三种先天性遗传病家系的疾病基因定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章一个先天性常染色体显形遗传副耳畸形家系致病基因的定位研究
     目的定位先天性遗传性副耳畸形家系的疾病基因。方法对一个先天性副耳畸形的家系进行调查,对该家系进行了微卫星位点全基因组扫描。结果该家系的遗传模式为常染色体显性遗传,完全外显。通过两点连锁分析得到最大LOD值为4.20(D14S990 and D14S264,sita=0),通过单体型构建和多点连锁分析,将该致病基因锁定在14号染色体的D14S283和D14S297两位点(9.84cM)之间。结论我们将先天性副耳畸形疾病基因定位在14q11.2-q12区间内。这是迄今第一次对单纯性副耳畸形疾病基因的定位。
     第二章一个先天性常染色体显形遗传白内障家系致病基因的定位研究和候选基因突变检测
     目的定位和鉴别白内障致病基因。方法对一个先天性进行性板层核状白内障家系进行调查,对该家系的23个可疑患者进行了视光学检查,提取29位家庭成员的gDNA并进行连锁分析、单体型构建,对侯选疾病基因(BFSP1)进行突变检测。结果14个家庭成员被确诊患有先天性常染色体显性遗传板层核状白内障。连锁分析结果表明微卫星位点D20S904与该家系的致病基因紧密连锁,其LOD值为6.02(sita=0)。最后,该家系的致病基因被定位到20号染色体20p12.2-p11.23的D20S186至D20S912之间,该区间的长度为9.34MB。在此区间含括了BFSP1基因,但从我们对患者该基因编码区域的突变检测结果来看,没有发现有意义的突变。结论我们将一个先天性进行性板层核状白内障致病基因定位到20p11.23-p12.2.
     第三章两个先天性性连锁遗传眼球震颤家系致病基因的定位研究
     目的进一步缩小先天性传出性眼球震颤的致病基因在染色体的区间。方法对两个患有该病的中国大家系进行调查和确诊,并对该家系进行整个X染色体的基因组微卫星位点的长度扫描和连锁分析。结果在家系nys-01,发现了在X染色体长臂最大LOD值为8.55(DXS1047,sita=0)。在家系nys-02,几乎相同的位置发现了3.91的最大LOD值(DX1211和DXS1205,sita=0)。通过多点连锁分析和单体型构建,最终将该致病基因定位在X染色体微卫星标记DXS8044和DXS8041之间的7.1 cM。结论我们将先天性传出性眼球震颤致病基因定位到Xq25-q26.3的7.1个cM,并推测Xq26-q28的位置很可能存在两个眼球震颤的独立基因。
Chapter one Mapping the disease gene in a Congenital Accessory Auricular Anomaly family
     Objective To map the gene for autosomal dominant accessory auricular anomaly(ADAAA).Methods A Chinese ADAAA family with 11 affected individuals was investigated.Linkage analysis with microsatellite markers spanning the whole human-genome in the family was carried out.Results The inheritance pattern of the ADAAA family was autosomal dominant with complete penetrance.Two-point linkage analysis revealed signifcant maximum LOD scores of 4.20(D14S990 and D14S264,sita=0)in the family.Haplotype construction and multipoint linkage analysis also confirmed the locus and defined the isolated ADAAA locus to a 9.84cM interval between the markers D14S283 and D14S297.Conclusions Our study assigned an isolated ADAAA locus to 14q11.2-q12.This is the first time ADAAA locus reported to date.
     Objective To map and to identify the causal gene for autosomal dominant congenital cataract(ADCC)in a Chinese family. Methods A four-generation family with a history of congenital cataracts was investigated.Twenty-three members of the family were examined ophthalmologically.Blood samples were collected from twenty-nine family members for genetic linkage analysis.Two-point LOD scores were calculated.Multi-point linkage analysis and haplotype construction were performed to define the optimal cosegregating interval.Direct sequence analysis of the candidate gene,beaded filament structural protein 1, filensin(BFSP1)in the critical region was carried out.Results Fifteen family members were affected with autosomal dominant progressive congenital zonular nuclear cataract(ADPCZNC).The maximum two-point LOD Score of 6.02 was obtained for marker D20S904(=0). The cataract locus in this family was mapped to chromosome 20p11.23-p12.2,a 9.34 Mb(16.37 cM)interval between markers D20S 186 and D20S912.Although BFSP1 was in this critical region,no evidence was found that the condition in the family was caused by a BFSP1 mutation.Conclusions We have mapped the genetic locus of ADPCZNC to chromosome 20p11.23-p12.2 in an ADCC family.This is the first time ADPCZNC has been linked to this region.
     Chapter three Mapping the disease gene in two Congenital motor nystagmus families
     Objective In order to narrow down the candidate region and to identify the candidate gene for X-linked CMN.Methods Two families with CMN were investigated.Genotyping and linkage analysis were conducted in these two Chinese families.Results These two families were affected by X-linked CMN with incomplete penetrance. Two-point linkage analysis revealed significant maximum logarithm of odds(LOD)scores of 8.55(DXS10.47,sita=0)and 3.91(DXS1211 and DXS1205,=0)at the family nys-01 and the family nys-02 respectively. Haplotype construction and multipoint linkage analysis also confirmed the locus and refined the locus to a 7.1-cM interval between the markers DXS8044 and DXS8041 on chromosome Xq25-q26.3.Conclusion We have mapped the nystagemus gene to aninterval of 7.1 cM,at the location of Xq15-q26.3,such interval shares no overlap with previous Xq26-q27 locus.
引文
[1]Dulbecco R.A turning point in cancer research:sequencing the human genome.Science.1986 Mar 7,231(4742):1055-6.
    [2]Munker G Accessory auricle in the eustachian tube.ZLaryngol Rhinol,1972,51:175-178
    [3]Sayama S,Tagami H,Cartilaginous nevus on the glabella.Acta Derm Venereol,1982,62:180-181
    [4]Shimizu F,Nishimoto S,Oyama T.Supernumerary auricle on the lateral canthus.Br J Plast Surg,2004,57:800-802
    [5]彭玉成 副耳遗传方式分析与诊治 中华耳鼻咽喉科杂志,1994年8月29卷第4期:250
    [6]Bisdas S,Lenarz M,Lenarz T,Becker H.Inner ear abnormalities in patients with Goldenhar syndrome.Otol Neuroto,2005.26:398-404
    [7]Beck AE,Hudgins L,Hoyme HE.Autosomal dominant microtia and ocular coloboma:new syndrome or an extension of the oculo-auriculo-vertebral spectrum? Am J Med Genet,2005,134:359-362
    [8]Beder LB,Kemaloglu YK,Maral I et al.A study on the prevalence of accessory auricle anomaly in Turkey.Int J Pediatr Otorhinolaryngol,2002,63(1):25
    [9]高建中,陈英 副耳遗传方式的遗传研究Current Physician Journal,March,1996,Vol.1 No.3
    [10]布娟,赵堪兴 遗传性白内障致病基因及其机制的研究进展眼科研究.2006,24(2):219-221
    [11]Eiberg H,Lund AM,Warburg M,Rosenberg T:Assignment of congenital cataract Volkmanntype(CCV)to chromosome 1p36.HumGenet,1996:33-8
    [12]Ionides AC,Berry V,Mackay DS,etal:A locus for autosomal dominant posterior polar cataract on chromosomelp.Hum Mol Genet,1999,6:47-51,
    [13]Khaliq S,Hameed A,Ismail M,et al:A novel locus for autosomal dominant nuclear cataract mapped to chromosome 2p12 in a Pakistan family.Invest Ophthalmol Vis Sci,2002,43:2083-7
    [14]Moross T,Vaithilingam SS,Styles S,Gardner HA:Autosomal Dominant anterior polar cataracts associated with a familial 2;14 translocation.J Med Genet,1984,21:52-53,
    [15]Yokoyama Y,Narahara K,Tsuji K,etal:Autosomal dominant congenital cataract and microphthalmia associated with a familial t(2;16)translocation.HumGenet,1992,90:177-8,
    [16]Reese P D,Tuck-Miller C M,Maumenee I H:Autosomal dominant congenital cataract associated with chromosomal translocation[t(3;4)(p26.2;p15)].Arch Ophthalmol.1987,105:1382-4,
    [17]Vanita,Singh J R,Sarhadi V K,et al:A novel form of'central pouch like cataract',with sutural opacities,maps chromosome 15q21-22.Am J Hum Genet,2001,68:509-14,
    [18] Berry V, Ionides A C, Moore A T, et al: A locus for autosomal dominant anterior polar cataract on chromosome 17p. Hum Mol Genet ,1996,5:415-9
    [19] Armitage M M, Kivlin J D, Ferrell R E: A progressive early onset cataract gene maps to human chromosome 17q24. NatGenet ,1995,9:37-40
    [20] Yamada K, Tomita H, Yoshiura K, et al: An autosomal dominant posterior polar cataract locus maps to human chromosome20p12-q12. Eur J Hum Genet ,2000,8:535-9
    [21] Litt M, Kramer P, La Morticella D M, et al: Autosomal dominant congenital cataract associated with a missense mutation in the human alphacrystallin gene CRYAA. Hum Mol Genet, 1998,7:471-4
    [22] Berry V, Francis P, Reddy M A, et al: Alpha-B crystallin gene (CRYAB) mutation causes dominant congenital posterior polar cataract in humans. Am J Hum Genet .2001,69:1141-5
    [23] Mackay D S.Boskovska O B, Knopf H L, et al: A nonsense mutation in CRYBB1 associated with autosomal dominant cataract linked to human chromosome22q. Am J Hum Genet, 2002,71:1216-21
    [24] Litt M, Carrero-Valenzuela R, LaMorticella D M, et al: Autosomal dominant cerulean cataract is associated with a chain termination mutation in the human beta-crystallin geneCRYBB2. Hum Mol Genet ,1997,6:665-8
    [25] Gill D, Klose R, Munier F L, et al: Genetic heterogeneity of the Coppock-linke cataract: a mutation in CRYBB2 on chromosome 22q11.12. Invest Ophthalmol VisSci,2000, 41:159-65
    [26] Vanita, Sarhadi V, Reis A,etal: A unique form of autosomal dominant cataract explained by gene conversion between beta-crystallin B2 and it spseudo gene. J Med Genet,2001,38:392-6
    [27] Kannabiran C, Rogan P K, Olmos L, et al: Autosomal dominant zonular cataract with sutural opacities is associated with a splice mutation in the betaA3/A1-crystallin gene. Mol Vis, 1998,4:21
    [28] Bateman J B, Geyer D D, Flodman P, et al: A new betaA1-crystallin splice junction mutation in autosomal dominant cataract. Invest Ophthalmol Vis Sci, 2000,41:3278-85
    [29] Heon E, Priston M, Schorderet D F, et al: The gamma-crystallin sand human cataracts: a puzzle made clearer. Am J Hum Genet,1999,65:1261-7
    [30] Ren Z, Li A, Shastry B S, Padma T, Ayyagari R, Scott M H, Parks M M, Kaiser-Kupfer M I, Hejtmancik J F: A5-base insertion in thegamma C-crystallin geneis associated with autosomal dominant variable zonular pulverulent cataract. Hum Genet ,2000,106:531-7
    [31] Santhiya S T, Shyam M M, Rawlley D.et al: Novel mutations in the gamma-crystallin genes cause autosomal dominant congenital cataracts. J Med Genet ,2002,39:352-8
    [32] Stephan D A, Gillanders E, Vanderveen D, et al: Progressive juvenile-onset punctate cataracts caused bymutation of the gammaD-crystallin gene. Proc Natl Acad Sci USA ,1999,96:1008-12
    [33] Nadrot E, Slingsby C, Basak A, et al: Gamma-Dcrystallin gene (CRYGD) mutation causes autosomal dominant congenital cerulean cataracts. J Med Genet ,2003,40:262-7
    [34] Kmoch S, Brynda J, Asfaw B, et al: Link between a novel human gammaD-crystallin allele and aunique cataract phenotype explained by protein crystallo graphy. Hum Mol Genet, 2000,9:1779-86
    [35] Berry V, Francis P, Kaushal S, et al: Missense mutations in MIP underlie autosomal dominant (R) 'polymorphic' and lamellar cataracts linked to 12q. Nat Genet.2000,25:15-7
    [36] Semina E V, Ferrell R E, Mintz-Hittner H A, et al: A novel homeobox gene PITX3 is mutated in families with autosomal dominant cataracts and ASMD. NatGenet. 1998,19:167-70
    [37] Berry V, Mackay D, Khaliq S, et al: Connexin 50 mutation in a family with congenital 'zonularnuclear' pulverule cataract of Pakistani origin. HumGenet , 1999,105:168-70
    [38] Pras E, Frydman M, Levy-Nissenbaum E, et al: A nonsense mutation (W9X) in CRYAA causes autosomal recessive cataract in an inbred Jewish Persian family. Invest Ophthalmol Vis Sci ,2000,41:3511 -5
    [39] Mackay D, Ionides A, Kibar Z, et al: Connexin46 mutations in autosomal dominant congenital cataract. Am J Hum Genet, 1999,64:1357-64
    [40] Rees M I, Watts P, Fenton-I, et al: Further evidence of autosomal dominant congenital zonular pulverulent cataractslinked to 13q11 (CZP3) and a novel mutation in connexin46 (GJA3). Hum Genet, 2000,106:206-9
    [41] Conley Y P, Erturk D, Keverline A, et al: A juvenile-onset, progressive cataract locus on chromosome 3q21-q22 is associated with a missense mutation in the beaded filament structural protein-2. Am J Hum Genet, 2000,66:1426-31
    [42] Jakobs P M, Hess J F, Fitzgerald P G, et al: Autosomal-dominant congenital cataract associated with a deletion mutation in the human beaded filament protein gene BFSP2. Am Hum Genet, 2000,66:1432-6
    [43] Jamieson R V, Perveen R, Kerr B, et al: Domain disruption and mutation of the bZIP transcription factor, MAF, associated with cataract, ocular anterior segment dysgenesis and coloboma. Hum Mol Genet, 2002,11:33-42
    [44] Bu L, Jin Y, Shi Y, et al: Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract. Nat Genet, 2002,31:276-8
    [45] M.Ashwin Reddy, PeterJ. Francis, Vanita ShomiS , Bhattacharya, andAnthony T, Moore, Berry, Molecular Genetic Basis of Inherited Cataract and Associated Phenotypes Surv Ophthalmol. 2004 May-Jun;49(3): 300-15
    [46] Graw J. Congenital hereditary cataracts. Int J Dev Biol ,2004: 48: 1031-44.
    
    [47] Tkalcevic LA, Abel LA. The effects of increased visual task demand on foveation in congenital nystagmus. Vision Res. ,2005, 45(9): 1139-46.
    
    [48] Guo X, Li S, Jia X et al. Linkage analysis of two families with X-linked recessive congenital motor nystagmus. J Hum Genet. 2006,51(1):76-80.
    
    [49] Annick Cabot, Jean-Michel Rozet, Sylvie Gerber et al. A Gene for X-linked Idiopathic Congenital Nystagmus (NYSl) Maps to Chromosome Xp11.4-p11.3. Am. J. Hum. Genet. 1999,64:1141-1146
    [50] John B. Kerrison, M. Reza Vagefi, M. Michael Barmada, and Irene H. Maumenee . Congenital Motor Nystagmus linked to Xq26-27. Am. J. Hum. Gnent. 1999,64:600-607
    [51] Baorong Zhang, Kun Xia, Meiping Ding et al. Confirmation and refinement of a genetic locus of congenital motor nystagmus in Xq26.3-q27.1 in a Chinese family. Hum Genet ,2005,116:128-131
    [52] John B. Kerrison, Veronique J. Arnould, M. Michael Barmada et al. A Gene for Autosomal Dominant Congenital Nystagmus Localizes to 6p12. Genomics ,1996.33,623-526
    [53] John B. Kerrison, Robert K. Koenekoop, Veronique J et al. Clinical Features of Autosommal Dominant Congenital Nystagmus linked to Chromosome 6p12. American Journal of Ophthalmology ,1998, 125:64-70
    [54] Patton MA, Jeffrey S, Lee N et al. Congenital nystagmus cosegregating with a balance 7;15 translocation. J Med Genet ,1993, 30:526-528
    [55] Tarpey P, Thomas S, Sarvananthan N et al Mutations in FRMD7, a newly identified member of the FERM family, cause X-linked idiopathic congenital nystagmus. Nat Genet. 2006 Nov:38(11): 1242-4.
    [56] Kong A. et al. A high-resolution recombination map of human genome , Nature Genet. 2002,31(3):225-6
    [57] Rendtorff N D, Hansen C, Silahtaroglu A, Henriksen KF, Tommerup N. Isolation of the human beaded-filament structural protein 1 gene (BFSP1) and assignment to chromosome 20p11.23-p12.1. Genomics 1998; 53:114-6.
    [58] Perng MD, Quinlan RA. Seeing is believing! The optical properties of the eye lens are dependent upon a functional intermediate filament cytoskeleton. Exp Cell Res 2005; 305:1-9.
    [59] Mei L. Mellott, Jeremiah Brown, John H. Fingert et al. Clinical Characterization and linkage analysis of a family with congenital X-linked nystagmus and deuteranomaly. Arch Ophthalmol ,1999, 117:1630-1633
    [60] John B. Kerrison, Roberto Giorda, Thomas D. lenart et al. Clinical and genetic analysis of a family with X-linked congenital nystagmus (NYS1). Ophthalmitc Genetics ,2001, 22(4): 241-248
    [61] C. Klein, P. Vieregge, W. Heide et al. Exclusion of Chroomosome Regions 6p12 and 15q11, But Not Chromosome Region 7p11, in a German Family with Autosomal Dominant Congenital Nystagmus. Genomics ,1998, 54:176-177
    [1]Zhang B,Liu Z,Zhao G.Novel human pathological mutations.Gene symbol: FRMD7.Disease:congenital motor nystagmus.Hum Genet.2007Nov:122(3-4):414,
    [2]Self J,Lotery A.A review of the molecular genetics of congenital Idiopathic Nystagmus(CIN).Ophthalmic Genet.2007 Dec;28(4):187-91.
    [3]Grφnskov K,Ek J,Brondum-Nielsen K.Oculocutaneous albinism.Orphanet J Rare Dis.2007 Nov 2;2:43.Review.
    [4]Rucker CW.Sex-linked nystagmus associated with red-green colorblindness.Am J Hum Genet.1949 Sep;1(1):52-4.
    [5]Sampangi R,Chaudhuri Z,Menon V,Saxena R.Cone-rod dystrophy and acquired dissociated vertical nystagmus.J Pediatr Ophthalmol Strabismus.2005Mar-Apr;42(2):114-6.
    [6]Mataftsi A,Schorderet DF,Chachoua L,Boussalah M,Nouri MT,Barthelmes D,Borruat FX,Munier FL.Novel TULP1 mutation causing leber congenital amaurosis or early onset retinal degeneration.Invest Ophthalmol Vis Sci.2007Nov;48(11):5160-7.
    [7]Lloyd IC,Ashworth J,Biswas S,Abadi RV.Advances in the management of congenital and infantile cataract.Eye.2007 Oct;21(10):1301-9.Review
    [8]Tilikete C,Pélisson D.Ocular motor syndromes of the brainstem and cerebellum.Curr Opin Neurol.2008 Feb;21(1):22-8
    [9]Kerrison JB,Giorda R,Lenart TD et al(2001)Clinical and genetic analysis of a family with X-linked congenital nystagmus(NYS1).Ophthalmic Genet 22:241-248
    [10]Abadi RV.Sensory and motor aspects of congenital nystagmus.North Holland:Elseviser science publishers RV,1991,39:167-169
    [11]Stayte M,Reeves B,Wortham C.Ocular and vision defects in preschool Children Crit J Ophthal,1993,77:224-232
    [12]Matron MT,Dewachter SD,Laey JJ,Genetic counseling for congential nystagmus.Ophthalmic Paediatr Genetics.1982;1:107-112
    [13]Mellott ML,Brown JJ,Fingert JH et al(1999)Clinical characterization and linkage analysis of a family with congenital X-linked nystagmus and deuteranomaly.Arch Ophthalmol 117:1630-1633
    [14]Cabot A,Rozet JM,Gerber S et al.(1999)A gene for X-linked idiopathic congenital nystagmus(NYS1)maps to chromosome Xp11.4-p11.3.Am J Hum Genet 64:1141-1146
    [15]夏家辉,刘德培.医学遗传学.北京.人民卫生出版社.2004:11-13
    [16]Baorong Zhang,Kun Xia et al(2005)Confirmation and refinement of a genetic locus of congenital motor nystagmus in xq26.3-q27.1 in a Chinese family.Hum Genet(2005)116:128-131
    [17]Kerrison JB,Giorda R,Lenart TD et al(2001)Clinical and geneticanalysis of a family with X-linked congenital nystagmus(NYS1).Ophthalmic Genet 22:241-248
    [18]John B.Kerrison,Veronique J.Arnould,M.Michael,Barmada,et al A gene for autosomal dominant congenital nystagmus localize to6p12.(1996)GENOMICS 33,523-525
    [19] Kerrison JB, Vagefi MR, Bamada MM, et al. Congenital motor nystagmus linked to Xq26-q27. Am J Hum Genet, 1999,64:6600-6607
    [20] Guo X, Li S, Jia X, Xiao X, Wang P, Zhang Q.Linkage analysis of two families with X-linked recessive congenital motor nystagmus.J Hum Genet. 2006;51(1):76-80. Epub 2005 Oct 21.
    [21] Ragge NK, Harley C, Dearlove AM, et al. Familial vestibulocerebellar disorder maps to chromosome 13q31-q33: a new nystagmus locus. J Med Genet, 2003,40:37-41.
    [22] Patrick Tarpey ,Shery Thomas ,Nagini Sarvananthan ,UmaMallya, Steven Lisgo ,Chris J Talbot ,Ery Roberts, Musarat Awan, My lvaganam Surendran, Rebecca J Mc Lean ,Robert D Reinecke,Andrea Langmann ,Susanne Lindner , Martina Koch.Sunila Jain,Geoffrey Woodruff.Richard P Gale,Chris Degg ,Konstantinos Droutsas , Ioannis Asproudis, Alina AZubcov ,Christina Pieh ,Colin DVeal,Rajiv D Machado, Oliver C Backhouse,Laura Baumber,CrisS Constantinescu, Michael C Brodsky,Richard WHertle ,Randy J Read .David G Hunter Sarah Edkins, Sarah O Mear, Adrian Parker, Claire Stevens, Jon Teague,Richard Wooster, P Andrew Futreal,Richard C Trembath, Michael R Stratton, Flucy Raymond & IreneGottlob Mutations in FRMD7, a newly identified member of the FERM family, cause X-linked idiopathic congenital nystagmus Nat Genet. 2006 Nov:38(11): 1242-4
    [23] X-linked idiopathic infantile nystagmus associated with a missensemutation in FRMD7 Alan Shiels, Thomas M. Bennett, Jessica B. Prince, Lawrence Tychsen Molecular Vision 2007; 13:2233-41
    [24] Qingjiong Zhang, Xueshan Xiao, Shiqiang Li, Xiangming Guo FRMD7 mutations in Chinese families with X-linked congenital motor nystagmus Molecular Vision 2007; 13:1375-8
    [25] Xiang He, Feng Gu, Yujing Wang, Jinting Yan, Meng Zhang, Shangzhi Huang, Xu MaA novel mutation in FRMD7 causing X-linked idiopathic congenital nystagmus in a large family Molecular Vision 2008; 14:56-60
    [26] Ningdong Li, Liming Huang, Lihong Cui, Li Zhang, Suzhen Dai, Hongyan Li, Xia Chen, Lina Zhu, Kanxing Zhao Five novel mutations of FRMD7 gene in Chinese families with X-linked infantile nystagmus Molecular Vision 2007; 14:733-738
    [27] Baorong Zhang, Zhirong Liu, Guohua Zhao, Xin Xie, Xinzhen Yin, Zhengmao Hu, Shanhu Xu, Qian Li, Fei Song, Jun Tian, Wei Luo, Meiping Ding, Jinfu Yin, Kun Xia, Jiahui Xia Novel mutations of the FRMD7 gene in X-linked congenital motor Nystagmus Molecular Vision 2007; 13:1674
    [28] Daniel F. Schorderet , Leila Tiab , Marie-Claire Gaillard , Birgit Lorenz , Georges Klainguti, John B. Kerrison , Elias I. Traboulsi , and Francis L. Munier Novel Mutations in FRMD7 in X-linked Congenital Nystagmus HUMAN MUTATION Mutation in Brief #963 (2007) Online

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700