钴、镍氢氧化物及其氧化物的电沉积制备与电化学电容性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学电容器是一种介于传统电容器和电池之间的重要的新型储能装置。电极是电化学电容器的重要组成元件,而电极材料又是构筑电极的重要组成部分。因此,具有优良电化学性能的电极材料的研发对电化学电容器的发展起着至关重要的作用。钴、镍氢氧化物及其氧化物电极材料因其具有良好的氧化还原反应活性和独特的结构而表现出优异的电化学性能,在电化学电容器电极材料的应用方面具有潜在价值。
     本论文概述了电化学电容器及其电极材料的研究进展,采用电沉积法制备出四种电极材料。利用现代分析测试手段对目标材料的形貌、晶型结构和组成等进行了分析表征,采用电化学测试方法对电极材料的电化学性能等进行了详细研究。主要内容概括如下:
     1.以镍箔为基底,在硝酸镍溶液中,用电沉积法制备了Ni(OH)_2薄膜。采用X射线衍射(XRD)和场发射扫描电子显微镜(FESEM)表征了产物的结构和形貌,XRD结果显示样品为典型的α相Ni(OH)_2。FESEM分析结果表明所得样品呈均匀疏松的颗粒状,其直径约为80~90 nm,进一步观察发现,这些疏松的颗粒是由粒径(约30~40 nm)更小的纳米粒子组成。用红外光谱(FT-IR)和热分析(TG-DTA)分别对所得样品的组分和热稳定性进行了表征;用循环伏安和恒电流充放电等电化学测试方法对其电化学性能进行了研究。此外,详细考察了电沉积条件对其电化学性能的影响。结果表明,所制得的α-Ni(OH)_2薄膜表现出优良的电化学电容性能,其单电极比电容值达2520 F·g~(-1)。
     2.将上述通过电沉积法制备出的Ni(OH)_2薄膜,进行热处理后转化为NiO薄膜电极材料。用X射线衍射(XRD)和场发射扫描电子显微镜(FESEM)表征了产物的结构和形貌;使用循环伏安法、恒电流充放电和交流阻抗等电化学方法系统研究了所制备样品的电化学性能。研究结果表明,在Ni(NO_3)_2溶液浓度为0.08 mol·L~(-1),电压为-0.9 V条件下沉积,并经过250℃热处理制备的NiO薄膜材料属于立方结构,表现出良好的电化学性能,其单电极比电容值达1220 F·g~(-1)。
     3.在硝酸钴溶液中,通过电沉积法在镍箔基底上制备出了Co(OH)_2薄膜材料。用X射线衍射(XRD)和场发射扫描电子显微镜(FESEM)表征了产物的结构和形貌。采用红外光谱(FT-IR)对产物的组分进行了分析。所得样品的热稳定性通过热分析(TG-DTA)进行表征。使用循环伏安、恒电流充放电和电化学交流阻抗(EIS)等测试方法对其电化学性能进行了研究。此外,还研究了沉积电压、沉积电量对Co(OH)-2薄膜电极电容性能的影响。结果表明,所得样品展现出空间交错的纳米片网状形貌,属于六方晶相的β-Co(OH)-2,表现出优良的电化学性能,其单电极比电容值达1042 F·g~(-1),并且在10 A·g~(-1)的大电流密度下循环500周后仍能保持约72%的初始容量。是一种具有潜在应用价值的电化学电容器电极材料。
     4.将上述通过电沉积法制备出的Co(OH)-2薄膜,进行热处理后转化为Co_3O_4薄膜。采用X射线衍射(XRD)、红外光谱(FT-IR)和场发射扫描电镜(FESEM)对产物的结构、组分和形貌进行了分析表征;使用循环伏安法和恒电流充放电等电化学测试方法对所制备的样品进行了系统的电化学性能研究。研究表明,在Co(NO_3)_2溶液浓度为0.05 mol·L~(-1),电压为-1.0 V条件下沉积,并经250℃热处理制备的Co_3O_4薄膜样品呈空间交错的纳米片网状形貌,属于尖晶石型结构,Co_3O_4薄膜电极表现出良好的电化学性能,其单电极比电容值达413 F·g~(-1),且具有良好的循环稳定性
At present, electrochemical capacitor is one kind of important new energystorage equipment, which between conventional capacitors and battery. Electrode isan important component of electrochemical capacitor, and the electrode material is animportant part of building electrode. Therefor, the research and preparation ofelectrode materials with good electrochemical performance plays a vital role in thedevelopment of electrochemical capacitor. Cobalt/Nickel hydroxide and oxide have apotential application in the electrode materials of electrochemical capacitor due totheir excellent electrochemical properties resulting from the good redox reactionactivity and unique structure.
     The present work reviewed the electrochemical capacitors and their electrodematerials, and then prepared the four kinds of electrode materials by electrodepositiontechnique. Their morphologies, crystal structure and components were characterizedby means of modern analysis techniques. The capacitive behaviors of the resultantmaterials were also measured by electrochemical skills. The main content is asfollows:
     1. Nickel hydroxide film was prepared by electrodeposition on nickel foil inNi(NO_3)_2 aqueous solution for the electrode materials of electrochemical capacitors.The structure and morphology of products were characterized using X ray diffraction(XRD) and field emission scanning electron microscopy (FESEM), respectively. Theexperimental results of XRD show that the products are typicalα-phase nickelhydroxide. The FESEM results reveal that the as-preparedα-Ni(OH)_2 displays aloosely packed structure assembled by the relatively bigger particles (90 nm). Thefurther observations indicate that the big particles are composed of several smallnanoparticals (30-40 nm). The component and thermal stability of the products arerespectively measured by FT-IR, thermogravimetry and differential thermal analysis(TG/DTA). The electrochemical performances are investigated by cyclic voltammetry(CV) and galvanostatic charge-discharge technique in 1 mol·L~(-1) KOH electrolyte. Theresults show that the product has excellent electrochemical performances and itsspecific capacitance value as single electrode is up to 2520 F·g~(-1). Furthermore, the effect of deposition conditions such as deposition potential and concentration ofNi(NO_3)_2 solution on the electrochemical capacitance of the deposited Ni(OH)_2 filmsis discussed in detail.
     2. Nickel oxide thin film is prepared by thermally treating the above-mentionedNi(OH)_2 film at different temperature in air. The crystal structure and surfacemorphology of the thin film is characterized by X-ray diffraction (XRD) and fieldemission scanning electron microscopy (FESEM), respectively. The electrochemicalperformance of the thin film electrode is also investigated using cyclic voltammetry,galvanostatic charge-discharge, and electrochemical impedance spectroscopy. NiOthin film, which is prepared by electrodeposition under the conditions of Ni(NO3)2solution concentration of 0.08 mol·L~(-1) and potential of -0.9 V, and then thermallytreated at 250℃, is a typical cubic structure. The electrochemical test results show ithas good electrochemical performance. The single-electrode specific capacitancevalue is up to 1220 F·g~(-1), and expected to as a promising electrode material ofelectrochemical capacitors.
     3. Cobalt hydroxide film was electrodeposited on nickel foil in Co(NO_3)_2aqueous solution. The structure and morphology of Co(OH)2 film were characterizedusing X-ray diffraction (XRD) and field emission scanning electron microscopy(FESEM), respectively. The component and thermal stability of the sample weremeasured by FT-IR and thermal analyses, including thermogravimetry (TG) anddifferential thermal analysis (DTA). The electrochemical performance wasinvestigated by cyclic voltammetry, constant current charge/discharge technique andelectrochemical impedance spectroscopy. Furthermore, the effects of the appliedpotential and the total electrical quantity during electrodeposition of cobalt hydroxidefilm on its specific capacitance were studied. The results show that the as-preparedmaterials areβ-Co(OH)2 with a uniform sheet-like network morphology and haveexcellent electrochemical performances. The specific capacitance as single electrodeis up to 1042 F·g~(-1), and remains at about 72% of the initial value after 500 cycles at acurrent density of 10 A·g–1. So it is a promising electrode material for electrochemicalcapacitors.
     4. The Co3O4 film was prepared by thermally treating the above-mentioned Co(OH)_2 film at different temperature in air. The structure and morphology of theCo3O4 film were characterized using X-ray diffraction (XRD) and field emissionscanning electron microscopy (FESEM), respectively. The electrochemical propertieswere also investigated using cyclic voltammetry and galvanostatic charge-discharge.Co_3O_4 thin film, which was prepared by electrodeposition under the conditions ofCo(NO_3)_2 solution concentration of 0.05 mol·L~(-1) and potential of -1.0 V, andsubsequent thermally treated at 250℃, is a typical spinel structure. Theelectrochemical test results show it has good electrochemical performance, the singleelectrode specific capacitance value is up to 413 F·g~(-1) and showing good cyclestability, expected to as a promising electrochemical capacitors electrode material.
引文
[1] M. Winter, R.J. Brodd., Chem. Rev., 2004, 104, 4245.
    [2] H. I. Becker., US Patent, 2800616, 1957.
    [3] B. Edward, C. J. Farahmandi, 27th Int Sample Tech. Conf., 1995(10), 769.
    [4] A. Yoshida, K. Imoto, US Patent, 515083, 1992.
    [5] B.E. Conway., Electrochemical supercapacitors., Kluwer Academic Publishers.
    [6] R. K?tz, M. Carlen., Electrochimica Acta., 2000, 45(15, 16), 2483.
    [7] A.J. Bard, L.R. Faulkner., Electrochemical methods, fundamentals andapplications., New York, 1980, 525, 96.
    [8]李获,电化学原理,北京,北京航空航天大学出版杜,1989,59.
    [9] J.P. Zheng, P.J. Cygan, T.R. Jow., Journal of Electrochemical Society., 1995,142(8), 2699.
    [10] A. F. Burke., J. Power Sources., 2000, 91, 37.
    [11]闪星,哈尔滨工程大学工学硕士学位论文,2002.
    [12]王玉,中南大学硕士学位论文,2007.
    [13]江奇,西南交通大学研究生学位论文,2007.
    [14] R.A. Huggins., Solid State Ionics., 2000, 134, 179.
    [15] I.B. Weinstock., J. Power Sources., 2002(110), 471.
    [16]李凯,利用超大容量电容器改善内燃机车柴油发电机组的电启动性能,机车电传动,2002,2,37.
    [17]薛洪发,超大容量电容器在内燃机车起动中的应用,内燃机车,2000,319,8.
    [18]韦文生,梁吉,徐才录等,碳纳米管超大容量电容器在光伏系统中的应用,太阳能学报,2002,23(2),223.
    [19] S. Nomoto, H. Nakata, K. Yoshioka, et al., J Power Sources., 2001, 97-98, 807.
    [20] P.J. Cygan, T.B. Atwter, L.P. Jarvis., Hybrid power sources for militaryapplications, Battery Conference on Appplication and Advances, 13th, 1998.
    [21] S. Sarangapani, P. Lessner , J. Forchione, et al., J. Power Source., 1990, 29, 355.
    [22] I. Bispo-Fonseca, J. Aggar, C. Sarrazin, et al., J. Power Source., 1999, 79, 238.
    [23] K.S.W. Sing, D.H. Everett, R.A.W. Haul, et al., Pure Appl. Chem., 1985, 57, 603.
    [24] M. Toupin, D. Bélanger, Ian R. Hill, el at., J. Power Sources., 2005, 140, 203.
    [25] K.A. Kobe, T.K. Osaka, Y.I. Suita, US Patent, 5430606, 1995.
    [26]刘占莲,潘鼎,炭素,2003,111,14.
    [27]贺福,高科技纤维与应用,2005,30,13.
    [28]符瞰,李忠,夏启斌等,广东化工,2005,30.
    [29]孟庆函,刘玲,宋怀河等,功能材料,2004,35,457.
    [30] B. Zhang, J. Liang, C.L. Xu, et al., Mater. Lett., 2001, 51, 539.
    [31] R.Z. Ma, J. Liang, B.Q. Wei, et al., J. Power Sources., 1999, 84, 126.
    [32] E. Frackowiak, V. Khomenko, K. Jurewicz, et al., J. Power Sources., 2006, 153,413.
    [33] J.P. Zheng, T.R. Jow., J. Electrochem. Soc., 1995, 142, L6.
    [34] Y. U. Jeong, A. Manthiram., J. Electrochem. Soc., 2001, 148, 189.
    [35] T. Yoshi, N. Takashi, M.Yasushi., Chem. Lett., 1998, 1215.
    [36] T. Yoshi, N. Takashi, O. Hiroyuki, et al., J. Electrochem. Soc., 1997, 144, 2061.
    [37] K. Kihichi, S. Shigeru, O. Satashi, et al., J. Electrochem. Soc., 1993, 140, 966.
    [38] I. Minoru, M. Yasushi, K. Hayto, et al., J. Electrochem. Soc., 1996, 143, 32.
    [39] M.M. Wohlfahrt, J. Schenk, P. M. Wilde et al., J. Power Sources., 2002(105),182.
    [40] Y.C. Hsien, K.T. Lee, Y.P. Lin, et al., J. Power Sources., 2008, 177(2), 660.
    [41] S.R.S. Prabaharan, R. Vimla, Z. Zainal., J. Power Sources., 2006, 161, 730.
    [42] Y. Takasu, Y. Murakami., Electrochim. Acta., 2000, 45, 4135.
    [43] C.C. Hu, T.W. Tsou., Electrochim. Acta., 2002, 47, 3523.
    [44] W. Sugimoto, H. Iwata, Y. Yasunaga, Y. Murakami, Y. Takasu., Angew. Chem. Int.Edit., 2003, 42, 4092.
    [45] T. Shinomiya, V. Gupta, N. Miura., Electrochim. Acta., 2006, 51, 4412.
    [46] J.N. Broughton, M.J. Brett., Electrochim. Acta., 2004, 50, 4814.
    [47] B. Djurfors, J.N. Broughton, M.J. Brett, D.G. Ivey., Acta Mater., 2005, 53, 957.
    [48] Z.A. Hu, Y.L. Xie, Y.X. Wang, L.P. Mo, et al., Materials Chemistry and Physics.,114, 2009, 990.
    [49] K. Kinoshita., Carbon: Electrochemical and Physicochemical Properties., Wiley,New York, 1998.
    [50] C.C. Hu, Y.H. Huang, K.H. Chang., J. Power Sources., 2002, 108, 117.
    [51] S. C. Pang, M. A. Anderson, T. W. Chapman., J. Electrochem. Soc., 2000, 147,444.
    [52]江奇,陈召勇,于作龙等,功能材料,2001,10,1060.
    [53]闪星,张密林,功能材料与器件学报,2002,8,35.
    [54] Y. Zhang, Y.H. Gui, X.B. Wu, et al., International journal of hydrogen energy.,2009, 34, 2467.
    [55]王晓峰,孔祥华,刘庆国等,电子元件与材料,2000,19,26.
    [56] K.C. Liu, M.A. Anderson., J. Electrochem. Soc., 1996, 143, 124.
    [57] M.S. Wu, H.H. Hsien., Electrochimica Acta., 2008, 53(8), 3427.
    [58] D.D. Zhao, W.J. Zhou, H.L. Li., Chem. Mater., 2007, 19, 3882.
    [59] G.R. Fu, Z.A. Hu, L.J. Xie, X.Q. Jin, et al., Int. J. Electrochem. Sci., 2009, 4,1052.
    [60] L. Chuan, J.A. Ritter, et al., J. Electrochem. Soc., 1998, 145, 4097.
    [61] Y.Y. Gao, S. Chen, D.X. Cao, et al., J.Power Sources., 2010, 195, (6), 1757.
    [62]张密林,刘志祥,无机化学学报,2002,18,513.
    [63] C.Z. Yuan, X.G. Zhang, B. Gao, et al., Materials chemistry and physics., 2007,101, 148.
    [64]吴建军,曹林,白玉霞等,电源技术,2007,31(1),72.
    [65] H.J. Ahn, W.B. Kim, T.Y. Seong., Electrochem Commun., 2008, 10 (9),1284.
    [66] Z.A. Hu, L.P. Mo, J. Shi, et al., Materials Chemistry and Physics., 2009, 114, 53.
    [67]谢莉婧,金小青,付国瑞等,高等学校化学学报,2010,31(2),353.
    [68] Z.A. Hu, Y.L. Xie, Y.X. Wang, et al., Electrochim. Acta., 2009, 54, 2737.
    [69] A.A.F. Grupionl, T.A.F. Lassali., J. Electrochem Soc., 2001, 148, 1015.
    [70] V. Gupta, T. Kusahara, H. Toyama, et al., Electrochem. Commun., 2007, 9,2315.
    [71] V. Gupta, S. Gupta, N. Miura., J. Power Sources., 2010, 195, 3757.
    [72] L.B. Kong, J.W. Lang, M.Liu, et al., Journal of Power Sources., 2009, 194, 1194.
    [73] T.C. Liu, W.G. Conway, et al., J. Electrochem. Soc., 1998, 145, 1882.
    [74] H.Y. Lee, J.B. Goodenough., J. Solid State Chem., 1999, 144, 220.
    [75] C. Arbizzani, M. Mastragostion, L. Meneghello., Electrochim. Acta., 1995, 40,2223.
    [76] M. Mastragosina, C. Arbizzani, F. Soavi., J. Power Sources., 2001, 97, 812.
    [77] C. Arbizzani, M. Mastragostion, et al., Electrochim. Acta., 1995, 40, 1871.
    [78]南俊民,杨勇,林祖赓,电源技术,1996,20,152.
    [79] M. Mastragostino, C. Arbizzani, R. Paraventi, et al., J. Electrochem. Soc., 2000,147, 407.
    [80] A. Lewandowskl, M. Zajder, E. Frackowiak, et al., Electrochim. Acta., 2001, 46,2776.
    [81] K. Jurewicz, S. Delpeux, V. Bertagna, et al., Chem. Phys. Lett., 2001, 347, 36.
    [82] A. D. Fabio, A. Huggins, M. Mastragostino., J. Electrochem. Soc., 200l, 148,845.
    [83] Z.A. Hu, Y.L. Xie, Y.X. Wang, L.J. Xie, G.R. Fu, X.Q. Jin, et al., J. Phys. Chem.C., 2009, 113(28), 12502.
    [84] R.S. Jayashree, P.V. Kamath., J. Mater. Chem., 1999, 9, 961.
    [85] T.N. Ramesh, M. Rajamathi, P.V. Kamath., Solid State Ionics., 2003, 5, 751.
    [1]袁国辉,电化学电容器,化学工业出版社,2006.
    [2] W.H. Zhu, D.J. Zhang, J.J. Ke., J. Power Sources., 1995, 56, 75.
    [3]闪星,哈尔滨工程大学工学硕士研究生学位论文,2002.
    [4]杨娇萍,北京化工大学硕士学位论文,2005.
    [5]黄燕生,首都师范大学硕士学位论文,2006.
    [6]史美伦,交流阻抗谱原理及应用,国防工业出版社,2001.
    [7]吴浩青,李永舫,电化学动力学,高等教育出版社,1995.
    [8]崔晓莉,江志裕,上海师范大学学报(自然科学版),2001,30,53.
    [9]高佳辉,超级电容器纳米电极材料的研究[D],硕士,电子科技大学,2006.
    [1] J.P. Zheng, P.J. Cygan, T.R. Jow., J. Electrochem Soc., 1995, 142, 2699.
    [2] Y.L. Chia, M.T. Huei, et al., J. Electrochem Soc., 2005, 152, A716.
    [3] S.C. Pang, M.A. Anderson, T.W. Chapman., J. Electrochem. Soc., 2000, 147, 444.
    [4] V. Srinivasan, J.W. Weidner., J. Electrochem Soc., 1997, 144(8), L210.
    [5] V. Srinivasan, J.W. Weidner., J. Electrochem Soc., 2000, 147, 880.
    [6] Y.L. Tai, H. Teng., Carbon., 2004, 42, 2335.
    [7] K.W. Nam, K.B. Kim., J Electrochem Soc., 2002, 149(3), A346.
    [8] C. Lin, J.A. Ritter, B.N. Popov., J Electrochem Soc.,1998,145,4097.
    [9] V. Srinivasan, J.W. Weidner., J Power Sources, 2002., 108, 15-20.
    [10] L. Cao, F. Xu, Y. Y. Liang., H. L. Li, Adv. Mater., 2004, 16, 1853.
    [11] Z.A. Hu, L.P. Mo, J. Shi, et al., Materials Chemistry and Physics., 2009, 114,53-57.
    [12] M.S. Wu, H.H. Hsieh., Electrochimica Acta., 53 (2008) 3427
    [13] Q.H. Huang, X.Y. Wang, J. Li, C.L. Dai, S. Gamboa, P.J. Sebastian., Journal ofPower Sources.,164 (2007) 425
    [14] L. Cao, L.B. Kong, Y.Y. Liang, H.L. Li., Chem. Commun., 2004, 14, 1646.
    [15] J.H. Park, O.O. Park, K.H. Shin., Electrochemical and Solid-State Letters., 2002,5(2), H7-H10.
    [16] D.D. Zhao, W.J. Zhou, H.L Li., Chem Mater., 2007, 19, 3882.
    [17]苏岳锋,吴锋,化学通报,2004,8,616.
    [18] D.A. Corrigan, R.M. Bendert., J Electrochem Soc., 1989, 136, 723.
    [19] P.V. Kamath, M. Dixit, L. Indira, A.K. Shukla, V.G. Kumar, N. Munichandraiah.,J. Electrochem.Soc., 1994, 141, 2956.
    [1]朱诚意,刘中华,陈雯,功能材料,1999,30(4),345.
    [2]秦振平,郭红霞,李东升,功能材料,2003,34(1),98.
    [3]张密林,杨晨,无机化学学报,2004,20(3),283.
    [4]邓祥义,吴高安,化学研究与应用,2002,14(5),577.
    [5]景茂祥,沈湘黔,沈裕军,无机材料学报,2004,19(2),289.
    [6] D.B. Wang, C.X. Song, Z.S. Hu, X. Fu., J. Phys. Chem. B., 2005, 109, 1125.
    [7] J.W. Lang, L.B. Kong, W.J. Wu, Y.C. Luo, L. Kang., Chem. Commun., 2008, 35,4213.
    [8] C.C. Yu, L.X. Zhang, J.L. Shi, J.J. Zhao, J.H. Gao, D.S. Yan., Adv. Funct. Mater.,2008, 18, 1544.
    [9] B. Gao, C.Z. Yuan, L.H. Su, S.Y. Chen, et al., Electrochim. Acta., 2009, 54, 3561.
    [10] M.S. Wu, M.J. Wang, J.J. Jow., J. Power Sources., 2010, 195, 3950.
    [11] M.J. Deng, F.L. Huang, I.W. Sun, W.T. Tsai, J.K. Chang., Nanotechnology.,2009, 20, 175602.
    [12] L. Cao, F. Xu, Y.Y. Liang, H.L. Li., Adv. Mater., 2004, 16, 1853.
    [13] J. Cheng, G.P. Cao, Y.S. Yang., J. Power Sources., 2006, 159, 734.
    [14] Z.H. Liang, Y.J. Zhu, X.L. Hu., J. Phys. Chem. B., 2004, 108, 3488.
    [15] M.S. Wu, H.H. Hsieh., Electrochim. Acta., 2008, 53, 3427.
    [16] V. Srinivasan, J.W. Weidner., J. Electrochem. Soc., 2000, 147(3), 880.
    [17] K.C. Liu, M.A. Anderson., J. Electrochem. Soc., 1996, 143, 124.
    [18] A. Nemetz, A. Temmink, K. Bange, S.I. Cordoba-Torresi, C. Gabriell, R. Torresi,A.H.L. Goff., Sol. Energy Mater. Sol. Cells., 1992, 25, 93.
    [19] Y.G. Wang, Y.Y. Xia., Electrochimica Acta., 2006, 51, 3223.
    [20] L. Cao, F. Xu, Y.Y. Liang, H.L. Li., Adv. Mater., 2004, 20, 1853.
    [21] Q.F. Wu, K.X. He, H.Y. Mi, X.G. Zhang., Materials Chemistry and Physics.,2007, 101, 367.
    [1] T.N. Ramesh, M. Rajamathi, P.V. Kamath., Solid State Ionics., 2003, 5, 751.
    [2] Z.A. Hu, Y.L. Xie, Y.X. Wang, L.J. Xie, G.R. Fu, X.Q. Jin, et al., J. Phys. Chem.C., 2009, 113(28), 12502.
    [3] Z.A. Hu, Y.L. Xie, Y.X. Wang, et al., Electrochim. Acta., 2009, 54, 2737.
    [4] R.S. Jayashree, P.V. Kamath., J. Mater. Chem., 1999, 9, 961.
    [5] V. Gupta, T. Kusahara, H. Toyama, et al., Electrochemistry Communication.,2007, 9, 2315.
    [6] C.Z. Yuan, X.G. Zhang, B. Gao, et al., Materials Chemistry and Physics., 2007,101, 148.
    [7] L.B. Kong, J.W. Lang, M. Liu, et al., Journal of Power Sources., 2009, 194, 1194.
    [8]吴建军,曹林,白玉霞等,电源技术,2007,31(1),72.
    [9] H.J. Ahn, W.B. Kim, T.Y. Seong., Electrochem Commun., 2008, 10 (9), 1284.
    [10] Z.A. Hu, L.P. Mo, J. Shi, et al., Materials Chemistry and Physics., 2009, 114(1),53.
    [11] D.D. Zhao, W.J. Zhou, H.L. Li., Chem. Mater., 2007, 19, 3882.
    [12] X.F. Wang, Z. You, D.B. Ruan., Chinese J. Chem., 2006, 24 (9), 1126.
    [13] D. A. Corrigan, R.M. Bendert., J. Electrochem. Soc., 1989, 136(3), 723.
    [14] H. El-Batlouni, H. El-Rassy, M. Al-Ghoul., J. Phys. Chem. A., 2008, 112(34),7755.
    [15] L. Cao, F. Xu, Y.Y. Liang, et al., Adv. Mater., 2004, 16(20), 1853.
    [16] W. Sugimoto, H. Iwata, Y. Yasunaga, et al., Angew. Chem. Int. Ed., 2003, 42(34),4092.
    [17] C. Lin, J.A. Ritter, B.N. Popov., J. Electrochem. Soc., 1998,145 (12), 4097.
    [18] L. Cao, F. Xu, Y.Y. Liang, H.L. Li., Adv. Mater., 2004, 20, 1853.
    [19] Q.F. Wu, K.X. He, H.Y. Mi, X.G. Zhang., Materials Chemistry and Physics.,2007, 101, 367.
    [1] Q.L. Fang, D.A. Evans, S.L. Roberson, et al., J. Elelctochem. Soc., 2001, 148(8),A833.
    [2] G.X. Wang, Y. Chen, K. Konstantinov, J. Yao, J.H. Ahn, H.K. Liu, S.X. Dou., J.Alloys and Compounds., 2002, 340(l~2), L5.
    [3] C. Lin, J.A. Ritter, B.N. Popov., J. Elelctochem. Soc., 1998, 145(12), 4097.
    [4] V.R. Shinde, S.B. Mahadik, T.P. Gujar, C.D. Lokhande., Applied Surface Science.,2006, 252, 7487.
    [5]王兴磊,何宽新,张校刚,无机化学学报,2006,22(6),1019.
    [6]曹林,周盈科,陆梅,科学通报,2003,48(7),668.
    [7] Y.Y. Gao, S. Chen, D.X. Cao, et al., J.Power Sources., 2010, 195, (6), 1757.
    [8] M.J. Deng, F.L. Huang, I.W. Sun, W.T. Tsai, J.K. Chang., Nanotechnology., 2009,20, 175602.
    [9] S. Ardizzone, G. Spinolo, S. Trasatti., Electrochimca Acta., 1995, 40(16), 2683.
    [10] J.Z. Cao, Y.C. Zhao, W. Yang, et al., Journal of University of Science andTechnology Beijing., 2003, 10 (1), 54.
    [11]张卫民,宋新宇,李大枝,等.高等学校化学学报,2004,25(5),797.
    [12] Y. Jiang, Y. Wu, B. Xie, et al., Materials Chemistry and Physics., 2002, 74, 234.
    [13] X. Wang, X.Y. Chen, L.S. Gao, et al., J Phys Chem B., 2004, 108(42), 16401.
    [14] N. Bahlawane, R.E. Fischer, K.H. Kohse, et al., Applied Catalysis B:Environmental., 2004, 53, 245.
    [15]李亚栋,贺蕴普,李龙泉,等.高等学校化学学报,1999,20(4),519.
    [16] E. Rios, G. Poillerat, J.F. Koenig, et al., Thin Solid Films., 1995, 264 (1), 18.
    [17]张卫民,孙思修,俞海云,等.高等学校化学学报,2003,24(12),2151.
    [18]杨幼平,黄可龙,刘人生,等.中南大学学报,2006,37(6),1103.
    [19] Z.P. Xu, H.C. Zeng., Chem Mater., 1999, 11(1), 67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700