ZrO_2:RE和La_2O_3:RE材料发光性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究ZrO_2:RE纳米材料和体相材料的发光性质与La_2O_3:RE纳米材料和体相材料的制备及发光性质,用J—O理论对其掺Eu材料光学性能进行了计算,我们获得的结论如下:
     两种掺杂纳米材料样品的发光与稀土的掺杂浓度、样品的制备过程以及退火温度有关。对于Eu掺杂的纳米材料,在相同紫外光的持续辐照下,不同样品的最强发射强度的变化均与紫外光辐照时间有关,而体材料没有这个现象发生。Eu掺杂的体材料的发光强度均强于其相应纳米材料的发光强度。Eu~(3+)离子掺杂的两种纳米材料的发光与老化时间有关,随老化时间的延长,电荷迁移带强度变弱。
     两种Er~(3+)离子掺杂的纳米材料均难观察到它们的激发光谱。它们的上转换发射强度在相同的测量条件下,均弱于相应体相材料的上转换发光强度。两种Yb~(3+)和Er~(3+)共掺杂的材料在380nm荧光激发下只有绿色发光,没有红色发光,在~4S_(3/2)→~4I_(15/2)的跃迁发射的绿色发光中,560nm左右的发射位置不随Yb~(3+)离子浓度的变化而变化,而在545nm左右的发射位置与Yb~(3+)离子浓度有关。在980nm光激发下得到的上转换发光均与Yb~(3+)离子的掺杂浓度有关,Yb~(3+)离子的掺杂浓度提高时,红绿上转换发射强度变化很大。
     利用J—O理论和发射光谱计算了ZrO_2:Eu~(3+),La_2O_3:Eu~(3+)材料包括纳米材料和体相材料的Ω_2和Ω_4参数,计算并分析了电偶极和电多极相互作用引起的~5D_0→~7F_2跃迁的共振能量传递的速率。在低掺杂浓度下,Eu离子之间~5D_0→~7F_2跃迁的共振能量传递速率小于它的自发辐射速率。在低掺杂浓度下Eu离子之间的能量传递可以不用考虑。
     在相同的稀土掺杂条件、相同的制备方法和相同的测量条件下,La_2O_3:RE材料的发光强度远强于ZrO_2:RE材料的发光强度,即La_2O_3材料比ZrO_2材料更适宜于做发光基质材料。
In this dissertation, after the investigation on the optical properties of nanocrystalline and bulk materials ZrO_2 and La_2O_3 doped with RE~(3+) ions and the calculation of the parameterΩbased on the Judd—Ofelt theory for the samples doped with Eu~(3+) ions, some conclusions taken are as follows:
     The optical properties of the two kinds of samples doped with RE~(3+) ions are associated with dopant concentration, preparation process and annealing temperature. To the different types of nanocrystal samples doped with Eu~(3+) ions, under continuous ultraviolet (394nm) irradiation, the strongest emission intensity change of different samples are as a function of irradiation time. However, those phenomena can not be observed in the bulk materials. In addition, under the identical conditions, the emission intensity of the bulk samples doped with Eu~(3+) ions is greater than that of corresponding nanocrystals. The fluorescent properties of the nanocrystalline samples doped with Eu~(3+) ions are related to aging time, the longer the aging time, the weaker the emission intensity. About the two kinds of nanocrystals doped with Er~(3+) ions, it is difficult for the excitation spectra to be observed. Under the identical measurement conditions, the upconversion of the nanocrystals is weaker than that of corresponding bulk materials, whose only green emission can be found under 380nm excitation in the codoped system of Yb~(3+) and Er~(3+) ions, in which the peak position at around 560nm is changeless and the peak position at about 545nm changes as Yb~(3+) ion concentration varies. Their upconversion emission intensity at 980nm excitation is strongly dependent on the Yb~(3+) ion concentration. The emission intensity ratio of green to red upconversion remarkably diversifies as Yb~(3+) ion content increases. Additionally, the parametersΩ_2 andΩ_4 are calculated on the basis of the Judd-Ofelt theory and emission spectra for the two kinds of samples doped with Eu~(3+) ion including nanocrystals and bulks. We obtained the rate of resonant energy transfer of ~5D_0→~7F_2 transition caused by the interaction between electric diple and electric multiple.At low dopant concentration, the rate of resonant energy transfer for the ~5D_0→~7F_2 transition between Eu~(3+) ions is smaller than that of its spontaneous emission. Accordingly, the energy transfer between Eu~(3+) ions can be neglected. By comparison with the optical properties of the two kinds of materials doped with identical rare earth ions, we found the emission intensities of La_2O_3:RE~(3+) was greater than those of ZrO_2:RE~(3+) under the identical conditions including dopant content, preparation methods and measurement condition, in other words, La_2O_3 is a better optical material than ZrO_2.
引文
[1] Auzel F. Computeur quantique par transfert d' energie de a Tm~(3+) dans un tungstate meixte et dans un verre gemanate. Comt. Rend., 1966, 263B: 819-821
    [2] Johnson L F, Geusic J E. Comments on materials for efficient infrared conversion. Appl. Phys. Lett., 1969, 15:48-50
    [3] Qin G S, Qin W P, Chen B J, et al. Upconversion luminescence properties of Yb-Er:ZnF_2-AlF_3-PbF_2-LiF ceramic and glass. Chin. J. Lumin. (发光学报), 2002, 23(1): 85-89
    [4] Kano T, Yamamot H, Otomo Y. NaLnF_4:Yb~(3+), Er~(3+) (Ln:Y, Gd, La): efficient green-emitting infrared-excited phosphors. J. Electrochem. Soc., 1973, 119: 1561-1564
    [5] Hanna D C, Percival R M. Frequency upconversion in Tm and Yb:Tm doped silica fibers. Opt. Commun., 1990, (78): 187-194
    [6] Liu Z P, Hu L L, Dai S X, et al. Laser properties of Er~(3+), Yb~(3+) codoped erbium phosphate glass pumped by laser diode. Chin. J. Lumin. (发光学报), 2002, 23(3): 238-242
    [7] Ryba-Romanowshi W, Gotab S. Conversion of infrared radiation into red emission in YVO_4:Yb, Ho. Appl. Phys. Lett., 2001, (79): 3026-3028
    [8] Rothacher Th, LuTHY W, Weber H P. Diode pumping and laser properties of Yb:Ho:YAG. Opt. Comm., 1998, (155): 68-72
    [9] Kir'Yanov A V. Visible-to-near-IR luminescence at stepwise upconversion in Yb, Ho:GGG under IR diode pumping. J. Lumin., 2003, 102&103:715-721
    [10] Li J, Wang J Y. Growth and optical properties of Ho, Yb:YAl_3(BO_3)_4 crystal. J. Crystal Growth, 2003, 256:324-327
    [11] Stefan R Luthi, Markus Pollnau, and Hans U Gudel. Near-infrared to visible upconversion in Er~(3+)-doped Cs_3Lu_2Cl_9, Cs_3Lu_2Br_9 and Cs_3Lu_2I_9 excited at 1.54μm. Phys. Rev. B, 1999, 60(1): 162—178
    [12] Matsuura D. Red, green and blue upconversion luminescence of trivalent-rare-earth ion doped Y_2O_3 nanocrystals. Appl. Phys. Lett., 2002, (81): 4526-4528
    [13] Liang C H, Zhang L D, Meng C W, et al. Preparation and characterization of amorphous SiOx nanowires. J. Non-Cryst. Solids, 2000, 277(1): 63-67
    [14]Yu D P, Hang Q L, Ding Y, et al. Amorphous silica nanowires: Intensive blue light emitters. Appl. Phys. Lett., 1998, 73(21): 3076-3078
    [15]Rose M, Balogh A G, Hahn H. Defect formation in irradiated nanostructured materials. Mater. Sci. Appl. Ion Beam Tech., 1997, 248: 213-216
    [16]Chadwick A V, Pooley M J, Rammutla K E, et al. A comparison of the extended x-ray absorption fine structure of nanocrystalline ZrO_2 prepared by high energy ball milling and other methods. J. Phys. Condes. Matter, 2003, 29(15): 431-440
    [17] Zhang M, Bando Y, Wada L, et al. Synthesis of nanotubes and nanowires of silicon oxide. J. Mater. Sci. Lett., 1999, 18(23): 1911-1913
    [18] Maria C Caracoche, Patricia C Rivas, Mario M Cervera, et al. Zirconium Oxide Structure Prepared by the Sol-Gel Route: 1, The Role of the Alcoholic Solvent. J. Am. Ceram. Soc, 2000, 83(2): 377-84
    [19] Haibin Li, Kaiming Liang, Shouren Gu, et al. Oriented nano-structured ZrO_2 thin films on fused quartz substrate by sol-gel process. J. Mater. Sci. Lett., 2001, 20: 1301-1303
    [20] E Pereyra-Perea, M R Estrada-Yanez and M Garcia. Preliminary studies on luminescent terbium doped ZrO_2 thin films prepared by the sol-gel process. J. Phys. D: Appl. Phys., 1998, 31: L7-L10
    [21]Liu Z Q, Xie S S, Sun L F, et al. Synthesis of alpha-SiO_2 nanowires using Au nanoparticle catalysts on a silicon substrate. J. Mater. Res., 2001, 16(3): 683-686
    [22]Chaim R, Hefetz M, Fabrication of dense nanocrystalline ZrO_2:3wt.% Y2O3 by isostatic pressing. J. Mater. Res., 1998, 13: 1875-1880
    [23]Chatterjee A, Pradhan S K, Datta A De, et al. Stability of cubic phase in nanocrystalline ZrO_2. J. Mater. Res., 1994, 9: 263-265
    [24]Gong X, Wu P F, Chan W K, et al. Effect of gamma-ray irradiation on structures and luminescent properties of nanocrystalline. J. Phys. Chem. Solids, 2000, 61: 115-121
    [25]Mayo M J, Seidensticker J R, Hagure D C, et al. Surface chemistry effects on the processing and superplastic properties of nanocrystalline oxide ceramics. Nanostruct. Mater., 1999, 11: 271-282
    [26] Chen D R, Xu R R. Hydrothermal wynthesis of nanocrystalline ZrO_2 center doped 3% Y_2O_3 powders with a tetragonal phase from 2-methoxyethanol-water system. J. Chin. Univ-Chin., 1998, 19: 1-4
    [27]Kolen'ko Y V, Burukhin A A, Churagulov B R, et al. Hydrothermal synthesis of nanocrystalline powders of various crystalline phases of ZrO_2 and TiO_2 Russ. J. Inorg. Chem., 2002, 47: 1609-1615
    [28]Qi Z M, Shi C S, Zhang W W, et al. Local structure and luminescence of nanocrystalline Y_2O_3:Eu. Appl. Phys. Lett., 2002, 81: 2857-2859
    [29]Capobianco J A, Boyer J C, Vetrone F S, et al. Optical spectroscopy and upconversion studies of Ho~(3+) doped buld and nanocrystalline Y_2O_3. Chem. Mat., 2002,14:2915-2921
    [30] Lamas D G, De Reca NEW. X-ray diffraction study of compositionally homogeneous, nanocrystalline yttria doped zirconia powders. J. Mater. Sci., 2000, 35: 5563-5567
    [31]Lamas D G, Juarez R E, Lascalea G E. De Reca NEW, Synthesis of compositionally homogeneous, nanocrystalline ZrO2:35mol% CeO_2 powders by gel-combustiom. J. Mater. Sci. Lett., 2001, 20: 1447-1449
    [32]Ye T, Zhao G W, Zhang W P, Xia S D. Combustiom synthesis and photoluminescence of nanocrystalline Y_2O_3:Eu phosphors. Mater. Res. Bull., 1997, 32: 501-506
    [33]Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 271:933-937
    [34]Nichol W T, Keto J W. Large scale production of nanocrystals by laster ablation of microparticles in a flowing aerosol. Appl. Phys. Lett., 2001, 78: 1128-1130
    [35]Murry C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodiaperse CdE (E=S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc, 1993. 115:8706-8715
    [36]Guo Shouwu, Konophy L. Thioalkanoates as site-direction nucleating centers for the preparation of patterns of CdS nanoparticles within 3D crystals and LB films of Cd alkanoates. J. Am. Chem. Soc, 1999, 121: 9589-9598
    [37]Hines M A, Philippe Guyot-Sionnest. Synthesis and characterization of strongly luminescing ZnS capped CdSe nanocrystals. J. Phys. Chem., 1996, 100: 468-473
    
    [38]Bhargava R N, Gallagher D. Optical properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett., 1994, 72: 416-419
    [39]Lao y, Huang S W, Ming Z H, et al. X-ray excited luminescence and local structure in Tb-doped Y_2O_3. J. Appl. Phys., 1998, 83, 5404-5409
    [40]Bhagwat U A, Sastry Murali, Kulkami S K. Green luminescence from copper zinc suphide quantum particles. Appl. Phys. Lett., 1995, 67: 2702-2705
    
    [41]Soo Y L, Ming Z H, Huang S W, et al. Local structures around Mn luminescenct centers in Mn-doped nanocrystals of Zns. Phys. Rev. B, 1994, 50: 7602-7607
    [42] Kennedy T A, Glaser E R, Klein P B, et al. Symmetry and electronic structure of the Mn impurity in ZnS nanocrystals. Phys. Rev. B, 1995, 52:R14356-R14359
    [43] Xie Pingbo, Duanwen, Zhang Weiping, et al. Research on quenching concentration of nanocrystalline Y_2SiO_5:Eu. Chin. J. Lumin., 1998, 15(1): 19-23
    [44] 李丹,吕少哲,张继森等.Eu~(3+):Y_2O_3纳米微粒的尺寸效应和表面态效应的研究.发光学报,2000,(2):134-138
    [45] KHOR K A, YANG J. Plasma sprayed ZrO_2-Sm_2O_3 coatings:lattice parameters tetragonality (c/a) and transformability of tetragonal Zirconia phase. Mater. Sci. Lett., 1997, (16): 936-938
    [46] T. Rivera, J Azorin. Thermolunescent and optical properties Al_2O_3:C and ZrO_2:Eu exposed to ultraviolet light. Rev. Mex. Fis (Mexico). 1999, 45(1) (Suppl): 68-70
    [47] Sanfilippo D and Miracca I.Dehydrogenation of paraffins:synergies between catalyst design and reactor engineering. Catalysis Today, 2006, 111:133-139.
    [48] Lee-Jene Lai, Thermoluminescence of ZrO_2 doped with Er_2O_3 induced by ultraviolet and X-ray radiation. Appl. Phys., 1999, 85(12): 8362-8365
    [49] E De la Rosa-Cruz, L A Diaz- Torres, P Salas, et al. Evidence of non-radiatiove energy transfer from the host to the active ions in monocline ZrO_2:Sm~(3+). J. Phys D: Appl. Phys., 2001, (34): L83-L86
    [50] Patra A, Friend C S, Kapoor R, et al. Upconversion in Er~(3+):ZrO_2 nanocrystals. J. Phys. Chem. B, 2002, 106:1909-1912
    [51] Amitava Patra, Christopher S. Friend, Radesh Kapoor, and Paras N. Prasad. Effect of crystal nature on upconversion luminescence in Er~(3+):ZrO_2 nanocrystals. Appl. Phys. Lett., 2003, 83(2): 284-286
    [52] L A Diaz-Torres, E De la Rosa-Cruz, P Salas and C Angeles-Chavez. Concentration enhanced red upconversion in nanocrystalline ZrO_2:Er under IR excitation. J. Phys. D: Appl. Phys., 2004, (37): 2489-2495
    [53] Limiao Chen, Younian Liu and Yadong Li. Preparation and characterization of ZrO2:Eu~(3+) phosphors. J. Alloys Compd., 2004, (381): 266-271
    [54] Hongwu Zhang, Xiaoyan Fu, Shuyun Niu, et al. Synthesis and characterization of ZrO_2:Eu nanopowder by EDTA complexing sol-gel method. Mater. Chem. Phys, 2005, (91): 361-364
    [55] S. Gutzov, M. Kohls and M. Lerch. The luminescence of Zr-Eu-O-N materials. J. Phys. Chem. Solids, 2000, (61): 1301-1309
    [56] Pushpal Ghosh, Amitava Patra. Role of surface coating in ZrO_2/Eu~(3+) nanocrystals. Langmuir, 2006, 22(7): 6321-6327
    [57] J K Park, S M Park, C H Kim, et al. Photoluminescence properties of the Eu~(3+) in La_2O_3. J. Mater. Scie. Lett., 2001, 20:2231-2232
    [58] 周永慧,林君,于敏。La_2O_3:Sm发光粉的合成与发光性质的研究。中国稀土学报,2002,20(6):634-636
    [59] Haiying Wang, Ruji Wang, Xiaoming Sun, et al. Synthesis of red-luminescent Eu~(3+)-doped lanthanides compounds hollow spheres. Mater. Res. Bull., 2005, 40: 911-919
    [60] M J V Bell, D F de Sousa, S L de Oliveira, et al. Photon avalanche upconversion in Tm~(3+)-doped fluoroindogallate galsses. J. Phys. Condens. Matter., 2002, 14: 5651-5663
    [61] S. Mochizuki, Y. Suzuki, T. Nakanishi and K. Ishi. Valence change and defect-induced white luminescence of Eu_2O_3. Physica B, 2001, 308-310: 1046-1049
    [62] Masayuki Nogami, Tsukasa Yamazaki and Yoshihiro Abe. Fluorescence properties of Eu~(3+) and Eu~(2+) in Al_2O_3-SiO_2 glass. J. Luminescence, 1998, 78:63-68
    [63] Kyeong Youl Jung, Chang Hee Lee and Yun Chan Kang. Effect of surface are and crystallite size on luminescent intensity of Y_2O_3:Eu phosphor prepared by spray pyrolysis. Mater. Lett., 2005, 59:2451-2456
    [64] A. M. Pires, M. R. Davolos and E. B. Stucchi. Eu~(3+) as a spectroscopic probe in phosphors based on spherical fine particle gadolinium compounds. Int. J. Inorganic Mater., 2001, 3:785-790
    [65] Bo Liu, Chaoshu Shi, Qingli Zhang and Yonghu Chen. Temperature dependence of GdVO_4:Eu~(3+) luminescence. J. Alloys Compds., 2002, 333:215-218
    [66] Marcos A. Bizeto, Vera R. L. Constantino and Hermi F. Brito. Luminescence properties of the layered niobate KCa_2Nb_3O_(10) doped with Eu~(3+) and La~(3+) ions. J. Alloys Compds., 2000, 311: 159-168
    [67] A. C. Vaz de Araujo, I. T. Weber, B. S. Santos, et al. Spectroscopy and crystallization behavior of Eu~(3+)-doped La_2O_3:B_2O_3 binary glasses. J. Non-Cryst. Solids, 1997, 219:160-164
    [68] G. S. Maciel, A. Biswas and P. N. Prasad. Infrared to visible Eu~(3+) energy upconversion due to cooperative energy transfer from an Yb~(3+) ion pair in a sol-gel processed multi-component silica glass. Opt. Comm., 2000, (178): 65-69
    [69] Weiyi Jia, Karem Monge, Felix Fernandez. Energy transfer from the host to Eu~(3+) in ZnO. Opt. Mater., 2003, (23): 27-32
    [70] Hua Yang, Lianxiang Yu, Lianchun Shen and Li Wang. Preparation and luminescent properties of Eu~(3+)-doped zinc sulfide nanocrystals. Mater. Lett., 2004, 58:172-175
    [71]Fangtian You, Shihua Huang, Shuman Liu and Ye Tao. VUV excited luminescence of MGdF_4:Eu~(3+)(M=Na, K, NH_4). J. Lumin., 2004, 110: 95-99
    [72]E. Zych, M. Karbowiak, K. Domagala and S. Hubert. Analysis of Eu3+ emissionfrom different sites in Lu_2O_3. J. Alloys Compds., 2002, 341: 381-384
    [73]Takayuki Hirai, Takashi Hirano and Isao Komasawa. Preparation of Gd_2O_3:Eu~(3+) and Gd_2O_2S:Eu~(3+) Phosphor Fine Particles Using and Emulsion Liquid Membrane System. J. Colloid Int. Sci., 2002, 253: 62-69
    [74]Hongwei Song, Baojiu Chen, Baojuan Sun, et al. Ultraviolet light-induced spectral change in cubic nanocrystalline Y_2O_3:Eu~(3+) . Chem. Phys. Lett., 2003, 372: 368-372
    [75]Hongwei Song, Baojun Chen, Hongshang Peng and Jisen Zhang. Light-induced change of charge transfer band in nanocrystalline Y_2O_3:Eu~(3+) . Appl. Phys. Lett., 2002,81(10): 1776-1778
    [76]Jiwei Wang, Yuming Chang, Huancheng Chang, et al. Local structure dependence of the charge transfer band in nanocrystalline Y_2O_3:Eu~(3+). Chem. Phys. Lett., 2005, 405:314-317
    [77] S. Gutzov, M. Bredol and F. Wasgestian. Cathodoluminescence study of europium-doped zirconia and cassiterite powders. J. Phys. Chem. Solids, 1998, 59(1): 69-74
    [78] Masayuki Nogami and Atsusi Ohno. Laser precipitation of SnO_2 nanocrystals in glass and energy transferred-fluorescence of Eu~(3+) ions. J. Non-Cryst. Solids, 2003, 330: 264-267
    [79]Weiwei Zhang, Weiping Zhang, Pingbo Xie, et al. Optical properties of nanocrystalline Y_2O_3:Eu depending on its odd structure. J. Colloid Int. Sci., 2003, 262: 588-593
    [80] Mingli Jia, Jiahua Zhang, Shaozhe Lu, et al. UV excitation properties of Eu~(3+) at the S6 site in bulk and nanocrystalline cubic Y_2O_3. Chem. Phys. Lett., 2004, 384: 193-196
    [81]Junxi Wan, Zhenghua Wang, Xiangying Chen, et al. Shape-tailored photoluminescent intensity of red phosphor Y_2O_3:Eu~(3+). J. Crystal Growth, 2005, 284: 538-543
    [82]M. Buijs, A. Meyerind and G Blasse. Energy transfer between Eu~(3+) ions in a lattice with two different crystallographic sites: Y_2O_3:Eu~(3+), Gd_2O_3:Eu~(3+) and Eu_2O_3, J. Lumin., 1987,37:9-20
    [83] R. B. Hunt Jr and R. G. Pappalardo. Fast Excited state Relaxation of Eu-Eu pairs in Commercial Y_2O_3:Eu~(3+) Phosphors. J. Lumin., 1985, 34:133-146
    [84] 马多多.博士论文.稀土氧化物Ln_2O_3:Eu(Ln=Y,Gd,La)纳米发光材料的制备、结构和光学性质.中国科学院长春光学精密机械与物理研究所.1998
    [85] 李灿涛,袁剑辉,张万锴,刘行仁.掺杂Gd~(3+)对Y_2O_2S:Eu~(3+)发光特性的影响.发光学报,1999,(4):316-319
    [86] 孙宝娟,宋宏伟,吕少哲等.共掺杂对Y_2O_3:Eu~(3+)纳米晶结构和发光性质的影响.发光学报,2004,(6):715-720
    [87] 刘晃清,秦伟平,张继森.ZrO_2中Eu~(3+)的发光特性.光谱学与光谱分析,2005,(1):19-22
    [88] 刘晃清,王玲玲,秦伟平.二氧化锆纳米材料中Eu~(3+)的发光特性.物理学报,2004,(1):82-284
    [89][89] 刘晃清,王玲玲,邹炳锁.退火温度对ZrO_2纳米材料中Eu~(3+)离子发光的影响.物理学报,2007,56(1):556-560
    [90] HuangQing Liu, LingLing Wang, Weiqing Huang, ZhiWei Peng. Preparation and luminescence properties of nanocrystalline La_2O_3:Eu phosphor. Matter Lett., 2006
    [91] HuangQing Liu, LingLing Wang, Bingsuo Zou. Effect of concentration on the luminescence of Eu~(3+) ions in nanocrystalline La2O3. accepted by J. Lumin.
    [92] 贾明理,张家骅,吕少哲.纳米Y_2O_3:Eu~(3+)中S_6格位电荷迁移带的光学特性.发光学报,2004,(1):62-66
    [93] D. Hreniak, E. Zych, L. Kepinski and W. Strek. Structural and spectroscopic studies of Lu_2O_3/Eu~(3+) nanocrystallites embedded in SiO_2 sol-gel ceramics. J. Phys. Chem. Solids, 2003, 64:111-119
    [94] S. Tamil Selvan, Tomokatsu Hayakawa, Masayuki Nogami. Enhanced fluorescence from Eu~(3+)-doped silica gels by adsorbed CdS nanoparticles. J. Non-Crys. Solids, 2001, (291): 137-141
    [95] Chih-Cheng Yang, Syh-Yuh Cheng, Hsin-Yi Lee and San-Yuan Chen. Effects of phase transformation on photoluminescence behavior of ZnO:Eu prepared in different solvents. Ceramics Int., 2006, 32:37-41
    [96] Y. C. Kang, S. B. Park, I. W. Lenggoro and K. Okuyama. Gd_2O_3:Eu phosphor particles with sphericity, submicron size and non-aggregation characteristics. J. Phys. Chem. Solids, 1999, 60:379-384
    [97] H. C. Zhang, S. Buddhudu, C. H. Kam, et al. Luminescence of Eu~(3+) and Tb~(3+) doped Zn_2SiO_4 nanometer powder phosphors. Mater. Chem. Phys., 2001, 68: 31-35
    [98]Zhang Wei-wei, Xu Mei, Zhang Wei-ping, et al. Site-selective spectra and time-resolved spectra of nanocrystalline Y_2O_3:Eu. Chem. Phys. Lett., 2003, 376: 318-323
    [99]S. Gutzov, M. Lerch. Optical properties of europium containing zirconium oxynitrides. Opt. Mater., 2003, 24: 547-554
    [100]J. Dhanaraj, M. Geethalakshmi, R. Jagannathan, T. R. N. Kutty. Eu~(3+) doped yttrium oxysulfide nanocrystals-crystallite size and luminescence transition(s). Chem. Phys. Lett, 2004, 387: 23-28
    [101]Y. Kondo, Y. Kuroiwa, N. Sugimoto, T. Manabe, S. Ito, T. Yoko, and A. Nakamura. Ultraviolet irradiation effect on the third-order optical nonlinearity of CuCl-microcrystallite-doped glass. J. Opt. Soc. Am. B. 2000, B17: 548-550
    [102]Liping Li, Xiaoqing Qiu, and Guangshe Li, Correlation between size-induced lattice variations and yellow emission shift in ZnO nanostructures, Appl. Phys. Lett. 2005,87:124101
    [103]J. A. Capobianco, F. Vetrone, J. C. Boyer, A. Speghini, M. Bettinelli. Visible upconversion of Er~(3+) doped nanocrystalline and bulk Lu_2O_3. Opt. Mater., 2002, 19 (2): 259-268
    [104]Zhang Y W, Jin S, Yang Y, Liao C S, Yan C H. Annealing effects on the phase and microstructure transformations of nanocrystalline (ZrO_2)(1-x)(Sc_2O_3)(x) (x=0.02-0.16) thin films deposited by sol-gel method. J. Solid State Commun, 2002, 122: 439-444
    [105]Zhang Y W, Xu G, Yan Z G, Yang Y, Liao C S, Yan C H. Nanocrystalline rare earth stabilized zirconia: solvothermal synthesis via heterogeneous nucleation-growth mechanism, and electrical properties. J. Mater. Chem, 2002, 12: 970-977
    [106]Vasylkiv O, Sakka Y, Skorokhod V V. Low-temperature processing and mechanical properties of zirconia and zirconia-alumina nanoceramics. J. Am. Ceram. Soc, 2003, 86: 299-304
    [107]Hong J S, Gao L, Torre S D D L, Miyamoto H, Miyamoto K. Spark plasma sintering and mechanical properties of ZrO_2(Y_2O_3)-Al_2O_3 composites. J. Mater. Lett, 2000,43:27-31
    [108]Sturm A, Betz U, Scipione G, Hahn H. Grain growth and phase stability in a nanocrystalline ZrO_2-15wt% Al_2O_3 ceramic. J. Nanostruct. Mater, 1999, 11: 651-661
    
    [109]Mishra R S, Jayaram V, Majumdar B, Lesher C E, Mukherjee A K. Preparation of a ZrO_2-Al_2O_3 nanocomposite by high pressure sintering of spray-pyrolyzed powders. J. Mater. Res., 1999, 14: 834-840
    [110]Forker M, Schmidberger J, Szabo D V, Vollath D, Perturbed-angular-correlation study of phase transformations in nanoscaled Al_2O_3-coated and noncoated ZrO_2 particles synthesized in a microwave plasma. J. Phys. Rev. B, 2000, 61: 1014-1025
    [111]Chaim R, Heftz M. Fabrication of dense nanocrystalline ZrO_2-3wt% Y_2O_3 by hot-isostatic pressing. J. Mater. Res., 1998, 13: 1875-1860
    [112]Chatterjee A, Pradhan S K, Datta A, De M, Chakravorty D. Stability of cubic phase in nanocrystalline ZrO_2. J. Mater. Res., 1994, 9: 263-265
    [113]Knoner G, Reimann K, Rower R, Sodervall U. Schaefer H E. Enhanced oxygen diffusivity in interfaces of nanocrystalline ZrO_2 center dot Y_2O_3. J. Proc. Natl. Acad. Sci., 2003, 100: 3870-3873
    [114]Vertanessian A, Allen A, Mayo M J. Agglomerate formation during drying., J. Mater. Res., 2003, 18: 495-506
    [115]Betz U, Padmanabhan K A, Hahn H. Superplastic flow in nanocrystalline and sub-microcrystalline yttria-stabilized tetragonal zirconia. J. Mater. Sci., 2001, 36: 5811-5821
    [116]Li W, Gao L. Sintering of nanocrystalline ZrO_2(3Y) by hot-pressing. J. Mater. Trans., 2001,42: 1653-1656
    [117]Qi Z M, Shi C S, Wang Z, Wei Y G, Xie Y N, Hu T D, Li F L. Amorphous and nanocrystalline ZrO_2 center dot Y_2O_3(15%) studied by extended X-ray absorption fine structure. J. Acta. Phys. Sin., 2001, 50: 1318-1323
    [118]Li W, Gao L. Rapid sintering of nanocrystalline ZrO_2 (3Y) by spark plasma sintering. J. European Ceram. Soc, 2000, 20: 2441-2445
    [119]Rush G E, Chadwick A V, Kosacki I, Anderson H U. An EXAFS study of nanocrystalline yttrium stabilized cubic zirconia films and pure zirconia powders. J. Phys. Chem. B, 2000, 104(19): 9597-9606
    [120]Xia B, Duan L, Xie Y, Tang Y. Preparation of Y_2O_3 stabilised ZrO_2 ceramic nanopowders by surface doping. J. Mater. Sci. Tech., 1999, 15: 755-760
    [121]Mondal P, Kelein A, Jaegermann W, Hahn H. Enhanced specific grain boundary conductivity in nanocrystalline Y_2O_3-stabilized zirconia. J. Solid State Ion, 1999, 118:331-339
    [122]Mondal P, Hahn H. Investigation of the complex conductivity of nanocrystalline Y_2O_3-stabilized zirconia. J. Ber. Bunsen-Ges. Phys. Chem. Chem. Phys., 1997, 101: 1765-1768
    [123]Winterer M, Nitsche R, Hahn H. Local structure in nanocrystalline ZrO_2 and Y_2O_3 by EXAFS. J. Nanostruct. Mater., 1997, (9): 397-400
    
    
    [124] Armstrong B L. Consolidation of nanocrystalline ZrO_2. J. Mater. Manuf. Process., 1996, (11): 999-1012
    
    [125]Chen D J, Mayo M J. Rapid rate sintering of nanocrystalline ZrO_2-3mol %Y_2O_3. J. Am. Ceram. Soc, 1996, 79: 906-912
    [126]Zhang Q Y, Shen J, Wng J, Wu G M, Chen L Y. Sol-gel derived ZrO_2-SiO_2 highly reflective coatings. J. Inorg. Mater., 2000, (2): 319-323
    [127]Lamas D G, Lascalea G E, Juarez R E, Djurado E, Perez L de. Reca NEW, Metastable forms of the tetragonal phase in compositionally homogeneous, nanocrystalline zirconia-ceria powders synthesized by gel-combustion. J. Mater. Chem., 2003, (13): 904-910
    [128]Quinelato A L, Longo E, Leite E R, Bernardi MIB, Varela J A. Synthesis and sintering of ZrO_2-CeO_2 powder by use of polymeric precursor based on Pechini process. J. Mater. Sci., 2001, (36): 3825-3830
    
    [129]Lamas D G, Lascalea G E, Juarez R E, Djurado E, Perez L de. Reca NEW, Synthesis of compositionally homogeneous, nanocrystalline ZrO_2-35mol%CeO_2 powders by gel-combustion. J. Mater. Sci. Lett., 2001, 1447-1449
    [130]KatsDemyanets A, Chaim R. Grain growth control in nanocrystalline oxide ceramics. J. Nanostruct. Mater., 1995, (6): 851-854
    [131]Lee H. Spangler, Bruce Farris, Elizabeth D. Filer and Norman P. Barnes. A computational study of host effects on Er~(3+) upconversion and self-quenching efficiency in ten garnets. J. Appl. Phys., 1996, (2): 573-577
    [132]Guanshi Qin, Jianren Lu, J. F. Bisson, Yan Feng, Ken-ichi Ueda, H. Yagi, and T. Yanagitani, Upconversion luminescence of Er~(3+) in highly transparent YAG ceramics. Solid State Comm., 2004, 132: 103-106
    [133]J. Zhang, S. W. Wang, T. J. Rong, and L. D. Chen. Upconversion Luminescence in Er~(3+) Doped and Yb~(3+)/Er~(3+) Co-doped Yttria Nanocrystalline Powders. J. Am. Ceram. Soc, 2004, (6): 1072
    [134]P. G Kik and A. Polman. Cooperative upconversion as the gain-limiting factor in Er doped iniature Al_2O_3 optical waveguide amplifiers. J. Appl. Phys., 2003, 93(9): 5008-5012
    
    [135]L. Zhang, P. D. Townsend, P. J. Chandler, and A. J. Silversmith. Upconversion in ion implanted Er:YAG waveguides, Electronics Lett., 1994, 30(13): 1063-1064
    [136] Su F, Deng Z. Upconversion properties of E~(r3+)/Yb~(3+) co-doped TeO_2-TiO_2-K_2O glasses. J. Fluoresc, 2006, 16(1): 69-75
    [137] Markus P. Hehlen, Karl Kramer, Hans U. Gudel, Ross A. McFarlane and Robert N. Schwartz. Upconversion in Er~(3+)-dimer systems: Trends within the series Cs_3Er_2X_9(X=Cl, Br, I), Phys. Rev. B, 1994, 49(18): 12475-12484
    [138] Sharp J H, Shi C W P, Seat H C. Er-doped sapphire fibre temperature sensors using upconversion emission. Measurement Control, 2001, 34(6): 170-171
    [139] Yuki Kishi, Setsuhisa Tanabe. Infrared-to-visible upconversion of rare-earth doped glass ceramics containing CaF_2 crystals. J. Alloys Compd., 2006, 408-412: 842-844
    [140] McFarlane R A. Upconversion laser in BaY_2F_8:Er 5% pumped by ground-state and excited-state absorption. J. Opt. Soc. Am. B, 1994, 11:871-880
    [141] C. Strohhofer, A. Polman. Absorption and emission spectroscopy in Er~(3+)-Yb~(3+) doped aluminum oxide waveguides. Opt. Mater., (2002), 21(4): 705-712
    [142] P. Wang, J. M. Dawes, P. Bums, J. A. Piper, H. Zhang, L. Zhu, X. Meng. Diode-pumped cw tunable Er~(3+):Yb~(3+):YCOB laser at 1.5-1.6μm. Opt. Mater., 2002, (3): 383-387
    [143] L. C. Chao, A. J. Steckl. CW blue-green light emission from GaN and SiC by sum-frequency generation and second harmonic generation. J. Electronic Mater., 2000, (29): 1059
    [144] L. C. Chao, B. K. Lee, C. J. Chi, J. Cheng, I. Chyr and A. J. Steckl. Upconversion luminescence of Er-implanted GaN films by focused-ion-beam direct write. Appl. Phys. Lett., 1999, (75): 1833
    [145] A. Clark, V. Terpugov, F. Medrano, M. Cervantes, D. Soto. Luminescence and non-linear optical properties of erbium-tetraphenylporphyrin complexes incorporated within a silica matrix by a sol-gel process. Opt. Mater., 1999, (3): 355-360
    [146] C. Urlacher, C. Marco de Lucas, E. Bernstein, B. Jacquier, J. Mugnier. Study of erbium doped ZrO_2 waveguides elaborated by a sol-gel process. Opt. Mater., 1999, (1): 19-25
    [147] Ferber S, Gaebler V, Eichler H J. Violet and blue upconversion-emission from erbium-doped ZBLAN-fibers with red diode laser pumping. Opt. Mater., 2002, (3): 211-215
    [148] Christof Strohhofer. Albert Polman, Enhancement of Er~(3+) ~4I_(13/2) population in Y_2O_3 by energy transfer to Ce~(3+). Opt. Mater., 2001, (4): 445-451
    [149] Setsuhisa Tanabe, Hideaki Hayashi, Teiichi Hanada, Noriaki Onodera. Fluorescence properties of Er~(3+) ions in glass ceramics containing LaF3 nanocrystals. Opt. Mater., 2002, (3): 343-349
    [150] Huang Y D, Mortier M, Auzel F. Stark levels analysis for Er~(3+)-doped oxide glasses: germanate and silicate. Opt. Mater., 2001, (4): 243-260
    [151] Przhevuskii A K, Nikonorov N V. Monte-Carlo simulation of upconversion processes in erbium-doped materials. Opt. Mater., 2002, (4): 729-741
    [152] Vetrone F, Boyer J C, Capobianco J A, Speghini A and Bettinelli M. Concentration Dependent Near Infrared-to-Visible Upconversion in Nanocrystalline and Bulk Y_2O_3:Er~(3+). Chem. Mater., 2003, 15:2737-2743
    [153] Lee H. Spangler, Bruce Farris, Elizabeth D. Filer and Norman P. Barnes, A computational study of host effects on Er~(3+) upconversion and self-quenching efficiency in ten garnets. J. Appl. Phys., 1996, 79(2): 573-577
    [154] Guanshi Qin, Jianren Lu, J.F. Bisson, Yan Feng, Ken-ichi Ueda, H. Yagi, and T. Yanagitani. Upconversion luminescence of Er~(3+) in highly transparent YAG ceramics. Solid State Commun., 2004, 132:103-106
    [155][155] J. Zhang, S. W. Wang, T. J. Rong, and L. D. Chen. Upconversion Luminescence in Er~(3+) Doped and Yb~(3+)/Er~(3+) Co-doped Yttria Nanocrystalline Powders. J. Am. Ceram. Soc., 2004, 87(6): 1072
    [156][156] P. G. Kik and A. Polman. Cooperative upconversion as the gain-limiting factor in Er doped iniature Al_2O_3 optical waveguide amplifiers. J. Appl. Phys., 2003, (9): 5008-5012
    [157] Zhang L, Townsend P D, Chandler P J, and A. J. Silversmith. Upconversion in ion implanted Er:YAG waveguides. Electronic Lett., 1994, (13): 1063-1064
    [158] Fiorenzo Vetrone, John-Christopher Boyer, and John A. Capobianco. Significance of Yb~(3+) concentration on the upconversion mechanisms in codoped Y_2o_3:Er~(3+), Yb~(3+) nanocrystals. J. Appl. Phys., 2004, (1): 661-667
    [159] Xiang Pengm Feng Song, Makoto Kuwata-Gonokami, Shibin Jiang, N Peyghamparian. Er~(3+) doped tellurite glass microsphere laser: optical properties, coupling scheme, and laser characteristics. Opt. Eng., 2005, 44(3): 034202
    [160] 宋峰,王虹,张潮波,赵丽娟,许京军,张光寅,姚建铨.Er玻璃近红外区上转换发光的研究.发光学报,2001,(1):48-50
    [161] 谭浩,宋峰,商美茹等.Er~(3+)、Tm~(3+)共掺NaY(WO_4)_2晶体的光谱分析和上转换发光.物理学报,2004,(2):631-635
    [162] Hou Yanbing, Chen Xiaobo, Zhang Guangyin, Song Feng, Hao Zhao. Temperature Dependence of Upconversion Luminescence from Pr~(3+), Er~(3+) and Yb~(3+) Codoped ZBLAN Glass Pumped by Laser Diode. SPIE, 1996, 2886:241
    [163] Chen Xiaobo, Hao Zhao, Zhang Guangyin, Hou Yanbing, Song Feng. Multi-photon upconversion process in Er-doped, Er- and Yb-codoped ZBLAN. SPIE, 1996, 2897:279
    [164] Song Feng, Zhang Guangyin, Chen Xiaobo, Feng Yan, M. J. Myers, etc. Spectra characteristics of novel Er:Yb:phosphate glass. SPIE, 1998, 3280:46-51
    [165] 宋峰,商美茹,陈晓波,冯衍,李昆,张光寅.798nm LD泵浦下的Er:Yb:磷酸盐的上转换发光.中国稀土学报,1998,16(11):986-988
    [166] X. B. Chen, F. Song, Y. Feng, M. X. Li, G. Y. Zhang. The Comparison Between the 1.54mm Spectral and Laser Characteristics of the Two Types of Er:Yb:phosphate Glasses. SPIE, 1999, 3622
    [167] F. Song, M. J. Myers, S. Jiang, G. Zhang. Effect of Erbium Concentration on Upconversion Luminescence of Er:Yb:phosphate Glass Exited by InGaAs Laser Diode. SPIE, 1999, 3622:182-188
    [168] 宋峰,陈晓波,冯衍,商美茹,张光寅.Shibin Jiang,M.J.Myers.LD泵浦的Er:Yb:磷酸盐玻璃激光器.中国激光,1999,(5):790-793
    [169] X. B. Chen, F. Song, Y. Jia, Y. Feng, M. X. Li, G. Y. Zhang. The Comparison Between the 1.54um Spectral and Laser Characteristics of the Two Types of Er:Yb:phosphate Glasses. SPIE, 1999, 3622:169-174
    [170] 陈晓波,宋峰,周实武,李美仙,冯衍,张光寅,邓志威,孙寅官,马辉,孟广政,宋增福.五磷酸镧镱铒非晶在969nm激光激发下的1.54μm激光和上转换发光.光谱学与光谱分析,1999,(4):513
    [171] F. Song, G Y. Zhang, M R. Shang, H. Tan, etc. Three-photon phenomena in the upconversion luminescence of erbium-ytterbium-codoped phosphate glass. Appl. Phys. Lett., 2001, (12): 1748-1750
    [172] Cheng Z X, Zhang S J, Song F, et al. Optical spectroscopy of Yb/Er codoped NaY(WO4)(2) crystal. J. Phys. Chem. Solids, 2002, 63(11): 2011-2017
    [173] 宋峰,孟繁臻,丁欣等.1.54μm Er~(3+)、Yb~(3+)共掺玻璃激光器的速率方程理论及数值分析.物理学报,2002,(6):1233-1238
    [174] Li J, Wang J Y, Tan H, Zhang H J, Song F, Zhao S R, Zhang J X, Wang X X. Growth and optical properties of ErYb:YAl_3(BO_3)_4 crystal. Mater. Res. Bull., 2004, (9): 1329-1334
    [175] 宋峰,苏瑞渊,傅强,覃斌,田建国,张光寅.高浓度镱铒共掺磷酸盐光纤放大器增益特性.物理学报,2005,(11):5228-5232
    [176] 吴朝辉,宋峰,刘淑静,覃斌,苏静,田建国,张光寅.上转换对Er~(3+),Yb~(3+)共掺磷酸盐玻璃激光器输出的影响。物理学报,2005,54(12):5637-5641
    [177] Judd B R. Optical absorption intensities of rare-earth ions. Phys. Rev., 1962, 127: 750-761
    [178] Ofelt G S. Intensities of crystal spectra of rare-earth ions. J. Chin. Phys., 1962, 37:511-520
    [179] Tanimura K, Shinn M D, Sibley W A. Optical transitions of He~(3+) ions in fluorozirconate. Phys. Rev. B, 1984, 30:2429-2437
    [180] Pan Z, Morgan S H. Optical transition Er~(3+) in lead-tellurium germanate glasses. J. Lumin., 1997, 75:301-308
    [181] Villacampa B, Orera V M, Merino R I, et al. Optical properties of AnF_2-CdF_2 glasses doped with 4fions. Mater. Res. Bull., 1991, 26:741-748
    [182] Ye C C, Hewak D W, Hempstead M, et al. Spectral properties of Er~(3+)-doped gallium lanthanum sulphide glass. J. Non-Cryst. Solids, 1996, 208:56-63
    [183] Adam J L, Docq A D, Lucas J. Optical transitions of Dy~(3+) ions in fluorozirconate glass. J. Solid State Chem., 1988, 403-412
    [184] 陈宝玖,周伟,秦伟平,王海宇,鄂书林,许武,黄世华.氟氧化物玻璃材料中Er~(3+)的光谱性质.发光学报,2001,(1):42-47
    [185] 陈宝玖,王海宇,鄂书林,黄世华.从Eu3+发射光谱获得J-O参数Ω_2、Ω_4。发光学报,2001,(2):139-142
    [186] 黄世华.ZnS:Sm~(3+)的Q参数计算.发光与显示,1983,(4):24-28
    [187] Huangshi Hua, Laishui T, Louli Ren, et al. Upconversion in LaF_3:Tm~(3+). Phys. Rev. B, 1981, (1): 50-63
    [188] Kuleshov N V, Lagatsky A A, Shcherbitsky V G, et al. CW laser performance of Yb and Er, Yb doped tungstates. Appl. Phys. B, 1997, (64): 409-413
    [189] Cantelar E, Cusso F. Analytical solution of the transfer rate equations in LiNbO_3:Er~(3+)/Yb~(3+). J. Phys. Condens. Matter., 2000, (12): 521-527
    [190] J. Dhanaraj, M. Geethalakshmi, R. Jagannathan, T. R. N. Kutty. Eu~(3+) doped yttrium oxysulfide nanocrystals-crystallite size and luminescence transition(s). Chem. Phys. Lett., 2004, (387): 23-28
    [191] Tick P A, Borrelli N F, Cornelius L K, et al. Transparent glass ceramics for 1300nm amplifier applications. J. Appl. Phys., 1995, (11): 6367-6374
    [192] Kaminskii A A, Kornienko A A, Chertanov M I. Parametrization of electric-dipole intensities in fN system due to electron-correlation effects. Phys. Stat. Sol.(b), 1986, (2): 717-729
    [193] Dexter D L. ATheory of Sensitized Luminescence in Solids J. Chem.Phys., 1953, (21): 836
    [194] Hoshina T, Radiative Transition Probabilities in Tb~(3+) and Fluorescence Colors Producible by Tb~(3+)-Activated Phosphors, Japan. J. Appl. Phys., 1967, 6: 1203
    [195] 张思远。晶体中f6组态的荧光和点对称性,发光与显示,1983,3:18
    [196] Tsong T T, Field Ion Microscope Observations of Indirect Interactions between Adatoms on Metal Surfaces, Phys. Rev. Lett. 1973,(31):1207-1210
    [197] 吴长锋,秦冠仕,秦伟平,陈宝玖,黄世华,刘晃清,赵丹.Er~(3+)/Yb~(3+)共掺杂AlF_3基氟化物玻璃材料的频率上转换.中国稀土学报,2001,(6):522-525
    [198] 秦冠仕,秦伟平,陈宝玖,吴长锋,吕少哲,黄世华.用脉冲激光溅射法制备的Yb~(3+)和E~(r3+)共掺杂氟化物薄膜的上转换发光.中国稀土学报,2001,(6):526-528
    [199] Aron A, Tigreat P Y, Caramanian A, Antic-Fidancev E, Viana B, Aka G, Vivien D. Infrared and visible emission of Pr~(3+), Eu~(3+), Yb~(3+)/Er~(3+) in Ca_4Gd(BO_3)_3O(GdCOB). J. Lumin., 2000, 87-89:611-613
    [200] Gejihu De, Weiping Qin, Jishen Zhang, Jishuang Zhang, Yan Wang, Chunyan Cao, Yang Cui. Upconversion luminescence properties of Y_2O_3:Yb~(3+), Er~(3+) nanostructures. J. Lumin., 2006, 119-120:258-263
    [201] Hai Guo, Ning Dong, Min Yin, Weiping Zhang, Liren Lou, Shangda Xia. Green and red upconversion luminescence in Er~(3+)-doped and Er~(3+)/Yb~(3+)-codoped SrTiO_3 ultrafine powders. J. Alloys Compd., 2006, 415: 280-283s
    [202] Siguo Xiao, Xiaoliang Yang, Zhengwei Liu, and Yan X H. Upconversion in Er~(3+):Y_2O_3 nanocrystals pumped at 808nm. J. Appl. Phys., 2004, (3): 1360-1364

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700