基因分类及基因表达数据分析方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类基因组计划(Human Genome Project)的基本完成,生命科学的研究进入了后基因组时代(Post-Genome Era),在后基因组时代,生命科学研究的重点从单个基因的研究上升到对整个基因组功能和动态变化规律的研究,从而产生了对海量生物信息进行处理的需求;而计算机技术的革命性发展,形成了处理海量生物信息的能力。于是,生物信息学便在综合计算生物学的研究和生物学信息的计算机处理的基础上迅速而成功地发展起来。生物信息学是计算机和网络大发展、各种生物数据库迅猛增长形势下如何组织数据,并从数据中提取生物学新知识的学问。基因芯片或微阵列技术(Gene Chip or Microarrays)是最近分子生物学实验技术的一个突破,利用该技术可以同时对成千上万个基因的表达数据进行平行分析,产生了海量的有用数据,分析与整理这些数据成为利用这一技术的一个主要瓶颈问题。本文主要研究基因分类及基因表达数据分析方法,主要工作和创新点概括如下:
     (1)介绍了基因分类的发展概况、微阵列技术以及常用的分类算法,并通过实验进行性能评价,为本文后续章节的研究提供理论和实验基础。
     (2)基因选择是基因芯片数据分析中的一个重要问题,要进行基因选择的主要原因在于基因数远远大于实验样本数。为此本文把蚁群优化算法(Ant ColonyOptimization Algorithm,ACO Algorithm)引入基因选择领域,并用基因与类别的相关性分析所得值初始化最优化问题,缩短了找寻最优解的时间;以基因子集整体的样本辨别能力与它所含基因间的平均距离的线性表达作为目标函数,有利于在找到关键基因的同时消除冗余;同时,不同于一般的包装基因选择算法,在计算目标函数的时候不需要对每个基因子集进行分类准确度的计算,从而有效地降低了计算复杂度,提高了方法的灵活性和适应性。
     (3)独立分量分析(Independent Component Analysis,简称ICA)是应用于基因分类的一种统计方法。但独立分量分析中的估计分离矩阵算法主要采用随机梯度算法和自然梯度算法,这些基于梯度下降的寻优算法很容易陷入局部极值,所得结果不精确。本文提出了一种基于遗传算法的基因分类算法,其基本思想是利用遗传算法代替独立分量分析中传统的估计分离矩阵算法,对基因表达数据进行分类,克服了结果不精确的问题。实验结果表明,该分类方法获得了更好的分类效果。
     (4)本文从分类算法和特征基因选择两个方面研究基因表达数据的分类,将传统的SVM算法和KNN算法两者结合成为一种新的应用于基因表达数据分类的算法,并针对基因表达数据分类数据集中“样本少,维数高”的特点,提出了一种改进的基于相关性的递归特征消除算法(简称为C-RFE),消除了数据冗余。实验结果表明,新方法可有效提高分类准确率和特征选取的效率。
     (5)针对基因表达数据的特征和单个分类器在进行基因分类时适用范围有限、分类准确度不高等问题,提出了一种新的基于神经网络的融合规则的多分类器组合模型的基因分类算法,克服了单个分类在进行基因分类时所呈现的不足,实验表明基于多分类器组合模型的基因分类算法能有效提高分类准确度,并能扩大分类器的适用范围。
     (6)聚类分析已经成为基因表达数据分析中的一种非常重要的分析方法,但怎样结合其他高层次的生物学知识对聚类结果进行进一步的分析和解释依然是功能基因组研究中一个亟待解决的问题。为此,本文提出一种简单的算法,结合GO和KEGG调控代谢路径注释信息对聚类结果进行分析,获得具有显著功能注释关联的共表达基因集合。然后在此基础上开发了相应的自动分析软件SigClust,同时用一组基因表达数据对该软件的预测能力进行了验证。
With the near completion of the Human Genome Project, life science has usheredin the Post-Genome Era. In this era, the research focus has shifted from that onindividual gene to that on the functions and the dyna mics of the whole genome . Thisnew focus has given rise to a demand on the processing capability of a large quantityof biological information, and the revolutionary development of the computertechnology can meet this demand. Therefore, bioinformatics has sprung up from theintegration of studies in computational biology and the computer processing ofbiological information. Bioinformatics is the research abouthow to organize data toextract new knowled ge of biology in the context of the great development of computerscience, the Internet and various biological databases.
     The Gene Chip or Microarrays is a latest breakthrough of the experimentaltechniques for molecular biology. Microarrays can simultaneously analyse theexpression data of thousands of genes and thereby generate a large quantity ofavailable information. Analyzing and sorting out the data have been the bottleneck forusing this technique. This paper studies the classification of genes and the analysingmethods for genetic expression data. The research is characterized as follows:
     (1) This paper introd uces the development of gene classifica tion, microarrays, andcommon classification algorithms, and evaluates their performa nce throughexperiments to provide a theoretical and experimental foundation for the subsequentcha pters;
     (2) Gene selection is an important problem in gene chip data analysis, and thereason of gene selection lies in the fact that the number of genes is far grea ter than thesize of the sample for an experiment. Therefore this paper introduces Ant ColonyOptimization Algorithm (ACO Algorithm) into the field of gene selection, and use thevalue obtained from the correlation analysis for the gene and its class to initialize theoptimiza tion problem, thus shortening the time for searching for the optimal solution.This paper takes as the objective function the linear expression of the samplediscrimina tive ability of the subset of genes and the mean distance between genes inthe gene subset, which helps locate the key genes and simulta neously eliminates theredundancy. Not like the traditional packing algorithm of selection, the objectivefunction does not require the accuracy of all the subsets of gene, so the computationa l complexity is effectively reduced with enha nced flexibility and adaptability.
     (3) Independent Component Analysis (ICA) is a statistical proced ure for geneclassification. But the estima ted separation matrix algorithm in ICA mainly adoptsrandom grads algorithm, and natural grads algorithm. Those algorithms, which arebased on the descent of grads , are liable to fall into local extreme values and thusderiving inaccurate results. On the basis of genetic algorithm, this paper proposes agene classification algorithm, the funda mentalidea of which is to replace the estimatedseparation matrix algorithm in the ICA with genetic algorithm to classify the geneticexpression data, and overcome the problem of inaccuracy of the result. Experimenta lresults show that the classification proced ure prod uces better classifica tion results;
     (4) This paper researches into the classification of the gene expression data fromtwo aspects of the classification algorithm and the feature gene selection, andintegrates SVM algorithm and KNN algorithm into a new classifica tion algorithm forgene expression data. In light of the feature of small samples and high dimensions ofthe gene expression data, this paper proposes an improved correlation-based recursivefeature elimination algorithm (C-RFE) and successfully eliminates the redundancy indata. Experimental results show that the new procedure can effectively raise theaccuracy of classification and improve the efficiency of feature selection;
     (5) In view of the features of gene expression data, and the limited applicabilityand the inaccuracy of ind ividual classifier for gene classification, this paper proposes anew gene classification algorithm which is a multi-classifier combination model basedon fusion rules in neural networks, and remedies the inadequacy of individualclassifiers. Experiments show that this new procedure can improve the accuracy andthe applicability of classification;
     (6) Custer analysis has become an important analysing procedure for geneexpression data, but how to further analyse and explain the results for cluster analysisin terms of biological knowledge at higher levels is still a problem in functionalgenome research. This paper has proposed a simple algorithm, i.e., analysing thecluster analysis results with the help of GO and KEGG metabolic regulation pathannotation and obtained a co-expression gene set with remarkable correlation in theannotation of gene function. And then, on that basis , we have developed automaticanalysis software SigClust, and tested the predictative power of the software with agroup of gene expression data.
引文
[1] Kuramochi M, Karypis G. Gene Classification Using Expression Profiles: AFeasibility Study. In: 2nd IEEE International Symposium on Bioinforma ticsand Bioengineering. Bethesda, 2001, 191-200
    [2] Slonim D K, Tamayo P, Mesirov J P, et al. Class Prediction and DiscoveryUsing Gene Expression Data. In: Proceedings of the 4th Annual International Conference on Computational Molecular Biology (RECOMB). Tok yo, 2000,263-272
    [3] Ra maswa my S, Golub T R. DNA MicroArra ys in Clinica l Oncology. Journa l ofClinica l Oncology, 2002, 20(7):1932-1941
    [4] 李颖新, 阮晓钢. 基于基因表达谱的肿瘤亚型识别与分类特征基因选取研究. 电子学报, 2005, 33(4):651-655
    [5] La nder E S. Arra y of Hope. Nature Genetics, 1999, 21(1):3-4
    [6] 赵国屏. 生物信息学. 第1 版. 北京: 科学出版社, 2002, 118-146
    [7] Quackenbush J. Microarray Analysis and Tumor Classification. The New England Journal of Medicine, 2006, 354(23): 2463-2472
    [8] Piatetsky-Shapiro G, Khabaza T, Ramaswamy S. Capturing Best Practice for Microarray Gene Expression Data Analysis. In: Proceedings of the ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Washington, 2003, 407-415
    [9] 张晓梅. DNA 芯片技术的发展及在预防医学、毒理学和药物开发研究中的应用. 国外医学遗传学分册, 2001, 24(4):188-190
    [10] Jiang D, Tang C, Zhang A. Cluster Analysis for Gene Expression Data: A Survey. IEEE Transactions on Knowledge and Data Engineering, 2004,16(11):1370-1386
    [11] Jain A K, Topchy A, Law M H C, et al. Landscape of Clustering Algorithms. In:Proceedings of the 17th International Conference on Pattern Recognition.Cambridge UK, 2004, 260-263
    [12] Khan J, Wei J S, Ringner M, et al. Classification and Diagnostic Prediction of Cancers Using Gene Expression Profiling and Artificial Neural Networks.Nature Med, 2001, 7(6):673-679
    [13] Ramaswamy S, Tamayo P, Rifkin R, et al. Multiclass Cancer Diagnostic UsingTumor Gene Expression Signatures. Proceedings of the National Academy of Sciences, 2001, 98(26): 15149-15154
    [14] Tom M. Mitchell. 机器学习. 曾华军, 张银奎等译. 第1 版. 北京: 机械工业出版社, 2003, 38-90
    [15] Dong G, Li J. Efficient Mining of Emerging Patterns: Discovering Trends and Differences. In:Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining. San Diego, USA, 1999, 43-52
    [16] Quackenbush J. MicroArra y Data Norma liza tion and Transforma tion. NatureGenetics, 2002, 32(Suppl): 496-501
    [17] Raychaudhuri S, Stuart J, Altman R. Principal Components Analysis to Summarize Microarray Experiments: Application to Sporulation Time Series.In: Pacific Symposium on Biocomputing. Hawaii, 2000, 452-463
    [18] Smith L. A Tutorial on Principal Component Analysis . http://www.cs.otago.nz,2002-2-20
    [19] Hyvarinen A, Oja E. Independent Component Analysis: A Tutorial. Neural Networks, 2000, 13(4-5):411-430
    [20] Hyvarinen A. Survey on Independent Component Analysis. Neural Computing Surveys, 1999, 1(2):94-128
    [21] Lee S, Batzoglou S. Application of Independent Component Analysis to MicroArrays. Genome Biology, 2003, 4(76):1-21
    [22] Golub T R, Slonim D K, Tamayo P, et al. Molecular Classification of Cancer:Class Discovery and Class Prediction by Gene Expression Monitoring. Science,1999, 286(5439): 531-537
    [23] Richa rd O, Duda, Peter E H, David G S, et al. 模式分类. 李宏东, 姚天翔等译. 第1 版. 北京: 机械工业出版社, 2003, 132-280
    [24] 张学工. 关于统计学习理论与支持向量机. 自动化学报, 2000, 26(1):32-42.
    [25] Hori G, Inoue M, Nishimura S, et al. Blind Gene Classification: An ICA-based Gene Classification/Clustering Method. http://www.bsp.brain.riken.jp/~hori/BSISTR/BSISTR-02-5.pd f, 2002-2-5
    [26] 边肇祺, 张学工. 模式识别. 第2 版. 北京: 清华大学出版社, 1999, 296-304
    [27] Kun Yang, Jianzhong Li, Zhipeng Cai, et al. A Model-Free and Stable Gene Selection in Microarray Data Analysis. In:Proceedings of the 5th IEEESymposium on Bioinformatics and Bioengineering(BIBE ’05). Minneapolis,2005,3-10
    [28] Liang Goh, Qun Song, Nikola Kasabov. A Novel Feature Selection Method toImprove Classification of Gene Expression Data. In:Proc. Second Asia-PacificBioinformatics Conference (APBC2004), Dunedin, 2004,161-166
    [29] Topon Kumar Paul, Hitoshi Iba. Extraction of Informative Genes from Microarray Data. In:Proceedings of the 2005 conference on Genetic and evolutionary computation. Washington DC, 2005,453-460
    [30] Momiao Xiong, Wuju Li,Jinying Zhao, et al. Feature (Gene) Selection in GeneExpression-Based Tumor Classification. Molecular Genetics and Metabolism,2001(73): 239–247
    [31] Manfred Ng,Laiwan Chan. Informative Gene Discovery for CancerClassification from Microarray Expression Data. In:Proceedings of the 2005 15th IEEE Signal Processing Society Workshop,Piscataway, 2005,393-398
    [32] Xian Xu,Aidong Zhang. Selecting Informative Genes from Microarray Datasetby Incorporating Gene Ontology. In:Proceed ings of the 5th IEEE Symposiumon Bioinformatics and Bioengineering (BIBE ’05), Minneapolis,2005,241-245.
    [33] Xinguo Lu,Yaping Lin,Xiaolin Yang, et al. Using Most Similarity Tree Based Clustering to Select the Top Most Discriminating Genes for Cancer Detection.In:the proceed ing of The Eighth International Conference on Artificial Intelligence and Soft Computing (ICAISC 2006), Zakopane,2006,931-940
    [34] R. Bello, A. Nowe, Y. Caballero,et al. A Model Based on Ant Colony Systemand Rough Set Theory to Feature Selection. In:Proceed ings of the 2005conference on Genetic and evolutiona ry computation. Washington DC, 2005,275-276
    [35] Allen Chan,Alex A.Freitas. A New Ant Colony Algorithm for Multi-Label Classification with Applications in Bioinformatics. In: Proceedings of the 8th annual conference on Genetic and evolutionary computation . Seattle, 2006,27-34
    [36] Marco A.Montes de Oca, Leonardo Garri do,Jos ′e L.Aguirre. An hybridization of an ant based clustering algorithm with growing neuralgas networks forclassification tasks. In: Proceedings of the 2005 ACM symposium on Appliedcomputing. Santa Fe, 2005,9-13
    [37] Gang Wang, Wenrui Gong,Ryan Kastner. Instruction Scheduling Using MAX-MIN Ant System Optimization.In: Proceedings of the 15th ACM Great Lakes symposium on VLSI. Chica go, 2005,44-49
    [38] Tavazoie S., Hughes D.,Campbell M.J., et al. Systematic determination of genetic network architecture. Nature Genet,1999,22(3): 281-285
    [39] Tamayo P., Slonim D., Mesirov J., et al. Interpreting patterns of geneexpression with self-organising maps: methods and applications to hematopoietic differentiation.Proceedings of the National Academy of Sciences .1999, 96(12):2907-2912
    [40] Eisen, M.B., Spellman, P.T., Botstein,et al. Cluster analysis and display ofgenome-wide expression patterns. Proceedings of National Academy of Sciences USA,1998,95(25):14863-14868
    [41] Alon U,Barkai N,Notterman D A, et al. Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and Normal Colon Tissues Probed by Oligonucleotide Arrays. Proceedings of the National Academy of Sciences,1999,96(12):6745-6750
    [42] Raychaudhuri S, Stuart JM, Altman RB. Principal Components Analysis to Summarize Microarray Experiments: Application to Sporulation Time Series.In:Pacific Symposium on Biocomputing. Honolulu,2000, 452-463
    [43] Lindsay I Smith. A tutorial on Principal Components Analysis.http://www.cs.ota go.ac.nz/cosc453/student_tutorials/principal_components.pdf,2002-2-26
    [44] Chu S, DeRisi J, Eisen M, et al. The transcriptional program of sporulation in budding yeast.Science,1998,282(5389):699-705
    [45] Michael E. Wall, Andreas Rechtsteiner, Luis M. Rocha1. Singular value decomposition and principal component analysis In A Practical Approach to Microarray Data Analysis. http://www.icar.cnr.it/ma nco/Teaching/2006/datamining/a rticoli/kluwer2002.pdf,2004-10-20
    [46] Liebermeister W. Linear modes of gene expression determined by independent component analysis. Bioinformatics, 2002,18(1):51-60
    [47] Hyvarinen A. Survey on Independent Component Analysis. Neural Computing Surveys, 1999,19(2):94-128
    [48] Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans on Neural Networks, 1999, 10(3):626-634
    [49] 杨竹青,李勇,胡德文.独立成分分析方法综述.自动化学报,2002, 28(5): 762-773
    [50] Hori G, Inoue M, Nishimura S, et al. Blind gene classification - an applicationof a signal separation method. In: Proceedings of Genome Informatics Workshop.Tok yo,2001,255-256
    [51] J Cho, D Lee, J Park, et al. Gene selection and classification from microarraydata using kernel machine. FEBS Letters, 2003, 571(3):93-98
    [52] 杨国慧,周春光,黄艳新等. 最小生成树用于基因表示数据的聚类算法.计算机研究与发展,2003,40(10):1431-1435
    [53] Schulze A, Downward J. Navigating gene expression using microarrays--atechnology review. Nat Cell Biol, 2001,3(8):190-195
    [54] Debouck C, Goodfellow PN. DNA microarrays in drug discovery anddevelopment. Nat Genet , 1999, 21(1):48-56
    [55] Spellman PT, Sherlock G, Zhang MQ, et al. Comprehensive Identification of Cell Cycle regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization. Mol Biol Cell, 1998, 9(12):3273-3276
    [56] Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 2000, 403(6769):503-511
    [57] Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer:class discovery and class prediction by gene expression monitoring. Science,1999, 286(5439):531-539
    [58] Nadon R, Shoemaker J. Statistical issues with microarrays: processing and analysis. Trends Genet,2002,18(5):265-271
    [59] Young RA. Biomedical discovery with DNA arrays. Cell,2000,102(1):9-14
    [60] Junying Zhang, Richard Lee, Yue Joseph Wang. Support Vector Machine Classifications for Microarray Expression Data Set. In:Proceed ings of the Fifth International Conference on Computational Intelligence and Multimedia Applications. China,2003,27-30
    [61] Terrence S, Furey, Nello, et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data.Bioinformatics,2000,16(10):906-914
    [62] Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machines. Machine learning,2002,46(3):389-422
    [63] Vapnik VN. The Nature of Statistical Learning Theory. In:Springer-Verlag.New York,1995,235-313
    [64] M.P. Brown, W.N. Grundy, D. Lin, et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl.Acad. Sci.,2000, 97(1):262-267
    [65] C.H.Q. Ding, I Dubchak. Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics,2001,17(4):349-358
    [66] J.R. Bock, D.A. Gough. Pred icting protein--protein interactions from primary structure. Bioinformatics,2001,17(5):455-460
    [67] S. Hua, Z. Sun. A novel method of protein secondary structure prediction withhigh segment overlap measure:support vector machine approach. J. Mol.Biol,2001,308(2):397-407
    [68] C.Z. Cai, L.Y. Han, Z.L. Ji, et al. Enzyme family classification by support vector machines. Proteins,2004,55(1):66-76
    [69] 李蓉,叶世伟,史忠植. SVM-kNN 分类器. 电子学报,2002,30(5):745-748
    [70] Ramaswamy S, Tamayo P, Rifkin R, et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc. of the National Academy of Sciences of the United States of America,2001,98(26):15149-15154
    [71] J Kittler,M Hater,R P W Duins. Combining Classifiers. IEEE Trans Pattern Analysis and Machine Intelligence,1998,20(3):226-239
    [72] S Madhvanath, V Govindaraju. Serial Classifier Combination for Handwritten Word Recognition. In:Proceed ings of the Third International Conference on Document Analysis and Recognition. Washington DC, 1995,911-914
    [73] 王刚, 黄丽华, 张成洪等. 据挖掘分类算法研究综述. 科技导报,2006,222(24):73-76
    [74] Qifeng ZHOU,Chengde LIN,Wei YANG. Multi-Classifier Combination for Banks Credit Risk Assessment. http://ieeexplore.ieee.org, 2006-12-11
    [75] Sergey Tulyakov,Venu Govindaraju. Classifier Combination Types for Biometric Applications. In:Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition Workshop. Seattle,2006,58-65
    [76] 王正群, 孙兴华,杨静宇. 多分类器组合研究. 计算机工程与应用, 2002,20(1):84-86
    [77] 杨利英, 覃征, 王卫红. 多分类器融合系统设计与应用. 计算机工程.2005,31(5):175-177
    [78] Gongde Guo, Daniel Neagu. Similarity-based Classifier Combination for Decision Making. In:Proc. of the IEEE International Conference on Systems Man and Cybernetics. USA,2005,176-181
    [79] Jianpei Zhang,Lili Cheng, Jun Ma. A New Multiple Classifiers Combination Algorithm. In:Proceedings of the First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS'06). Washington DC,2006,287-291
    [80] Ludmila I Kuncheva, James C Bezdek, Melanie A Sutton. On CombiningMultiple Classifiers by Fuzzy Templates. In:Fuzzy Information Processing Society – NAFIPS. Pensacola Beach, 1998,193-197
    [81] J. L. DeRisi, V. R. Iyer, P. O. Brown. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science, 1997, 278 (5338): 680-686
    [82] A. Brazma, J Vilo. Gene expression data analysis. FEBS Lett, 2000, 480(1):17-24
    [83] R Edga r, M Domrachev, A E Lash. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res,2002,30(1):207-210
    [84] J Gollub, C A Ball, G. Binkley, et al. The Stanford Microarray Database: data access and quality assessment tools. Nucleic Acids Res, 2003, 31(1):94-96.
    [85] P T Spellman, G Sherlock, M Q Zhang, et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell,1998, 9(12):3273-97
    [86] M B Eisen, P T Spellman, P O Brown,et al. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A,1998, 95(25):14863-14868
    [87] M Reimers, V J Carey. Bioconductor: an open source framework for bioinformatics and computational biology. Methods Enzymol,2006,411: 119-134
    [88] R C Gentleman, V J Carey, D M Bates,et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol,2004,5(10):R80
    [89] M Ashburner, C A Ball, J A Blake, et al. Gene ontology: tool for the unificationof biology. Nat Genet, 2000, 25(1):25-29
    [90] K Y Yeung, M Medvedovic, R E Bumgarner. Clustering gene-expression data with repeated measurements. Genome Biol,2003,4(5):R34
    [91] W Zhong, G. Altun, R Harrison, et al. Improved K-means clustering algorithm for exploring local protein sequence motifs representing common structural property. IEEE transactions on Nanobioscience, 2005, 4(3):255-265
    [92] K Y Yeung, C Fraley, A Murua, A E Raftery, et al. Model-based clustering and data transformations for gene expression data. Bioinformatics,2001,17(10):977-987
    [93] D Zhu, A O Hero, H Cheng, et al. Network constrained clustering for genemicroarray data. Bioinformatics, 2005, 21(21):4014-4020
    [94] D Hanisch, A Zien, R Zimmer,et al. Co-clustering of biological networks andgene expression data. Bioinformatics, 2002, 18(1):145-154
    [95] C J Wolfe, I S Koha ne, A J Butte. Systematic survey reveals general applicability of "guilt-by-association" within gene coexpression networks.BMC Bioinformatics, 2005, 6(1):227
    [96] C Henega r, R Cancello, S Rome, et al. Clustering biological annotations andgene expression data to identify putatively co-regulated biological processes.Bioinform Comput Biol, 2006, 4(4):833-852
    [97] O Troya nskaya, M Cantor, G. Sherlock, et al. Missing value estimation methods for DNA microarrays. Bioinformatics,2001,17(6):520-525
    [98] Wolfe, Douglas A, Hollander, et al. Nonparametric statistical methods.Hoboken :W iley-Interscience, 1999
    [99] Bickel, P J, Doksum. Mathematical Statistics: Basic Ideas and Selected Topics.San Francisco:Holden-da y Inc,1977
    [100] R Cancello, C Henega r, N Viguerie, et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes,2005,54(8):2277-2286
    [101] S Urs, C Smith, B Campbell, et al. Gene expression profiling in human preadipocytes and adipocytes by microarray analysis. J Nutr, 2004, 134(44):762-770
    [102] J Gomez-Ambrosi, V Catala n, A Diez-Caballero, et al. Gene expression profile of omental adiposetissue in human obesity. Faseb J,2004,18(11):215-217
    [103] 黄席樾,张著洪,胡小兵等. 现代智能算法理论及应用. 北京:科学出版社,2005, 283-386

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700