J]. J Organomet Chem, 2000, 604 (2): 248-259.
    [9] Curreli S, Deplano P, Faulmann C, et al. Electronic Factors Affecting Second-Order NLO Properties: Case Study of Four Different Push-Pull Bis-Dithiolene Nickel Complexes [J]. Inorg Chem, 2004, 43: 5069-5079.
    [10] Liao Y, Eichinger B E, Firestone K A, et al. Systematic Study of the Structure-Property Relationship of a Series of Ferrocenyl Nonlinear Optical Chromophores [J]. J Am Chem Soc, 2005, 127: 2758-2766.
    [11] Coe B J, Harris J A, Jones L A, et al. Syntheses and Properties of Two-Dimensional Charged Nonlinear Optical Chromophores Incorporating Redox-Switchable cis-Tetraammineruthenium(II) Centers [J]. J Am Chem Soc, 2005, 127: 4845-4859.
    [12] Coe B J, Harries J L, Harris J A, et al. Extended dipolar nonlinear optical chromophores based on trans-bis[1,2-phenylenebis(dimethylarsine)]chlororuthenium(II) centers [J]. Inorg Chem, 2006: 45 (26): 11019-11029 .
    [13] Coe B J, Samoc M, Samoc A, et al. Two-photon absorption properties of iron(II) and ruthenium(II) trischelate complexes of 2,2 ': 4,4 '': 4 ',4 '''-quaterpyridinium ligands [J]. J Phys Chem A, 2007: 111 (3): 472-478.
    [14] Chen M S, Goodman D W, Kumar D, et al. Catalysis by Pd-Au: From single crystals to nanoparticles [J]. Stracts of Papers of the American Chemical Society,2005, 230: U377-U378.
    [15] Liu Z P, Wang C M, Fan K N. Single gold atoms in heterogeneous catalysis: Selective 1,3-butadiene hydrogenation over Au/ZrO2 [J]. Angew Chem Int Ed, 2006, 45 (41): 6865-6868.
    [16] Harkat H, Weibel J M, Pale P. Synthesis of functionalized THF and THP through Au-catalyzed cyclization of acetylenic alcohols [J]. Tetrahedron Letters, 2007, 48 (8): 1439-1442.
    [17] Parker S C, Campbell C T. Kinetic model for sintering of supported metal particles with improved size-dependent energetics and applications to Au on TiO2(110) [J]. Phys Rev B, 2007, 75 (3): Art. No. 035430.
    [18] Shmi A S K, Hutchings G J. Gold Catalysis [J]. Angew Chem Int Ed, 2006, 45 (47): 7896-7936.
    [19] Toda T, Hanna J I, Tani T. Electronic structure and charge injection at interface between electrode and liquid-crystalline semiconductor [J]. J Appl Phys, 2007, 101 (2): Art. No. 024505.
    [20] Andrews D Q, Cohen R, Van Duyne R P, et al. Single molecule electron transport junctions: Charging and geometric effects on conductance [J]. J Chem Phys, 2006,125 (17): Art. No.174718.
    [21] Lawson J W, Bauschlicher C W. Transport in molecular junctions with different metallic contacts [J]. Phys Rev B, 2006, 74 (12): Art. No. 125401.
    [22] Aziz M S. Carrier transport mechanisms and photovoltaic properties of Au/p-ZnPc/Al device [J]. Solid-State Electronics, 2006, 50 (7-8): 1238-1243 .
    [23] Crespilho F N, Zucolotto V, Brett C M A, et al. Enhanced charge transport and incorporation of redox mediators in layer-by-layer films containing PAMAM-encapsulated gold nanoparticles [J]. J Phys Chem B, 2006,110 (35): 17478-17483.
    [24] Basch H, Ratner M A. Binding at molecule/gold transport interfaces. V. Comparison of different metals and molecular bridges [J]. J Chem Phys, 2005, 123 (23): Art. No. 234704.
    [25] Quinn A J, Biancardo M, Floyd L, et al. Analysis of charge transport in arrays of 28 kDa nanocrystal gold molecules [J]. J Mater Chem, 2005, 15 (41): 4403-4407.
    [26] Kim P S G, Hu Y F, Yiu Y M, et al. X-ray absorption and X-ray excited optical luminescence (XEOL) studies of KAu(CN)(2) at the C, N and KK-edge and the Au L-3-edge - comparison with density functional theory (DFT) calculation [J]. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144: 811-815.
    [27] Bardaji M, Calhorda M J, Costa P J, et al. Synthesis, structural characterization, and theoretical studies of gold(I) and gold(I)-gold(III) thiolate complexes: Quenching of gold(I) thiolate luminescence [J]. Inorg Chem, 2006, 45 (3): 1059-1068.
    [28] Zhang M X, Mang C Y, Wu K C. Ab initio study on luminescent properties of triangular Au(I) complexes [J]. J Mol Stru-THEOCHEM, 2006, 759 (1-3): 35-39.
    [29] Costa P J, Calhorda M J. A DFT and MP2 study of luminescence of gold(I) complexes [J]. Inorg Chem Acta, 2006, 359 (11): 3617-3624.
    [30] Ho S Y, Cheng E C C, Tiekink E R T, et al. Luminescent phosphine gold(I) thiolates: Correlation between crystal structure and photoluminescent properties in [R3PAu{SC(OMe)= NC6H4NO2-4}] (R = Et, Cy, Ph) and [(Ph2P-R-PPh2){AuSC(OMe)= NC(6)H4(N)O(2)-4}(2)] (R = CH2, (CH2)(2), (CH2)(3), (CH2)(4), Fc) [J]. Inorg Chem, 2006, 45 (20): 8165-8174.
    [31] Crespo O, Gimeno M C, Laguna A, et al. Highly luminescent gold(I)-silver(I) and gold(I)-copper(I)chalcogenide clusters [J]. Journal of Experimental Psychology-Applied, 2007, 13 (1): 235-246.
    [32] Kim P S G, Hu Y F, Brandys M C, et al. X-ray-excited optical luminescence (XEOL) and X-ray absorption fine structures (XAFS) studies of gold(I) complexes with diphosphine and bipyridine ligands [J]. Inorg Chem, 2007, 46 (3): 949-957.
    [33] Chen J H, Mohamed A A, Abdou H E, et al. Novel metallamacrocyclic gold(I) thiolate cluster complex: structure and luminescence of [Au-9(mu-dppm)(4)(mu-p-tc)(6)](PF6)(3) [J]. Chem Commu, 2005, (12): 1575-1577.
    [34] Shaw C F. Gold-Based Therapeutic Agents [J]. Chem Rev, 1999, 9(9): 589-2600.
    [35] Engelbertz A, Anbalagan P, Bommas C, et al. NMR with hyperpolarised protons in metals [J]. Hyperfine Interactions, 2004, 159 (1-4): 373-377.
    [36] Mihailescu G, Olenic L, Pruneanu S, et al. The effect of PH on amino acids binding to gold nanoparticles [J]. Journal of Optoelectronics and Advanced Materials, 2007, 9 (3): 756-759.
    [37] Bolesta I M, Kityk I V, Kovalisko V I. Luminescence and nonlinear-optical properties of Me-CdI2 where Me-CdI2 (Me=Ag, Au) heterostructures [J]. Fizika Tverdogo Tela, 1994, 6 (12): 3537-3541.
    [38] Whittall I R, Humphrey M G, Houbrechts S, et al. Organometallic complexes for nonlinear optics .14. Syntheses and second-order nonlinear optical properties of ruthenium, nickel and gold sigma-acetylides of 1,3,5-triethynylbenzene: X-ray crystal structures of 1-(HC C)-3,5-C6H3(C CRuCl(dppm)(2))(2) and 1,3,5-C6H3(C CAu(PPh3))(3) [J]. J Organomet Chem, 1997, 544 (2): 277-283.
    [39] Vicente J, Chicote M T, Abrisqueta M D, et al. Syntheses, structure, and molecular cubic hyperpolarizabilities of systematically varied ethynylgold(I) complexes [J]. Organometallics, 2000, 19 (16): 2968-2974.
    [40] Zhang H, Zelmon D E, Deng L,et al. Optical Limiting Behavior of Nanosized Polyicosahedral Gold-Silver Clusters Based on Third-Order Nonlinear Optical Effects [J]. J Am Chem Soc, 2001, 123, 11300-11301.
    [41] Lang J P, Yu H, Ji S J, et al. Synthesis, crystal structure and third-order nonlinear optical (NLO) properties of a novel tetranuclear organometallic cluster [(eta(5)-C5Me5)WS3Au](2) [J]. Phys Chem Chem Phys, 2003, 5(22): 5127-5132.
    [42] Compton D, Cornish L, van der Lingen E. The third order nonlinear optical properties of gold nanoparticles in glasses, Part II [J]. Gold Bulletin, 2003, 36 (2): 51-58.
    [43] Hurst S K, Lucas N T, Humphrey M G, et al. Organometallic complexes for nonlinear optics. Part 29. Quadratic and cubic hyperpolarizabilities of stilbenylethynyl-gold and -ruthenium complexes [J]. Inorg Chim Acta, 2003, 350: 62-76.
    [44] Hurst S K, Humphrey M G, Morrall J P, et al. Organometallic complexes for nonlinear optics Part 31. Cubic hyperpolarizabilities of ferrocenyl-linked gold and ruthenium complexes [J]. J Organomet Chem,, 2003, 670 (1-2): 56-65.
    [45] Sun X B, Ren Q, Wang X Q, et al. Nonlinear optical properties of [(CH3)(4)N]Au(dmit)(2) using Z-scan technique [J]. Chinese Physics, 2006, 15 (11): 2618-2622.
    [46] Lee T K, Bristow A D, Hubner J, et al. Linear and nonlinear optical properties of Au-polymer metallodielectric Bragg stacks [J]. Journal of the Optical Society of America B-Optical Physics, 2006, 23 (10): 2142-2147.
    [47] Zhou J L, Song Y L, Mo H B, et al. Syntheses, crystal structures and non-linear optical properties of cluster compounds [MoAU(2)S(4)(PPh2Py)(2)] and [WAu2S4(PPh2PY)(2)] [J]. Zeitschrift Fur Anorganische and Allgemeine Chemie, 2005, 631 (1): 182-186.
    [48]. Ma H R, Sheng P, Wong G K L.Third-order nonlinear properties of Au clusters containing dielectric thin films [J]. Topics in Applied Physics, 2002, 82: 41-61.
    [49] Qiu Y Q, Mou L, Su Z M, et al. Quantum chemistry calculation on structures and NLO cofficients of H3PAuR type mononucleus Au(I) complex [J]. Chemical Journal of Chinese Universities-Chinese, 2006, 27 (9): 1703-1707.
    [50] Qiu Y Q, Qin C S, Su Z M, et al. DFT/FF study on electronic structure and second-order NLO property of dinuclear gold complex [Au(SeC2B10H11)(PPh3)](2) [J]. Synth Met, 2005, 152 (1-3): 273-276.
    [51] Wu K H, Li J, Lin C S. Remarkable second-order optical nonlinearity of nano-sized Au(20) cluster: a TDDFT study [J]. Chem Phys Lett, 2004, 388 (4-6): 353-357.
    [52] Qiu Y Q, Su Z M, Yan L K, et al. Ab initio research on third-order nonlinear optical properties of linear complexes [M(I)(PH3)(2)](+)(M=Cu, Ag, Au) [J]. Synth Met, 2003, 137 (1-3): 1523-1524.
    [53] Chen X H, Wu K C, Snijders J G, et al. Electronic structures and nonlinear optical properties of trinuclear transition metal clusters M-(mu-S)-M ' (M = Mo, W; M ' = Cu, Ag, Au) [J]. Inorg Chem, 2003, 42 (2): 532-540.
    [54] Chen X H, Wu K C, Snijders J G, et al. Nonlinear optical properties of tri-nuclear transition metal clusters M-(mu-S)s-M ' (M=Mo, W; M '=Cu, Ag, Au) [J]. CHINESE CHEMICAL LETTERS, 2002,13 (9): 893-896.
    [55] Powell C E, Humphrey MG. Nonlinear optical properties of transition metal acetylides and their derivatives [J]. Coord Chem Rev, 2004, 248: 725–756.
    [56] 吴沛, 王耀, 庞叔鸣, 等. 有机半导体材料并五苯薄膜的生长 [J]. 电子器件,2005, 28: 13-15.
    [57] Repp J, Meyer G, Paavilainen S, et al. Imaging Bond Formation Between a Gold Atom and Pentacene on an Insulating Surface [J]. Science, 2006, 312:1196-1199.
    [58] Yam V W W, Wong K M C, Hung L L,et al. Luminescent gold(III) alkynyl complexes: Synthesis, structural characterization, and luminescence properties [J]. Angew Chem Int Ed, 2005, 44, 3107-3110.
    [59] Shieh S J, Hong X, Peng S M, et al. Synthesis And Crystal-Structure of a Luminescent One-Dimensional Phenylacetylide Gold(I) Polymer with 2,6-Bis(Diphenylphosphino)Pyridine As Ligand [J]. Dalton Trans, 1994, 3067-3068.
    [60] Boehme C, Frenking G. Organometallics, N-Heterocyclic Carbene, Silylene, and Germylene Complexes of MCl (M = Cu, Ag, Au). A Theoretical Study [J]. Organometallics, 1998, 17: 5801-5809.
    [61] Nemcsok D, Wichmann K, Frenking G. The Significance of Interactions in Group 11 Complexes with N-Heterocyclic Carbenes [J]. Organometallics, 2004. 23: 3640-3646.
    [62] Cheng L T, Tam W, Sylvia H, et al. Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives [J]. J Phys Chem, 1991, 95: 10631-10643.
    [1] Chan L H, Lee R H, Hsieh C F, et al. Optimization of High-Performance Blue Organic Light-Emitting Diodes Containing Tetraphenylsilane Molecular Glass Materials [J]. J Am Chem Soc, 2002, 124: 6469–6479.
    [2] Chishio H, Hisahiro H, Hiroaki N, et al. Highly efficient blue electroluminescence from a distyrylarylene emitting layer with a new dopant [J]. Appl Phys Lett, 1995, 67: 3853-3855.
    [3] Gao Z Q, Lee C, Bello I, et al. Bright-blue electroluminescence from a silyl-substituted ter-(phenylene–vinylene) derivative [J]. Appl Phys Lett, 1999, 74: 865-867.
    [4] Tao Y T, Balasubramaniam E, Danel A, et al. Dipyrazolopyridine derivatives as bright blue electroluminescent materials [J]. Appl Phys Lett, 2000, 77: 933-935.
    [5] Kim Y H, Shin D C, Kim S H, et al. Novel blue emitting material with high color purity [J]. Adv Mater, 2001, 13 (22): 1690-1693.
    [6] Luo F T, Tao Y T, Ko S L, et al. Efficient electroluminescent material for light-emitting diodes from 1,4-distyrylbenzene derivatives [J]. J Mater Chem, 2002, 12 (1): 47-52.
    [7] Tao Y T, Balasubramaniam E, Danel A, et al. Pyrazoloquinoline derivatives as efficient blue electroluminescent materials [J]. J Mater Chem, 2001, 11 (3): 768-772.
    [8] Tao Y T, Balasubramaniam E, Danel A, et al. Organic light-emitting diodes based on variously substituted pyrazoloquinolines as emitting material [J]. Chem Mater, 2001, 13 (4): 1207-1212.
    [9] Hung M C, Wu K Y, Tao Y T, et al. Highly efficient top-emitting organic light-emitting diodes with self-assembed monolayer-modified Ag as anodes [J]. Appl Phys Lett, 2006, 89 (20): Art. No. 203106.
    [10] Chen C H, Tang C W, Shi J , et al. Improved Red Dopants for Organic Electroluminescent Devices [J]. Macromol Symp, 1997, 125: 49-58.
    [11] Wu Q, Esteghamatian M, Hu N-X, et al. Synthesis, Structure, and Electroluminescence of BR2q (R = Et, Ph, 2-Naphthyl and q = 8-Hydroxyquinolato) [J]. Chem Mater, 2000, 12: 79-83.
    [12] Liu Q, Mudadu M S, Schmider H, et al. Tuning the Luminescence and Electroluminescence of Diphenylboron Complexes of 5-Substituted 2-(2'-Pyridyl)indoles [J]. Organometallics, 2002, 21: 4743-4749.
    [13] Cui Y, Liu Q-D, Bai D-R, et al. Organoboron Compounds with an 8-Hydroxyquinolato Chelate and Its Derivatives: Substituent Effects on Structures and Luminescence [J]. Inorg Chem, 2005, 44: 601-609.
    [14] Liu Q D, Mudadu M S, Thummel R, et al. From blue to red: Syntheses, structures, electronic, and electroluminescent properties of tunable luminescent N,N chelate boron complexes [J]. Adv Funct Mater, 2005, 15 (1): 143-154.
    [15] Shirota Y, Kinoshita M, Noda T, et al. A Novel Class of Emitting Amorphous Molecular Materials asBipolar Radical Formants: 2-{4-[Bis(4-methylphenyl)amino]phenyl}- 5-(dimesitylboryl)thiophene and 2-{4-[Bis(9,9-dimethylfluorenyl)amino]phenyl}- 5-(dimesitylboryl)thiophene [J]. J Am Chem Soc, 2000, 122: 11021-11022.
    [16] Noda T, Shirota Y. A blue-emitting organic electroluminescent device using a novel emitting amorphous molecular material [J]. Journal of Luminescence, 2000, 87-9: 1168-1170.
    [17] Kinoshita M, Kita H, Shirota Y. A novel family of boron-containing hole-blocking amorphous molecular materials for blue- and blue-violet-emitting organic electroluminescent devices [J]. Adv Funct Mater, 2002, 12: 780-786.
    [18] Doi H, Kinoshita M, Okumoto K, et al. A Novel Class of Emitting Amorphous Molecular Materials with Bipolar Character for Electroluminescence [J]. Chem Mater, 2003, 15: 1080-1089.
    [19] Uchida M, Shima M, Chikazu D, et al. Transcriptional induction of matrix metalloproteinase-13 (collagenase-3) by 1 alpha,25-dihydroxyvitamin D-3 in mouse osteoblastic MC3T3-E1 cells [J]. Journal of Bone and Mineral Research, 2001, 16 (2): 221-230.
    [20] Jia W L, Bai D R, McCormick T, et al. Three-coordinate organoboron compounds BAr2R (Ar=mesityl, R=7-azaindolyl- or 2,2'-dipyridylamino-functionalized aryl or thienyl) for electroluminescent devices and supramolecular assembly [J]. Chemistry-A European Journal, 2004, 10 (4): 994-1006.
    [21] Noda T, Ogawa H, Shirota Y. A blue-emitting organic electroluminescent device using a novel emitting amorphous molecular material, 5,5 '-bis(dimesitylboryl)-2,2 '-bithiophene [J]. Adv Mater, 1999, 11 (4): 283-285.
    [22] Noda T, Shirota Y. 5,5'-bis(dimesitylboryl)-2,2'-bithiophene and 5,5''-bis(dimesitylboryl)-2,2':5',2''-terthiophene as a novel family of electron-transporting amorphous molecular materials [J]. J Am Chem Soc, 1998, 120 (37): 9714-9715.
    [23] Tang C W, Vanslyke S A. Dipyrazolopyridine derivatives as bright blue electroluminescent materials [J ]. Appl Phys Lett, 1987, 51(12):913-915.
    [24] Li Y Q, Liu Y, Bu W M, et al. Hydroxyphenyl-pyridine beryllium complex (Bepp(2)) as a blue electroluminescent material [J]. Chem Mater, 2000, 12 (9): 2672-2675.
    [25] Feng J, Li F, Gao W B, et al. White light emission from exciplex using tris-(8-hydroxyquinoline)aluminum as chromaticity-tuning layer [J]. Appl Phys Lett, 2001, 78 (25): 3947-3949.
    [26] Liu Y, Guo J H, Zhang H D, et al. Highly efficient white organic electroluminescence from a double-layer device based on a boron hydroxyphenylpyridine complex [J]. Angewandte Chemie-International Edition, 2002, 41 (1): 182-184.
    [27] Zhang H Y, Huo C, Zhang J Y, et al. Efficient single-layer electroluminescent device based on a bipolar emitting boron-containing material [J]. Chem Commun, 2006, (3): 281-283.
    [28] Zhang H Y, Huo C, Ye K Q, et al. Synthesis, structures, and luminescent properties of phenol-pyridyl boron complexes [J]. Inorg Chem, 2006, 45 (7): 2788-2794.
    [29] Li Y Q, Liu Y, Bu W M, et al. A mixed pyridine-phenol boron complex as an organicelectroluminescent material [J]. Chem Commun, 2000, (16): 1551-1552.
    [30] Zhang H Y, Zhang Z L, Ye K Q, et al. Organic crystals with tunable emission colors based on a single organic molecule and different molecular packing structures [J]. Adv Mater, 2006, 18 (18): 2369-2372.
    [31] Marcus R A. Electron-Transfer Reactions in Chemistry - Theory and Experiment [J]. Reviews of Modern Physics, 1993, 65 (3): 599-610.
    [32] Marcus R A, Sutin N. Electron Transfers in Chemistry And Biology [J]. Biochimica Et Biophysica Acta, 1985, 811 (3): 265-322.
    [33] Sancho-Garcia J C. Assessment of density-functional models for organic molecular semiconductors: The role of Hartree-Fock exchange in charge-transfer processes [J]. Chem Phys, 2007, 331 (2-3): 321-331.
    [34] Lemaur V, da Silva Filho D A, Coropceanu V, et al. Charge Transport Properties in Discotic Liquid Crystals: A Quantum-Chemical Insight into Structure-Property Relationships [J]. J Am Chem Soc, 2004, 126(10): 3271-3279.
    [35] Lin B C, Cheng C P, You Z-Q, et al. Charge Transport Properties of Tris(8-hydroxyquinolinato)aluminum(III): Why It Is an Electron Transporter [J]. J Am Chem Soc, 2005, 127(1): 66-67.
    [36] Nelsen S F, Trieber D A, Ismagilov R F, et al. Solvent effects on charge transfer bands of nitrogen-centered intervalence compounds [J]. J Am Chem Soc, 2001, 123 (24): 5684-5694.
    [37] Blomgren F, Larsson S, Nelsen S F. Electron transfer in bis(hydrazines), a critical test for application of the Marcus model [J]. Journal of Computational Chemistry, 2001, 22 (6): 655-664.
    [38] Bredas J L, Beljonne D, Cornil J, et al. Electronic structure of pi-conjugated oligomers and polymers: a quantum-chemical approach to transport properties [J]. Synthetic Metals, 2001, 125 (1): 107-116.
    [39] Crispin X, Geskin V M, Bureau C, et al. A Density Functional Model for Tuning the Charge Transfer Between a Transition Metal Electrode and a Chemisorbed Molecule via the Electrode Potential [J]. J Chem Phys, 2001, 115 (22): 10493-10499.
    [40] Foresman J B, Headgordon M, Pople J A, Et Al. Toward A Systematic Molecular-Orbital Theory For Excited-States [J]. J Phys Chem, 1992, 96 (1): 135-149.
    [41] Peyerimhoff S D. The Encyclopedia of Computational Chemistry [M], edited by Schleyer, P von R, Allinger N L, Clark T, et al. Wiley, Chichester, 1998d, Vol. 4, pp. 2646–2664.
    [42] Amati M, Lelj F. Are UV–Vis and luminescence spectra of Alq3 [aluminum tris(8-hydroxy quinolinate)] δ-phase compatible with the presence of the fac-Alq3 isomer? A TD-DFT investigation [J]. Chem Phys Lett, 2002, 358: 144-150.
    [43] Young R H, Fitzgerald J J. Effect of polar additives on charge transport in a molecularly doped polymer: Survey of various additives [J]. J Chem Phys, 1995, 102: 2209-2221.
    [44] Tong K L, So S K, Ng H F, et al. Transport and luminescence in naphthyl phenylamine model compounds [J]. Synth Met, 2004, 147: 199-203.
    [45] Miyata S. Organic Electroluminescent Materials and Devices [M], edited by Miyata S, Nalwa H S. Gordon and Breach, Amsterdam, 1997.
    [46] Manabu S, Masaharu A, Kei S, et al. Modulating fluorenscence of 8-quinolinolato compounds by functional groups: A theoretical study [J]. Appl Phys Lett, 2001, 79(15) : 2348-2350.
    [47] Sugimoto M, Sakaki S, Sakanoue K, et al. Theory of emission state of tris(8-quinolinolato)aluminum and its related compounds [J]. J Appl Phys,2001, 90: 6092-6097.
    [48] Curioni A, Boero M, Andreoni W. Alq(3): ab initio calculations of its structural and electronic properties in neutral and charged states [J]. Chem Phys Lett, 1998, 294: 263-271.
    [1] Rhule J T, Hill C L, Judd D A. Polyoxometalates in Medicine [J]. Chem Rev, 1998, 98: 327-358.
    [2] Hou Y Q, Hill C L. Hydrolytically stable organic triester capped polyoxometalates with catalytic oxygenation activity of formula [RC(CH2O)3V3P2W15O59]6- (R = CH3, NO2, CH2OH) [J]. J Am Chem Soc, 1993, 115: 11823-11830.
    [3] Hasenknopf B. Polyoxometalates: Introduction to a class of inorganic compounds and their biomedical applications [J]. Frontiers in Bioscience, 2005, 10: 275-287.
    [4] Muller A. Supramolecular Inorganic Species - An Expedition Into A Fascinating, Rather Unknown Land Mesoscopia With Interdisciplinary Expectations And Discoveries [J]. J Mol Stru, 1994, 325: 13-35.
    [5] Zeng H D, Newkome G R, Hill C T. Poly (polyoxometalate) Dendrimers: Molecular Prototypes of New Catalytic Materials [J]. Angew Chem Int Ed, 2000, 39 (10): 1771-1774.
    [6] Hill C L, Prosser-McCarther C M. Homogeneous catalysis by transition metal oxygenanion clusters [J]. Coord Chem Rev, 1995, 143: 407-455.
    [7] Yin C X, Sasaki Y, Finke R G. Autoxidation-Product-Initiated Dioxygenases: Vanadium-Based, Record Catalytic Lifetime Catechol Dioxygenase Catalysis [J]. Inorg Chem, 2005, 44: 8521-8530.
    [8] Gong Y, Hu C W, Liang H. Research progress in synthesis and catalysis of polyoxometalates [J]. Progress in Natural Science, 2005, 15: 385-394.
    [9] Proust A. Functionalized polyoxometalates: a new generation of soluble oxidesn [J]. Actualite Chimique, 2000, 7-8: 55-61.
    [10] Casan-Pastor N, Gomez-Romero P. Polyoxometalates: From inorganic chemistry to materials science [J]. Frontiers in Bioscience, 2004, 9: 1759-1770.
    [11] Chalkley L. The Extent of the Photochemical Reduction of Phosphotungstic Acid [J]. J Phys Chem, 1952, 56: 1084-1086.
    [12] Huang Y Z, Chen C, Shen Y C. Studies of the Use of Elemento-Organic Compounds of the 15th And 16th Groups in Organic-Synthesis 71. Reaction of Alpha-Halogeno Carboxylic Derivatives with Carbonyl-Compounds Promoted by Tributylstibine [J]. J Organomet Chem, 1989, 366 (1-2): 87-93.
    [13] Kimmel C A, Wellington D G, Farland W, et al. Workshop on Quantitative Models for Developmental Toxicity Risk Assessment May 7-8,1987 Crystal City, Va - Overview [J]. Environmental Health Perspectives, 1989, 79: 209-215.
    [14] Coronado E, Gomez-Garcia C J. Polyoxometalate-Based Molecular Materials [J]. Chem Rev, 1998, 98: 273-296.
    [15] Gouzerh P, Proust A. Main-group element, organic, and organometallic derivatives ofpolyoxometalates [J]. Chem Rev, 1998, 98 (1): 77-112.
    [16] Du Y, Rheingold A L, Maatta E A. A polyoxometalate incorporating an organoimidoligand:preparation and structure of [Mo5O18(MoNC6H4CH3)]2- [J]. J Am Chem Soc, 1992, 114(1): 345-346.
    [17] Clegg W, Errington R J, Fraser K A, et al. Functionalisation of [Mo6O19]2– with aromaticamines: synthesis and structure of a hexamolybdate building block with lineardifunctionality [J]. Chem Commun, 1995, 4: 455-456.
    [18] Proust A, Thouvenot R, Chaussade M, et al. Phenylimido derivatives of [Mo6O19]2?:syntheses, X-ray structures, vibrational, electrochemical, 95Mo and 14N NMR studies [J]. Inorg Chim Acta, 1994, 224 (1-2): 81-95.
    [19] Wei Y G, Xu B B, Barnes C L, et al. An efficient and convenient reaction protocol to organoimido derivatives of polyoxometalates [J]. J Am Chem Soc, 2001, 123 (17): 4083-4084.
    [20] Wei Y G, Lu M, Cheung C F C, et al. Functionalization of [MoW5O19]2- with aromaticamines: Synthesis of the first arylimido derivatives of mixed-metal polyoxometalates [J]. Inorg Chem, 2001, 40 (22): 5489-5490.
    [21] Xu L, Lu M, Xu B B, et al. Towards main-chain-polyoxometalate-containing hybridpolymers: A highly efficient approach to bifunctionalized organoimido derivatives of hexamolybdates [J]. Angew Chem Int Ed Engl, 2002, 41 (21): 4129-4132.
    [22] Xu B B, Wei Y G, Barnes C L, et al. Hybrid molecular materials based on covalently linked inorganic polyoxometalates and organic conjugated systems [J]. Angew Chem Int Ed, 2001, 40: 2290-2301.
    [23] Lu M, Wei Y G, Xu B B, et al. Hybrid molecular dumbbells: Bridging polyoxometalate clusters with an organic pi-conjugated rod [J]. Angew Chem Int Ed, 2002, 41, 1566-1568.
    [24] Kang J, Xu B B, Peng Z H, et al. Molecular and polymeric hybrids based on covalently linked polyoxometalates and transition-metal complexes [J]. Angew Chem Int Ed, 2005, 44 (42): 6902-6905.
    [25] Bar-Nahum I, Narasimhulu K V, Weiner L et al. Phenanthroline-Polyoxometalate Hybrid Compounds and the Observation of Intramolecular Charge Transfer [J]. Inorg Chem, 2005, 44: 4900-4902.
    [26] Xia Y, Wei Y G, Wang Y, et al. A Kinetically Controlled Trans Bifunctionalized Organoimido Derivative of the Lindqvist-Type Hexamolybdate: Synthesis, Spectroscopic Characterization, and Crystal Structure of (n-Bu4N)2{trans-[Mo6O17(NAr)2]} (Ar = 2,6-dimethylphenyl) [J]. Inorg Chem, 2005, 44: 9823-9828.
    [27] Qin C, Wang X L, Xu L,et al. A linear bifunctionalized organoimido derivative of hexamolybdate: Convenient synthesis and crystal structure [J]. Inorg Chem Commun, 2005, 8: 751-754.
    [28] Lu M, Xie B, Kang J, et al. Synthesis of Main-Chain Polyoxometalate-Containing Hybrid Polymers and Their Applications in Photovoltaic Cells [J]. Chem Mater, 2005, 17: 402-408.
    [29] Xu B B, Lu M, Kang J H, et al. Synthesis and optical properties of conjugated polymers containing polyoxometalate clusters as side-chain pendants [J]. Chem Mater, 2005, 17, 2841-2851.
    [30] Williamson M M, Bouchard D A, Hill C L. Characterization of a weak intermolecular photosensitive complex between an organic substrate and a polyoxometalate. Crystal and molecular structure of .alpha. -H3PMo12O40. cntdot. 6DMA. cntdot. CH3CN. cntdot. 0.5H2O(DMA= N,N-dimethylacetamide) [J]. Inorg Chem, 1987, 26 (9): 1436-1441.
    [31] Yan L K, Su Z M, Guan W, et al. Why Does Disubstituted Hexamolybdate with Arylimido Prefer to Form an Orthogonal Derivative? Analysis of Stability, Bonding Character, and Electronic Properties on Molybdate Derivatives by Density Functional Theory (DFT) Study [J]. J Phys Chem B, 2004,108 (45): 17337-17343.
    [32] Yan L K, Yang G C, Guan W, et al. Density Functional Theory Study on the First Hyperpolarizabilities of Organoimido Derivatives of Hexamolybdates [J]. J Phys Chem B, 2005, 109: 22332-22336.
    [33] Rohmer M M, Bénard M, Blaudeau J P, et al. From Lindqvist and Keggin ions to electronically inverse hosts: Ab initio modelling of the structure and reactivity of polyoxometalates[J]. Coord Chem Rev, 1998, 178-180: 1019-1049.
    [34] López X, Bo C, Poblet J M. Electronic properties of polyoxometalates: Electron and proton affinity ofmixed-addenda Keggin and Wells-Dawson anions[J]. J Am Chem Soc, 2002, 124 (42):12574-12582.
    [35] Bridgeman A J, Cavigliasso G. Electronic structure of the α and β isomers of [Mo8O26]4-[J]. Inorg Chem, 2002, 41(13): 3500-3507.
    [36] (a) te Velde G, Bickelhaupt FM, van Gisbergen S J A, et al. “Chemistry with ADF”, J Comput Chem, 2001, 22: 931-936. (b) Fonseca Guerra C, Snijders J G, te Velde G, et al. Theor Chem Acc, 1998, 99: 391. (c) ADF2002.03, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, 2002.
    [37] Becke A D. Density functional calculations of molecular bond energies [J]. J Chem Phys,1986, 84 (8): 4524-4529.
    [38] Becke A D. Density-functional thermochemistry. III. The role of exact exchange [J]. J Chem Phys, 1993, 98 (7): 5648-5652.
    [39] Vosko S H, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlationenergies for local spin density calculations: a critical analysis [J]. Can J Phys, 1980, 58:1200-1211.
    [40] Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys Rev A, 1988, 38 (6): 3098-3100.
    [41] Perdew J P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas [J]. Phys Rev B, 1986, 33 (12): 8822-8824.
    [42] (a) van Lenthe E, Baerends E J, Snijders J G. Relativistic regular two-component hamiltonians [J]. J Chem Phys, 1993, 99 (6): 4597-4610. (b) van Lenthe E, Baerends E J, Snijders J G. Relativistic total energy using regular approximations [J]. J Chem Phys, 1994, 101 (11): 9783-9792. (c) van Lenthe E, van Leeuwen R, Baerends E J, et al. Relativistic regular two-component Hamiltonians [J]. Int J Quan Chem, 1996, 57 (3): 281-293.
    [43] Leeuwen R van, Baerends E J. Exchange-correlation potential with correct asymptotic behavior [J]. Phys Rev A, 1994, 49: 2421-2431.
    [44] Schipper P R T, Gritsenko O V S, Gisbergen J A van et al. Molecular calculations of excitation energies and (hyper)polarizabilities with a statistical average of orbital model exchange-correlation potentials [J]. J Chem Phys, 2000, 112: 1344-1352.
    [45] Grüning M, Gritsenko O V, Gisbergen S J A, et al. Shape corrections to exchange-correlation potentials by gradient-regulated seamless connection of model potentials for inner and outer region [J]. J Chem Phys, 2001, 114: 652-660.
    [46] van Gisbergen S J A, Rosa A, Ricciardi G, et al. Time-dependent density functional calculations on the electronic absorption spectrum of free base porphin [J]. J Chem Phys 1999, 111: 2499-2506.
    [47] Grüning M, Gritsenko O V, Gisbergen S J A et al. Shape corrections to exchange-correlation potentials by gradient-regulated seamless connection of model potentials for inner and outer region [J]. J Chem Phys,2001, 114: 652-660.
    [48] Powell C E, Humphrey MG. Nonlinear optical properties of transition metal acetylides and their derivatives [J]. Coord Chem Rev, 2004, 248: 725–756.
    [1] Kains D R, Ratner M A, Marks T J, Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects [J]. Chem Rev, 1994, 94: 195-242.
    [2] Zyss J, Molecular Nonlinear Optics: Materials, Physics and Devices [M]. Academic Press: New York, 1994; Vol. 1, p 12-25.
    [3] Bosshard Ch, Sutter K, Prêtre Ph, et al. Organic Nonlinear Optical Materials [M] (Advances in Nonlinear Optics, Vol. 1.), Gordon & Breach: Amsterdam, The Netherlands, 1995.
    [4] Bredas J L, Adant C, Tackx P, et al. Third-Order Nonlinear Optical Response in Organic Materials: Theoretical and Experimental Aspects [J]. Chem Rev, 1994, 94: 243-278.
    [5] Messier J, Kajzar F, Prasad P. Organic Molecules for Nonlinear Optics and Photonics [M], NATO ASI Series, Kluwer AcademicPublishers: Dordrecht, 1991.
    [6] Zerbi G. Organic Materials for Photonics [M]. North-Holland, Amsterdam, 1993.
    [7] Chemla D S, Zyss J. Nonlinear Optical Properties of Organic Molecules and Crystals [M], Academic Press: Boston, 1987.
    [8] Marder S R, Organic nonlinear optical materials: where we have been and where we are going [J]. Chem Commun, 2006, 131-134.
    [9] Zhang G P, George T F. Ellipticity dependence of optical harmonic generation in C-60 [J]. Phys Rev A, 2006, 74 (2): Art. No. 023811.
    [10] Wei T H, Huang T H, Yang S, et al. Z-scan study of optical nonlinearity in C-60-toluene solution [J]. Mol Phys, 2005,103 (14): 1847-1857.
    [11] Li X D, Cheng W D, Wu D S, et al. Theoretical study on the photophysical properties of hexapyrrolidine C-60 adducts with Th, D3, and S6 symmetries [J]. J Phys Chem B, 2005, 109 (12): 5574-5579.
    [12] Ma S H, Lu X Z, Chen J, et al. Structural and optical nonlinear characterizations of Langmuir-Blodgett films of 1-benzyl-9-hydrofullerene-60 [J]. J Phys Chem, 1996, 100 (41): 16629-16632.
    [13] Hoffmann R, Imamura A, Zeiss G D. Spirarenes [J]. J Am Chem Soc. 1967, 89(20): 5215-5220.
    [14] Howard E S, Tadamichi F. Spiroconjugation [J]. J Am Chem Soc. 1967, 89(20); 5208-5215.
    [15] Abe J, Yasuo S, Nobukatsu N, et al. Theoretical Study of the Third-Order Nonlinear Optical Properties of Spiro-Linked Polyene [J]. J Phys Chem B, 1997, 101: 145-149.
    [16] Kim S Y, Lee M Y, Boo B H. Second molecular hyperpolarizability of 2,28-diamino-7,78-dinitro-9,98-spirobifluorene: An experimental study on third-order nonlinear optical properties of a spiroconjugated dimmer [J]. J Chem Phys, 1998, 109: 2593-2595.
    [17] Fu W, Feng J K, Pan G B. Theoretical study on the third-order nonlinear optical properties of a series of derived 9,9 '-spirobifluorenes [J]. J Mol Stru: THEOCHEM, 2001, 545: 157-165.
    [18] Abe J, Yasuo S, Nobukatsu N, et al. Theoretical Study of Hyperpolarizabilities of Spirolinked Push-Pull Polyenes [J]. J Phys Chem A, 1997, 101: 1-4.
    [19] Lee S H, Jang B B, Kafafi Z H. Highly Fluorescent Solid-State Asymmetric Spirosilabifluorene Derivatives [J]. J Am Chem Soc, 2005, 127(25): 9071-9078.
    [20] Pandey R, Coolidge M, Lauderdale W. NLO Properties Of Si(Oh)4 And Ge(Oh)4 Clusters [J]. Chem Phys Lett, 1994, 220 (3-5): 337-340.
    [21] Lebeau B, Sanchez C, Brasselet S, et al. Large second-order optical nonlinearities in azo dyes grafted hybrid sol-gel coatings [J]. New J Chem. 1996, 20 (1): 13-18.
    [22] Alparone A, Millefiori A, Millefiori S. Theoretical investigation of the dipole polarisability and second hyperpolarisability of cyclopentadiene homologues C4H4XH2 (X = C, Si, Ge, Sn) [J]. Chem Phys, 2004, 298 (1-3): 75-86.
    [23] Guo H Q, Wang Q M. Nonlinear optical response of nc-Si-SiO2 films studied with femtosecond four-wave mixing technique [J]. Chin Phys Lett, 2006, 23 (11): 2989-2992.
    [24] Minamikawa N, Tanaka K. Nonlinear optical properties of hydrogenated amorphous Si films probed by a novel Z-scan technique [J]. Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 2006, 45 (33-36): L960-L962.
    [25] Kundaliya D C, Ogale S B, Dhar S, et al. Large second-harmonic kerr rotation in GaFeO3 thin films on YSZ buffered silicon. Journal of Magnetism and Magnetic Materials, 2006, 299 (2): 307-311.
    [26] Abe J, Shirai Y, Nemoto N, et al. Theoretical Study of Hyperpolarizabilities of Spirolinked Push-Pull Polyenes [J]. J Phys Chem A, 1997, 101: 1-4.
    [27] Pal S K, Krishnan A, Das P K, et al. Schiff base linked ferrocenyl complexes for second-order nonlinear optics [J]. J Organomet Chem, 2000, 604 (2): 248-259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700