新型有机聚合物毛细管电色谱整体柱的制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从毛细管电色谱的发展历程和研究进展,可以看到毛细管电色谱作为一种新兴的微分离技术,发展迅速、潜力巨大是当今分析化学领域的研究热点。
     虽然毛细管电色谱的应用很广泛,但是碱性化合物的分离仍然是电色谱需要解决的难题。这是因为硅胶基质的固定相仍然是现在电色谱应用的主要分离基质,碱性药物可能与固定相上的硅羟基发生强烈的非选择性吸附,形成色谱峰不对称和拖尾。针对电色谱中碱性化合物分离的问题:(1)我们制备了新型聚(甲基丙烯酸异丁酯-乙二醇二甲基丙烯酸-N-烯丙基二甲胺)毛细管电色谱整体柱,由这种整体柱带有正电荷,避免了碱性化合物与固定相之间的静电吸引作用,从而避免碱性化合物的峰拖尾或不出峰等现象(第二章)。(2)我们制备了聚(甲基丙烯酸异丁酯-乙二醇二甲基丙烯酸-甲基丙烯酸)毛细管电色谱整体柱,并在碱性的条件下采用“离子抑制”模式成功的分离了碱性化合物,一方面避免了碱性化合物的峰拖尾现象;另一方面避免了采用固定相表面带正电荷的毛细管电色谱柱分离性化合物带来的样品分子的电泳方向和电渗流方向相反的问题(第三章)。
     由于整体固定相具有渗透性好,传质速度快等优点,可实现大黄酸、芦荟大黄素、大黄素、大黄酚和大黄甲醚五种蒽醌类化合物(第四章)以及马拉硫磷、二嗪农、甲基对硫磷、杀幎硫磷、倍硫磷、甲基毒死蜱和毒死蜱7种有机磷农药残留(第五章)的快速分离检测。
     采用原位聚合的方法,制备了新型聚(甲基丙烯酸异丁酯-乙二醇二甲基丙烯酸酯-甲基丙烯酸-N-烯丙基二甲胺)两性电荷型毛细管电色谱整体柱。该毛细管电色谱整体柱电渗流的大小和方向可以方便地通过改变缓冲液的pH值来调控(第六章)。
Capillary electrochromatography (CEC) has been considered as a very promising analytical technique that combines the efficiency of capillary zone electrophoresis and the selectivity of liquid chromatography with the use of stationary phases.
     As we know, the analysis of strongly basic analytes is still an analytical challenge for many years because traditional bonded stationary phases exhibit a high density of silanol groups, which results in secondary interactions, severe peak tailing and increased retention. In second chapter, a monolithic stationary phase was prepared in a single step by the in situ copolymerization of iso-butyl methacrylate, ethylene dimethacrylate and N, N-dimethylallylamine in the presence of porogens. The amino groups on the stationary phases are meant to support the electroosmotic flow (EOF) from cathode to anode necessary for moving the mobile phase through the monolithic capillary. Basic compounds such as aniline was well separated on the monolithic columns in the‘counter-directional mode’to avoid the electrostatic adsorption between basic analytes and the charged groups on the surface of the stationary phases. In third chapter, monolithic columns with in situ polymerization of iso-butyl methacrylate, ethylene dimethacrylate and methacrylic acid were prepared. Peak tailing of basic compounds such as anilines was likely to avoid by using ion-suppressed mode of CEC.
     The possibility of rapid separation resulted from the unique pore structure with high permeability and favorable mass transfer characteristics of the monolithic stationary phase. In fourth chapter, five anthraquinones including emodin,
引文
[1] Knox J H. Terminology and nomenclature in capillary electroseparation systems. J. Chromatogr. A, 1994, 680, 3-13.
    [2] 罗国安, 王义明. 毛细管电泳在DNA、糖和离子分析中的应用. 色谱, 1998, 16(1), 38-43.
    [3] D. L. Mould, R. L. M. Synge. Separations of polysaccharides related to starch by electrokinetic ultrafiltration in collodion membranes. J. Biochem., 1954, 58(4), 571-585.
    [4] Pretorious, V., Hopkins, BJ, Schieke, JD. Electroosmosis: a new concept for high-speed liquid Chromatography. J. Chromatogr., 1974, 99, 23-30.
    [5] J. Jorgenson, K. D. Lukacs. High-resolution separations based on electrophoresis and electroosmosis. J. Chromatogr., 1981, 218, 209-216.
    [6] T. Tsuda. K. L. Nomura, G. J. Nakagawa. Open tubular microcapillary liquid chromatography with electroosmosis flow using a UV detector. J. Chromatogr., 1982, 248, 241-247.
    [7] Martin M., Guiochon C. Axial dispersion in open-tubular capillary liquid chromatography with electroosmotic flow. Anal. Chem., 1984, 56, 614-620.
    [8] Knox, J. H., Grant, I. H. Miniaturisation in pressure and electroendosmotically driven liquid chromatography with electroosmotic flow. Chromatographia, 1987, 24, 135-143.
    [9] J. H. Knox, Thermal effects and band spreading in capillary electro-separation. Chromatographia, 1988, 26, 329-337.
    [10] T. Tsuda, Y. Muramatsu.Electrochromatography with continuous sample introduction. J. Chromatog., 1990, 515, 645-652.
    [11] E.R. Verheij, U.R. Tjaden, W.M.A. Niessen and J. van der Greef, Pseudo-Electrochromatography Mass Spectrometry: a New Alternative. J. Chromatogr., 1991, 554, 339-349.
    [12] Knox J H, Grant I H. Elecrochromatography in packed tubes using 1.5 to 50 μm silica gels and ODS bonded silica gels. Chromatographia, 1991, 32, 317-328.
    [13] W. D. Pfeffer and E. S. Yeung, Electroosmotically Driven Electrochromatography of Anions Having Similar Electrophoretic Mobilitles by Ion-pairing J. Chromatogr., 1991, 557,125-136.
    [14] S. Mayer, V. Schuring.Enantiomer separation by electrochromatography on capillaries coated with chirasil-dex.Dedicated to Professor Ernst Bayer on the occasion of his 65th birthday. J. High Resol Chromatogr., 1992, 15,129-131.
    [15] S. Li, D. K. Lloyd.Direct chiral separations by capillary electrophoresis using capillariespacked with an alpha.1-acid glycoprotein chiral stationary phase. Anal. Chem., 1993, 65, 3684-3690.
    [16] N. W. Smith, M. B. Evans.The analysis of pharmaceutical compounds using electrochromatography. Chromatographia, 1994, 38, 649-657.
    [17] N. W. Smith, M. B. Evans. The efficient analysis of neutral and highly polar pharmaceutical compounds using reversed-phase and ion-exchange electrochromatography. Chromatographia, 1995, 41, 197-203.
    [18] H.Rebscher, U. Pyell. A method for the experimental determination of contributions to band broadening in electrochromatography with packed capillaries. Chromatographia, 1994, 38, 737-743.
    [19] B. Behnke, E. Bayer. Pressurized gradient electro-high-performance liquid chromatography. J. Chromatogr. A, 1994, 680, 93-98.
    [20] S. C. Jacobson., R. Hergenroeder. Open Channel Electrochromatography on a Microchip. Anal. Chem., 1994, 66, 2369-2373.
    [21] Y Guo, L. A Colon.A Stationary Phase for Open Tubular Liquid Chromatography and Electrochromatography Using Sol-Gel Technology. Anal. Chem., 1995, 67, 2511-2516.
    [22] G. A. Lord, D. B. Gordon, L. W Tetler. Electrochromatography electrospray mass spectrometry of textile dyes. J. Chromatogr. A, 1995, 700, 27-33.
    [23] C. Yan, R. Dadoo, H. Zhao, et al. Capillary Electrochromatography: Analysis of Polycyclic Aromatic Hydrocarbons. Anal. Chem., 1995, 67, 2026-2029
    [24] C. Yan, US.Patent, 5453163. 1995
    [25] C. Yan, R. Dadoo, R. Zare.Gradient Elution in Capillary Electrochromatography. Anal. Chem., 1996, 68, 2726-2730.
    [26] C. Fujimoto, Y. Fujise. Fritless Packed Columns for Capillary Electrochromatography: Separation of Uncharged Compounds on Hydrophobic Hydrogels. Anal. Chem., 1996, 68, 2753-2757.
    [27] G. Choudhary, C. Horvath.Dynamics of capillary electrochromatography experimental study on the electrosmotic flow and conductance in open and packed capillaries. J. Chromatogr. A, 1997, 781, 161-183.
    [28] K. Pusecher., J. Schewitz, E. Bayer.On-Line Coupling of Capillary Electrochromatography, Capillary Electrophoresis, and Capillary HPLC with Nuclear Magnetic Resonance Spectroscopy. Anal. Chem., 1998, 70, 3280-3285.
    [29] E. Wen, R. Asiaie, C. Horvath. Dynamics of capillary electrochromatography: II.Comparison of column efficiency parameters in microscale high-performance liquid chromatography and capillary electrochromatography. J. Chromatogr. A, 1999, 855, 349-366.
    [30] R. Stol, Kok Wim Th., H. Poppe.Capillary electrochromatography with macroporous particles. J. Chromatogr. A, 1999, 853, 45-54.
    [31] L. Zhang, Y. Zhang, H. Zuo. et al. Properties and Applications of Mixed Packing Capillary Electrochromatography. J. High Resol. Chromatogr., 1999, 22, 666-670.
    [32] C. Yan, PRC. Patent, ZL992060931, 1999
    [33] Rice, C.L., Whitehead, R. Electrokinetic Flow in a Narrow Cylindrical Capillary. J. Phys. Chem. 1965, 69, 4017-4024.
    [34] Van de Goor A.A.A.M.; Wanders, B.J.; Everaerts , F.M. Modified methods for off-and on-line determination of electroosmosis in capillary electrophoreric separation. J. Chromatogr. 1989, 470, 95-104.
    [35] Delahay, P. Double Layer and Electrode Kinetics. Interscience, New York, 1965.
    [36] Kiso, Y. Topics Surrounding Zone Electrophoresis, Ionic Processes Through Matrics. Nankodo, Tokyo, 1972.
    [37] Zhang, Y, Shi, W., Zhang, L., Zou, H.Some aspects of chromatographic behavior in capillary electrochromatography. J. Chromatogr. A. 1998, 802, 59-71.
    [38] Cantwell F.F. Anal. Chem. 1979, 51, 63.
    [39] Shaw, D. J. Introduction to Colloid and Surface Chemistry. Buttenvorths, London, 1980.
    [40] Michov, B.M.A quantitative theory of the stern electric double layer. Electrophoresis, 1988, 9, 201-202.
    [41] Davies, J.T., Rodeal, K. E., Interfacial Phoenomena. Academic Press, New York, 1961.
    [42] Klinkenberg A., Van der Minn J. L. Electrostatics in the Petroleum Industry. Elsevier, Amsterdam. 1958.
    [43] Altria K.D., Simpson C.F. High Voltage Capillary Zone Electrophoresis: Operating Parameters Effects on Electroendosmotic Flows. Chromatographia, 1987, 24, 527-532.
    [44] Fujiwara, S, Honda S. Determination of cinnamic acid and its analogs by electrophoresis in a fused silica capillary tube. Anal. Chem., 1986, 58, 1811-1814.
    [45] Bruin G.J.M., Chang J.P., Kuhlman R.H., et al.Capillary zone electrophoretic separations of proteins in polyethylene glycol-modified capillaries. J. Chromatogr., 1989, 471, 429-436.
    [46] Dolnik, V, Liu, J., Banks, F., et al. Capillary zone electrophoresis of oligonucleotides. Factors affecting separation. J.Chromatogr.,1989, 480, 321-330.
    [47] Vindevogel, J.; Sandra, P. Simultaneous pH and ionic strength effects and buffer. selection in capillary electrophoretic techniques J. Chromatogr. 1991, 541, 483-488.
    [48] VanOrman B.B., Liversidge G.G., McIntire G.L., Olefirowicz, T.M.; Ewing, .A.G. Effects of buffer composition on electroosmotic flow in capillary electrophoresis. J. Microcol.Sep. 1990, 2, 176-180.
    [49] Crego, A.L;Gonzalez, A.; Marina, M.L. Electrochromatography. Crit. Rev. Anal. Chem. 1996, 26, 261-304.
    [50] Terabe S., Yashima I., Tanaka N., et al. Separation of oxygen isotopic benzoic acids by capillary zone electrophoresis based on isotope effects on the dissociation of the carboxyl group . Anal. Chem. 1988, 60, 1673-1677.
    [51] Wren S. Optimization of pH in the electrophoretic separation of 2-, 3-, and 4-methylpyridines. J. Microcol., 1991, 3, 147-154.
    [52] Tanaka, N., Nogayama, H., Kobayashi, H., et al. Monolithic silica columns for HPLC, micro-HPLC, and CEC. J. High Resol. Chromatogr., 2000, 23 (1), 111-116.
    [53] Fujimoto C. Preparation of fritless packed silica columns for capillary electrochromatography. J. High Resol. Chromatogr., 2000, 23(1), 89-92.
    [54] Minakuchi H., Nakanishi K., Soga N., et al. Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography. Anal. Chem., 1996, 68,3498-3501.
    [55] Kato M, Sakai-Kato K, Toyooka T, et al. Effect of preparatory conditions on the performance of photopolymerized sol–gel monoliths for capillary electrochromatography. J Chromatogr A, 2002, 961, 45-51.
    [56] Kato M, Matsumoto N, Sakai-Kato K, et al. Investigation of chromatographic performances and binding characteristics of BSA-encapsulated capillary column prepared by the sol-gel method. J Pharmaceut Biomed Anal, 2003, 30,1845-1850.
    [57] Sakai-Kato K, Kato M, Nakakuki H, et al. Investigation of structure and enantioselectivity of BSA-encapsulated sol-gel columns prepared for capillary electrochromatography. J Pharmaceut Biomed Anal, 2003, 31, 299-310.
    [58] Dulay M T, Quirino J P, Bennett B D, et al. Bonded-phase photopolymerized sol-gel monoliths for reversed phase capillary electrochromatography. J. Sep. Sci, 2002, 25 (122), 3-9.
    [59] Allen D, ElRassi Z. Capillary electrochromatography with monolithic silica column: I. Preparation of silica monoliths having surface-bound octadecyl moieties and their chromatographic characterization and applications to the separation of neutral and charged species. Electrophoresis, 2003, 24 (3), 408-420.
    [60] AllenD, ElRassi Z. Capillary electrochromatography with monolithic silica columns: III. Preparation of hydrophilic silica monoliths having surface-bound cyano groups: chromatographic characterization and application to the separation of carbohydrates, nucleosides, nucleic acid bases and other neutral polar species. J Chromatogr A, 2004, 1029, 239-247.
    [61] BedairM, ElRassi Z. Capillary electrochromatography with monolithic stationary phases: III. Evaluation of the electrochromatographic retention of neutral and charged solutes on cationic stearyl-acrylate monoliths and the separation of water-soluble proteins and membrane proteins.J Chromatogr A, 2003, 1013, 47-56.
    [62] Dulay M T, Kulkarni R P, Zare R N. Preparation and Characterization of Monolithic Porous Capillary Columns Loaded with Chromatographic Particles. Anal Chem, 1998, 70(23), 5103-5107.
    [63] Chirica G, Remcho V T. Silicate entrapped columns - new columns designed forcapillary electrochromatography. Electrophoresis, 1999, 20 (1), 50-56.
    [64] Tang Q L, Xin B M, Lee M L. Monolithic columns containing sol–gel bonded octadecylsilica for capillary electrochromatography. J Chromatogr A, 1999, 837, 35-50.
    [65] Ratnayake C K, O h C S, Henry M P. Particle Loaded Monolithic Sol-Gel Columns for Capillary Electrochromatography: A New Dimension for High Performance Liquid Chromatography. J High Resol Chromatogr, 2000, 23 (1), 81-88.
    [66] Tang Q L, Lee M L. Capillary electrochromatography using continuous-bed columns of sol–gel bonded silica particles with mixed-mode octadecyl and propylsulfonic acid functional groups. J Chromatogr A, 2000, 887, 265-275.
    [67] Chirica G S, Remcho R T. Fritless Capillary Columns for HPLC and CEC Prepared by Immobilizing the Stationary Phase in an Organic Polymer Matrix. Anal Chem, 2000, 72 (15), 3605-3610.
    [68] Asiaie R, Huang X, Farnan D,et al. Sintered octadecylsilica as monolithic column packing in capillary electrochromatography and micro high-performance liquid chromatography. J Chromatogr A, 1998, 806,251-263.
    [69] Cabrera K, Lubda D.A New Monolithic Type HPLC Column for Fast Separations. J High Resol Chromatogr, 2000, 23(1),93-99.
    [70] Ericson, C., Liao, J. L., Nakazato, K., et al. Preparation of continuous beds for electrochromatography and reversed-phase liquid chromatography of low-molecular-mass compounds. J. Chromatogr. A 1997, 767, 33-41
    [71] Fujimoto C., Fujise Y, Matsuzawa E. Fritless packed columns for capillary electrochromatography: separation of uncharged compounds on hydrophobichydrogels. Anal. Chem., 1996, 68, 2753-2757.
    [72] Liao, J. L., Chen, N., Ericson, C., et al. Preparation of continuous beds derivatized with one-step alkyl and sulfonate groups for capillary electrochromatography. Anal. Chem., 1996, 68, 3468-3472.
    [73] Hjerten, S., Mohmmad, J., Nakazato, K. Improvement in flow properties and pH stability of compressed, continuous polymer beds for high-performance liquid chromatography. J. Chromatogr. A, 1991,646, 121-128.
    [74] Xie, S. F., Svec, F., Freshet J. M. J. Rigid porous polyacrylamide-based monolithic columns containing butyl methacryalte as a separation medium for the rapid hydrophobic interaction chromatography of proteins. J. Chromatogr. A, 1997, 775, 65-72.
    [75] Fujimoto, C., Kino, J., Sawada, H. Capillary electrochromatography of small molecules in polyacrylamide gels with electroosmotic flow. J. Chromatogr. A, 1995, 716, 107-113.
    [76] Hjerten, S., Liao, J. L., Zhang, R. High-performance liquid chromatography on continuous polymer beds. J. Chromatogr., 1989, 473, 273-275.
    [77] Koide T., Ueno K. Enantiomeric separations of acidic and neutral compounds by capillary electrochromatography with (3-cyclodextriri-bonded positively charged polyacrylamide gels. J. High Resol. Chromatogr., 2000, 23(1), 59-65.
    [78] Hjerten, S., Nakazato, K., Mohannad, J., et al. Reversed-phase chromatography of proteins and peptides on compressed continuous beds. Chromatographia, 1993, 37, 287-294.
    [79] Fujimoto C. Charged polyacrylamide gels for capillary electrochromatographic separations of uncharged,low molecular weight compounds. Anal. Chem., 1995, 67, 2050-2053.
    [80] Palm, A., Novotny, M. V. Macroporous polyacrylamide/poly (ethylene glycol) matrixes as .stationary phases in capillary electrochromatography. Anal. Chem., 1997, 69, 4499-4507.
    [81] Ericson C., Hjerten S. Reversed-phase electrochromatography of proteins on modified continuous beds using normal-flow and counterflow gradients.theoretical and practical considerations. Anal. Chem., 1999, 71, 1621-1627.
    [82] Hjerten S., Mohammad J., Nakazato K. Improvement in flow properties and pH stability of compressed, continuous polymer beds for high-performance liquid chromatography. J. Chromatogr., 1993, 646, 121-128.
    [83] Hoegger D, Freitag R. Acrylamide-based monoliths as robust stationary phases for capillary electrochromatography. J.Chromatogr.A, 2001, 914, 211-222.
    [84] Koide T, Ueno K. Paradoxical effects by preoperative oral low-dose tegafur administration in human gastric carcinomas: Enhanced apoptosis and increasedintratumoral microvessel density. Anal. Sci., 1998, 14, 1021-1023.
    [85] Koide T, Ueno K. Enantiomeric Separations of Cationic and Neutral Compounds by Capillary Electrochromatography with beta-Cyclodextrin-Bonded Charged Polyacrylamide Gels Anal.Sci., 1999, 15, 791-794.
    [86] Koide T, Ueno K. Enantiomeric Separations by Capillary Electrochromatography with Charged Polyacrylamide Gels Incorporating Chiral Selectors. Anal. Sci., 2000, 16, 1065-1070.
    [87] Koide T, Ueno K. Enantiomeric separations of cationic and neutral compounds by capillary electrochromatography with monolithic chiral stationary phases of β-cyclodextrin-bonded negatively charged polyacrylamide gels. J.Chromatogr. A, 2000, 893,177-187.
    [88] Vgvri A, Fldesi A, Hetnyi C.A new easy-to-prepare homogeneous continuous electrochromatographic bed for enantiomer recognition. Electrophoresis, 2000, 21, 3116-3125.
    [89] Wang Q C, Svec F, Frchet J M J. Macroporous polymeric stationary-phase rod as continuous separation medium for reversed-phase chromatography. Anal Chem, 1993, 65(17), 2243-2248.
    [90] Seubert A., Klingenberg A. Sulfoacylated macroporous polystyrene-divinylbenzene: a new type of cation exchanger for the analysis of multivalent metal cations. J Chromatogr A, 1997, 782,149-157.
    [91] Moore R E, Licklider L, Schumann D, et al. A Microscale Electrospray Interface Incorporating a Monolithic, Poly(styrene-divinylbenzene) Support for On-Line Liquid Chromatography/Tandem Mass Spectrometry Analysis of Peptides and Proteins.Anal Chem , 1998, 70 (23) ,4879-4884.
    [92] Petro M, Svec F, Gitsov I, et al. Molded Monolithic Rod of Macroporous Poly (styrene-co-divinylbenzene) as a Separation Medium for HPLC of Synthetic Polymers: "On-Column" Precipitation-Redissolution Chromatography as an Alternative to Size Exclusion Chromatography of Styrene Oligomers and Polymers.Anal Chem, 1996, 68 (2) , 315-321.
    [93] I. Gusev, X .Huang, C .Horvath. Capillary columns with in situ formed porousintratumoral microvessel density. Anal. Sci., 1998, 14, 1021-1023.
    [85] Koide T, Ueno K. Enantiomeric Separations of Cationic and Neutral Compounds by Capillary Electrochromatography with beta-Cyclodextrin-Bonded Charged Polyacrylamide Gels Anal.Sci., 1999, 15, 791-794.
    [86] Koide T, Ueno K. Enantiomeric Separations by Capillary Electrochromatography with Charged Polyacrylamide Gels Incorporating Chiral Selectors. Anal. Sci., 2000, 16, 1065-1070.
    [87] Koide T, Ueno K. Enantiomeric separations of cationic and neutral compounds by capillary electrochromatography with monolithic chiral stationary phases of β-cyclodextrin-bonded negatively charged polyacrylamide gels. J.Chromatogr. A, 2000, 893,177-187.
    [88] Vgvri A, Fldesi A, Hetnyi C.A new easy-to-prepare homogeneous continuous electrochromatographic bed for enantiomer recognition. Electrophoresis, 2000, 21, 3116-3125.
    [89] Wang Q C, Svec F, Frchet J M J. Macroporous polymeric stationary-phase rod as continuous separation medium for reversed-phase chromatography. Anal Chem, 1993, 65(17), 2243-2248.
    [90] Seubert A., Klingenberg A. Sulfoacylated macroporous polystyrene-divinylbenzene: a new type of cation exchanger for the analysis of multivalent metal cations. J Chromatogr A, 1997, 782,149-157.
    [91] Moore R E, Licklider L, Schumann D, et al. A Microscale Electrospray Interface Incorporating a Monolithic, Poly(styrene-divinylbenzene) Support for On-Line Liquid Chromatography/Tandem Mass Spectrometry Analysis of Peptides and Proteins.Anal Chem , 1998, 70 (23) ,4879-4884.
    [92] Petro M, Svec F, Gitsov I, et al. Molded Monolithic Rod of Macroporous Poly (styrene-co-divinylbenzene) as a Separation Medium for HPLC of Synthetic Polymers: "On-Column" Precipitation-Redissolution Chromatography as an Alternative to Size Exclusion Chromatography of Styrene Oligomers and Polymers.Anal Chem, 1996, 68 (2) , 315-321.
    [93] I. Gusev, X .Huang, C .Horvath. Capillary columns with in situ formed porousmonolithic packing for micro high-performance liquid chromatography and capillary electrochromatography. J. Chromatogr. A , 1999, 855, 273-290.
    [94] Xiong B H, Zhang L H, Zhang Y K. Capillary Electrochromatography with Monolithic Poly (styrene-co-divinylbenzene-co-methacrylic acid) as the Stationary Phase. J High Resol Chromatogr, 2000, 23 (1), 67-72.
    [95] Jin W H, Fu H J , Huang X D, et al. Optimized preparation of poly(styrene-co- divinylbenzene-co-methacrylic acid) monolithic capillary column for capillary electrochromatography. Electrophoresis, 2003, 24 (18), 3172-3180.
    [96] Peters E C, Lewandowski K, Petro M, et al. Chiral Electrochromatography with a "molded" rigid monolithic capillary column. Anal. Commun., 1998, 35 (3) , 83-86.
    [97] Podgornik A., Barut M., Jancar J. Isocratic separations on thin glycidyl methacrylate–ethylenedimethacrylate monoliths. J.Chromatogr A, 1999, 848, 51-60.
    [98] Yu C., Svec F., Frchet J. M. J. Towards stationary phases for chromatography on a microchip: Molded porous polymer monoliths prepared in capillaries by photoinitiated in situ polymerization as separation media for electrochromatography. Eletrophoresis, 2000, 21, 120-127.
    [99] Peters E C, Petro M, Svec F, et al. Molded Rigid Polymer Monoliths as Separation Media for Capillary Electrochromatography. 2 .Effect of Chromatographic Conditions on the Separation. Anal Chem, 1998, 70 (11), 2296-2302.
    [100]Sykora D, Svec F, Frchet J M J. Separation of oligonucleotides on novel monolithic columns with ion-exchange functional surfaces. J Chromatogr A, 1999,852, 297-304.
    [101] Mihelic T., Koloini A., Podgornik A.Dynamic Capacity Studies of CIM (Convective Interaction Media) Monolithic Columns. J High Resol Chromatogr, 2000, 23, 39-43.
    [102]Svec F, Frchet J M J. Modified poly (glycidyl metharylate-co-ethylene dimethacrylate) continuous rod columns for preparative-scale ion-exchange chromatography of proteins. J.Chromatogr.A, 1995, 702, 89-95.
    [103] Svec F, Frchet J M J.New Designs of Macroporous Polymers and Supports: From Separation to Biocatalysis. Science, 1996, 273, 205-211.
    [104] Svec F, Frchet J M J. Molded Rigid Monolithic Porous Polymers: An Inexpensive, Efficient, and Versatile Alternative to Beads for the Design of Materials for Numerous
    [116] Schweitz L., Andersson L.L, Nilsson S. Molecular Imprinting for Chiral Separations and Drug Screening Purposes using Monolithic Stationary Phases in CEC. Chromatographia,1999,49,S93-S94.
    [117] Schweitz L., Andersson L.L, Nilsson S.Rapid electrochromatographic enantiomer separations on short molecularly imprinted polymer monoliths. Anal. Chem. Acta, 2001,435, 43-47.
    [118] Takeuchi T., Matsuchi J. Miniaturized molecularly imprinted continuous polymer rods. J. High Resol. Chromatogr., 2000, 23(1), 44-46.
    [119]Schweitz L., Andersson L. L, Nilsson S. Capillary electrochromatography with molecular imprint-based selectivity for enantiomer separation of localanesthetics. J. Chromatogr A, 1997, 792, 401-409.
    [120] E .C. Peters, M.Petra, F .Svec.Molded Rigid Polymer Monoliths as Separation Media for Capillary Electrochromatography.Anal.Chem., 1997, 69,3646-3649.
    [121] S .A .Johnson, P J .Ollivier, T. E .Mallouk. Ordered Mesoporous Polymers of Tunable Pore Size from Colloidal Silica Templates. Science, 1999, 283, 963-965.
    [122] C.Horvath, H. J.Lin. Movement and band spreading of unsorbed solutes in liquid chromatography. J. Chromatogr A, 1976, 126, 401-420.
    [123] 黄晓冬, 孔亮, 厉欣等. 原位分子印迹毛细管电色谱柱的制备及其对非对映异构体的分离. 色谱, 2003, 21(3), 195-198.
    [124] Leona K, Zdenek G, Hana S, et al. Application of capillary electrochromatography using macroporous polyacrylamide columns for the analysis of lignans from seeds of Schisandra chinensis. J.Chromatogr. A, 2001, 916, 265-271.
    [125] Branovic K., Buchacher A, Barut Metal.Application of semi-industrial monolithic columns for downstream processing of clotting factor IX. J. Chromatogr B, 2003, 790, 175-182.
    [126] 施治国, 冯钰锜, 达世禄. 溶胶-凝胶技术制备毛细管硅胶整体柱及其应用. 分析科学学报, 2003, 19(6), 503-506.
    [127] Zilin Chen, Katsumi U, Toshiyuki H. Chemically modified chiral monolithic silica column prepared by a sol–gel process for enantiomeric separation by micro high-performance liquid chromatography. J. Chromatogr.A, 2002, 942, 83-91.
    [128] Darin A., Ziad E.R. Capillary electrochromatography with monolithic silica columns: III. Preparation of hydrophilic silica monoliths having surface-bound cyano groups: chromatographic characterization and application to the separation of carbohydrates, nucleosides, nucleic acid bases and other neutral polar species. J.Chromatogr.A, 2004, 1029, 239-247.
    [129] Toldtikov V.V.Lommen A, Nakanishi K.et al. Ana Chem.2003, 75(23), 6737-6740.
    [130]Cristina L- Q, Nicola M, Norman W. S.Comparison of styrene–divinylbenzene-based monoliths and Vydac nano-liquid chromatography columns for protein analysis. J.Chromatogr A, 2004, 1030, 195-200.
    [131] Norio I, Hiroyoshi M, Kazuki N, et al. Performance of a Monolithic Silica Column in a Capillary under Pressure-Driven and Electrodriven Conditions. Anal. Chem. 2000, 72, 1275-1280.
    [132] Herbert O. Andreas P, Christian G. Characterization of some physical and chromatographic properties of monolithic poly(styrene– co- divinylbenzene) columns. J.Chromatogr A, 2004, 1030, 201-208.
    [133] Ruth Freitag. Comparison of the chromatographic behavior of monolithic capillary columns in capillary electrochromatography and nano-high-performance liquid chromatography. J.Chromatogr. A, 2004, 1033, 267-273.
    [134] Joselito P., Quirino, Dulay M. T, et al. On-Line Preconcentration in Capillary Electrochromatography Using a Porous Monolith Together with Solvent Gradient and Sample Stacking. Anal.Chem.2001, 73(22), 5557-5563.
    [135] Lee W.L, Katsuaki H, Shinichi T, et al. Sample enrichment by using monolithic precolumns in microcolumn liquid chromatography. J.Chromatogr A, 2004, 1033, 205-212.
    [136] Oguri S, Tanagaki H, Hamaya M, et al. On-Line Preconcentration Prior to On-Column Derivatization Monolith Octadecasiloxane Capillary Electrochromatography for the Determination of Biogenic Amines. Anal.Chem.2003, 75(19), 5240-5245.
    [137] Frederic G, Markus K, Heiko P, et al. Practical aspects of fast reversed-phase high-performance liquid chromatography using 3 μm particle packed columns and monolithic columns in pharmaceutical development and production working undercurrent good manufacturing practice. J.Chromatogr.A 2004, 1036, 127-133.
    [138] Hang Zeng, Yu Zhongdeng, Wu Jingtao. Fast analysis using monolithic columns coupled with high-flow on-line extraction and electrospray mass spectrometric detection for the direct and simultaneous quantitation of multiple components in plasma. J.Chromatogr.B 2003, 788, 331-337.
    [139] Marie-Jose R, Chantal J, Julie B, et al. Evaluation of a silica-based monolithic column in the HPLC analysis of taxanes. J. Pharma and Biomedical Anal., 2003, 31,191-196.
    [140] Arndt A, Jurgen E, Therese K, et al.Trace determination of priority pesticides in water by means of high-speed on-line solid-phase extraction–liquid chromatography–tandem mass spectrometry using turbulent-flow chromatography columns for enrichment and a short monolithic column for fast liquid chromatographic separation. J.Chromatogr A, 2002, 960, 109-119.
    [141] Karmen B,Dubravko F,Jelena I,et al.Application of short monolithic columns for improved detection of viruses. J.Virological Methrods, 2003, 110, 163-171.
    [142]Karmen B, Dubravko F, Jelena I.Application of short monolithic columns for fast purification of plasmid DNA. J.Chromatogr.B, 2004, 801, 331-337.
    [143]David V, McCalley. Comparison of conventional microparticulate and a monolithic reversed-phase column for high-efficiency fast liquid chromatography of basic compounds. J.Chromatogr.A, 2002, 965, 51-64.
    [144] Yun Chu, Colin F., Poole. System maps for retention of neutral organic compounds under isocratic conditions on a reversed-phase monolithic column. J.Chromatogr.A, 2003, 1003, 113-121.
    [145] Michael S., Dieter L., Axel D. Preparative Monolithic Silica Sorbents (PrepRODs) and Their Use in Preparative Liquid Chromatography. J.High Resol. chromatogr., 2000, 23, 100-105.
    [146] Dalibor S, Petr S, Petr C, et al. Monolithic columns-a new concept of separation in the sequential injection technique. Analytica Chimica Acta,2003, 499, 205-214.
    [147] Dominic S.P.Thomas R, Frantisek S. et al. Dual-Function Microanalytical Device by In Situ Photolithographic Grafting of Porous Polymer Monolith: Integrating Solid-Phase Extraction and Enzymatic Digestion for Peptide Mass Mapping. Anal.Chem, 2003, 75,5328-5335.
    [148] Shota M, Kei M, Norio I, et al. Development of a monolithic silica extraction tip for the analysis of proteins. J.Chromatogr.A, 2004, 1043, 19-25.
    [149] Cong Yu, Mark H.D., Frantisek S.,et al. Monolithic Porous Polymer for On-Chip Solid-Phase Extraction and Preconcentration Prepared by Photoinitiated in Situ Polymerization within a Microfluidic Device. Anal.Chem.2001, 73, 5088-5096.
    [150] Aimin T., Salete B., Jack D.H. Chip-Based Solid-Phase Extraction Pretreatment for Direct Electrospray Mass Spectrometry Analysis Using an Array of Monolithic Columns in a Polymeric Substrate. Anal.Chem.2003, 75, 5504-5511.
    [151] F. Svec, J. M. J. Freshet.Kinetic Control of Pore Formation in Macroporous Polymers. The Formation of "Molded" Porous Materials with High Flow Characteristics for Separation or Catalysis. Chem. Mater., 1995, 7, 707-715.
    [152] Xie, S. F., Svec, F., Frechet, J. M. J. Porous Polymer Monoliths: Preparation of sorbent materials with high-surface areas and controlled surface chemistry for high-throughput online solid-phase extraction of polar organic compounds. Chem. Mater, 1998, 10, 4072-4078.
    [153] Svec, F., Frechet, J. M. J.New Porous Polymer Monoliths with Enhanced Properties: Supports for Rapid and Efficient Separations. Polym Mater Sci. Eng., 1999, 81, 544-545.
    [154] Peters E. C,Svec F., Frechet J. M. J.Control of porous properties and surface chemistry in "molded" porous polymer monoliths prepared by polymerization in the presence of TEMPO. Macromolecules, 1999, 32, 6377-6379.
    [155] Mayer U., Svec F., Frechet J. M. J., et al. Use of Stable Free Radicals for the Sequential Preparation and Surface Grafting of Functionalized Macroporous Monoliths. Macromolecules, 2000, 33, 7769-7775.
    [156] Tsuda, T. Chromatographic behavior in electrochromatography. Anal.Chem. 1988, 60, 1677-1680.
    [157] Chuanhui Xie, Hongjing Fu, Jiwei Hu, Hanfa Zou. Polar stationary phases for capillary electrochromatography. Electrophoresis 2004, 25, 4095-4109.
    [158] Mohamed Bedair, Ziad El Rassi. Recent advances in polymeric monolithic stationary phases for electrochromatography in capillaries and chips. Electrophoresis 2004, 25,4110-4119.
    [159] Emily F. Hilder, Frantisek Svec, Jean M. J. Fréchet. Polymeric monolithic stationary phases for capillary electrochromatography. Electrophoresis 2002, 23, 3934-3953.
    [160] Tanaka N, Kobayashi H., Nakanishi K, et al. Monolithic LC columns. Anal.Chem. 2001, 73, 420A-429A.
    [161] Bertoncini, N. D., Demesmay, C., Rocca, J. L. Development and in situ synthesis of monolithic stationary phases for electrochromatographic separations.Electrophoresis 2004, 25, 3204–3215.
    [162] Zhang, S. H., Huang, X., Zhang, J., Horváth, C. Capillary electrochromatography of proteins and peptides with a cationic acrylic monolith, J. Chromatogr.A 2000, 877, 465-477
    [163] Fu, H. J., Xie, C. H., Xiao, H., Dong, J., Hu, J. W., Zou, H. F. Monolithic columns with mixed modes of reversed-phase and anion-exchange stationary phase for capillary electrochromatography. J. Chromatogr. A 2004, 1044, 237-244.
    [164] Dittmann, M. M., Masuch, K., Rozing, G. Separation of basic solutes by reversed-phase capillary electrochromatography. J. Chromatogr A, 2000, 887, 209-221.
    [165] Svec, F., Peters, E. C., Sykora, D., Fréchet, J. M. J., Design of the monolithic polymers used in capillary electrochromatography columns. J. Chromatogr.A 2000, 887, 3–29.
    [166] Hilhorst M J, So msen G W, de Jong G J. Capillary electrochromatography of basic compounds using octadecyl-silica stationary phases with an amine-containing mobile phase. J Chromatogr A 2000, 872 (1-2), 315-321.
    [167] Enlund, A. M., Westerlund, D. Effects of aliphatic amines on capillary electrochromatographic performance of tricyclic antidepressants on octadecylsilica. J Chromatogr A 2000, 895, 17-25.
    [168] Gillot N C, Euerby M R, Johnson C M, Barret D A, Shaw P N.The analysis of pharmaceutical bases on a silica stationary phase by capillary electrochromatography using aqueous mobile phases. Chromatographia 2000, 51 (3- 4), 167-174.
    [169] Cornet, V., Govaert, Y., Moens, G., et al., Development of a fast analytical method for the determination of sudan dyes in chili- and curry-containing foodstuffs by high-performance liquid chromatography-photodiode array detection. J. Agric. Food4110-4119.
    [159] Emily F. Hilder, Frantisek Svec, Jean M. J. Fréchet. Polymeric monolithic stationary phases for capillary electrochromatography. Electrophoresis 2002, 23, 3934-3953.
    [160] Tanaka N, Kobayashi H., Nakanishi K, et al. Monolithic LC columns. Anal.Chem. 2001, 73, 420A-429A.
    [161] Bertoncini, N. D., Demesmay, C., Rocca, J. L. Development and in situ synthesis of monolithic stationary phases for electrochromatographic separations.Electrophoresis 2004, 25, 3204–3215.
    [162] Zhang, S. H., Huang, X., Zhang, J., Horváth, C. Capillary electrochromatography of proteins and peptides with a cationic acrylic monolith, J. Chromatogr.A 2000, 877, 465-477
    [163] Fu, H. J., Xie, C. H., Xiao, H., Dong, J., Hu, J. W., Zou, H. F. Monolithic columns with mixed modes of reversed-phase and anion-exchange stationary phase for capillary electrochromatography. J. Chromatogr. A 2004, 1044, 237-244.
    [164] Dittmann, M. M., Masuch, K., Rozing, G. Separation of basic solutes by reversed-phase capillary electrochromatography. J. Chromatogr A, 2000, 887, 209-221.
    [165] Svec, F., Peters, E. C., Sykora, D., Fréchet, J. M. J., Design of the monolithic polymers used in capillary electrochromatography columns. J. Chromatogr.A 2000, 887, 3–29.
    [166] Hilhorst M J, So msen G W, de Jong G J. Capillary electrochromatography of basic compounds using octadecyl-silica stationary phases with an amine-containing mobile phase. J Chromatogr A 2000, 872 (1-2), 315-321.
    [167] Enlund, A. M., Westerlund, D. Effects of aliphatic amines on capillary electrochromatographic performance of tricyclic antidepressants on octadecylsilica. J Chromatogr A 2000, 895, 17-25.
    [168] Gillot N C, Euerby M R, Johnson C M, Barret D A, Shaw P N.The analysis of pharmaceutical bases on a silica stationary phase by capillary electrochromatography using aqueous mobile phases. Chromatographia 2000, 51 (3- 4), 167-174.
    [169] Cornet, V., Govaert, Y., Moens, G., et al., Development of a fast analytical method for the determination of sudan dyes in chili- and curry-containing foodstuffs by high-performance liquid chromatography-photodiode array detection. J. Agric. Foodmixture of coptis alkaloids, scute ?avonoids, and rhubarb anthraquinones and bianthrones J. Pharm. Biomed. Analy. 2006, 40, 62-67.
    [181] S.J. Sheu, H.R. Chen, Determination of five major anthraquinoids in Chinese herbal preparations by micellar electrokinetic capillary electrophoresis.Anal. Chim. Acta 1995, 309, 361-367.
    [182] Y. Li, H. W. Liu, X. H. Ji, J. L. Li. Optimized separation of pharmacologically active anthraquinones in Rhubarb by capillary electrochromatographyElectrophoresis 2000, 21, 3109-3115.
    [183] J. Ding, B. Ning, G. Fu, Y. Lu, S. Dang. Separation of rhubarb anthraquinones by capillary electrochromatography. Chromatographia 2000, 52 (5–6), 285-288.
    [184] T. Tsuda. Electrochromatography using high applied voltage. Anal. Chem. 1987, 59, 521-523.
    [185] C. Yan, D. Shaufelberger, F. Erni. Electrochromatography and micro high-performance liquid chromatography with 320 mm I.D. packed columns. J. Chromatogr., A. 1994, 670, 15-23.
    [186] J. T. Wu, P. Huang, M. X. Li, D. M. Lubman. Protein digest analysis by pressurized capillary electrochromatography using an ion trap storage/reflectron time of flight mass detector .Anal.Chem. 1997, 69, 2908-2913.
    [187] P. Gfr?rer, L. H. Tseng, E. Rapp, K. Albert, E. Bayer. Influence of Pressure upon Coupling Pressurized Capillary Electrochromatography with Nuclear Magnetic Resonance SpectroscopyAnal. Chem. 2001, 73, 3234-3239.
    [188] D. Wistuba, K. Cabrera, V. Schurig. Schurig. Enantiomer Separation by Non-aqueous and Aqueous Capillary Electrochromatography on Cyclodextrin Stationary Phases. Electrophoresis 22 (2001) 2600–2605.
    [189] Q. Ru, G. Luo, Y. Fu. Effect of various modes of pressurization on the separation in capillary electrochromatography. J. Chromatogr. A. 2001, 924, 331-336.
    [190] 颜流水,王宗花,罗国安,王义明. 梯度加压毛细管电色谱同时分离大提取液中5种蒽醌类化合物高等学校化学学报. 2004, 25(5), 827-830.
    [191] Karalliedde, L., H. Wheeler, R. Maclehose, V. Murray. Possible immediate and long-term health effects following exposure to chemical warfare agents. Public Health,2000, 114, 238-248.
    [192] Ishikawa S. Ophthalmopathy due to environmental toxic substances especially intoxication by organophosphorus pesticides. Nippon Ganka Gakkai Zasshi, 1996, 100(6), 417-432.
    [193] Filippov, V. L., Shumakova, K. M., Tsimbal, F. A. Use of pupillometry in the diagnosis of neurologic disorders caused by organophosphrous compound poisoning. Med Tr Prom Ekol, 1997(6), 11-16.
    [194] Katan Patel, Richard J. Fussell1, David M. Goodall, Brendan J. Keely. Application of programmable temperature vaporisation injection with resistive heating-gas chromatography flame photometric detection for the determination of organophosphorus pesticides. J. Sep. Sci. 2006, 29, 90-95.
    [195] Katan Patel, Richard J. Fussell, Roy Macarthur, David M. Goodall, Brendan J. Keely. Method validation of resistive heating-gas chromatography with flame photometric detection for the rapid screening of organophosphorus pesticides in fruit and vegetables, Journal of Chromatogr A, 2004, 1046, 225-234.
    [196] Hans G.J. Mol, Ruud C.J. van Dam, Odile M. Steijger. Determination of polar organophosphorus pesticides in vegetables and fruits using liquid chromatography with tandem mass spectrometry: selection of extraction solvent. Journal of Chromatogr A, 2003, 1015, 119-127.
    [197] M. Aguilar, A. Farran, C. Serra, M. J. Sepaniak, K. W. Whitaker. Use of different surfactants (sodium dodecyl sulfate, bile salts and ionic polymers) in micellar electrokinetic capillary chromatography Application to the separation of organophosphrous pesticides. Journal of Chromatogr A, 1997, 778, 201-205.
    [198] Pyull U. Advances in column technology and instrumentation in capillary electrochromatography. J. Chromatogr A, 2000, 892(1), 257-278.
    [199] Tang Q, Lee M L. Column technology for capillary electrochromatography. Trends Anal Chem., 2000, 19(11), 648-663.
    [200] Kok, Wim Th. Capillary electrochromatography in the size-exclusion mode. J.Chromatogr. A, 2004, 1044, 145-151.
    [201] Beale S C. Capillary Electrophoresis. Anal.Chem., 1998, 70, 279R-300R.
    [202] Rapp E, Bayer E. Improved column preparation and performance in capillary electrochromatography. J. Chromatogr. A, 2000, 887, 367-378.
    [203] Bartle K D, Myers P. Theory of capillary electrochromatography. J.Chromatogr. A, 2001, 916, 3-23.
    [204] Xiang R, Horváth C. Fundamentals of Capillary Electrochromatography: Migration Behavior of Ionized Sample Components. Anal. Chem. 2002, 74, 762-770.
    [205] Tegeler T, Rassi Z E. On-Column Trace Enrichment by Sequential Frontal and Elution Electrochromatography. 1. Application to Carbamate Insecticides. Anal.Chem. 2001, 73, 3365-3372.
    [206] Tegeler T, Rassi Z E. On-column trace enrichment by sequential frontal and elution electrochromatography: II. Enhancement of sensitivity by segmented capillaries with z-cell configuration—application to the detection of dilute samples of moderately polar and nonpolar pesticides. J. Chromatogr. A, 2002, 945, 267–279.
    [207] Moffatt F, Cooper P A, Jessop K M. Comparison of capillary electrochromatography with high-performance liquid chromatography for the analysis of pirimicarb and related compounds. J. Chromatogr. A, 1999, 855, 215-226.
    [208] HenryIII C W, McCarroll M E., Warner I M. Separation of the insecticidal pyrethrin esters by capillary electrochromatography. J. Chromatogr. A, 2001, 905, 319-327.
    [209] 邹汉法, 刘震, 叶明亮, 张玉奎. 毛细营电色谱及其应用 科学出版社, p114.
    [210] 张丽华, 博士论文, 毛细管电色谱保留行为及其新技术的研究 中国科学院大连化学物理研究所, 2000.
    [211] Scriba, G. K. E., Pharmaceutical and biomedical applications of chiral capillary electrophoresis and capillary electrochromatography. Electrophoresis 2003, 24, 2409-2421.
    [212] Fu, H. J., Jin, W.H., Xiao, H., Huang, H. W., Zou, H. F., Peptide separation in hydrophilic interaction capillary electrochromatography, Electrophoresis 2003, 24, 2084-2091.
    [213] Fu, H. J., Huang, X. D., Jin, W. H., Zou, H. F., The separation of biomolecules using capillary electrochromatography, Curr. Opin. Biotechno1 2003, 14, 96 -100.
    [214] Hoegger, D., Freitag, R., Investigation of mixed-mode monolithic stationary phases for the analysis of charged amino acids and peptides by capillary electrochromatography, J. Chromatogr. A 2003, 1004, 195-208.
    [215] Lmmerhofer, M., S vec, F., Fréchet, J. M. J., Lindner, W., Capillary electrochromatography in anion-exchange and normal-phase mode using monolithic stationary phases, J Chromatogr. A 2001, 925, 266-277.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700