钛直接氧化制备二氧化钛纳米线和空心多面体
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用双氧水溶液直接氧化钛金属制备二氧化钛(TiO2)纳米线和空心多面体,研究其生长机理和光催化性能。
     以H2O2和冷轧纯钛片为反应物,通过向H2O2中加入三聚氰胺及浓硝酸,调整工艺参数,控制TiO2薄膜的低温生长,成功获得TiO2纳米线阵列薄膜;通过向H2O2中加入NaF及浓硝酸,辅以适当的后续热处理和水洗处理,成功获得TiO2多面体;双氧水溶液中同时添加NaF、三聚氰胺和HNO3,经后续热处理后则直接获得TiO2空心多面体。利用场发射扫描电子显微镜、高分辨透射电子显微镜、X射线衍射、紫外-可见漫反射、激光拉曼光谱、X射线光电子谱、热重分析、低温N2吸附等测试手段分析纳米结构TiO2的形态、结构及其光响应行为,探讨其生长机理,研究其辅助降解水中若丹明B (RhB)染料的能力。
     论文取得主要结果如下:
     1.TiO2纳米线:研发了一种在金属钛基体上制备TiO2纳米线阵列的技术,过程简单易工业化,重复性好,不需要模板和催化剂。80℃反应温度下,钛金属被H2O2腐蚀氧化,在金属表面形成非晶结构TiO2多孔薄膜的同时,向溶液中释放水合Ti(Ⅳ)离子。溶液中水合Ti(Ⅳ)离子浓度达到一临界值后,在金属表面TiO2多孔薄膜处非均匀形核析出TiO2。另一方面,在较强的酸性环境下,溶液中的三聚氰胺分解为三聚氰酸,并通过-OH的桥梁作用吸附在TiO2纳米晶表面。由于不同晶面-OH密度的差异,三聚氰酸可以在TiO2纳米晶表面实现选择性吸附,最终导致从溶液中析出的TiO2纳米晶(尽管结晶度较差)以“定向融合”机制自组装形成平均直径为25nm,长径比大约为40的纳米线阵列。后续450℃空气中热处理显著提高TiO2纳米线阵列的结晶程度。光催化性能测试结果表明,锐钛矿TiO2纳米线阵列光催化降解水中若丹明B的能力显著优于商业P25 TiO2纳米粉。
     2.TiO2(空心)多面体:在Ti和H2O2反应体系中添加NaF和HNO3,80℃温度下反应10 min~96 h,在钛金属表面生成Na3TiF6多面体。反应进行到30 min时,主要生成立方体;随着反应的继续进行,立方体八个顶点被截去,逐渐演化为八面体结构。后续热处理过程中,大部分Na3TiF6多面体在209℃开始发生氧化反应,分解为TiO2和NaF,其中的TiO2为厚度约20 nm的薄片,垂直交叉构成多面体。经进一步水洗去除NaF和残留的Na3TiF6后,获得TiO2多面体,其比表面积为196.3m2/g,间接禁带宽度为3.11 eV,具有明显的光催化效果。双氧水溶液中同时添加NaF、三聚氰胺和HNO3,80℃反应72 h,经后续热处理后可以直接获得TiO2空心多面体。
In this thesis, titania nanowire arrays and hollow polyhedra were fabricated sucessfuly through direct oxidation of metallic titanium by hydrogen peroxide solutions. The related growing procedure was disclosed and the photocatalytic activity of the resultant nanostructured titania was evaluated.
     Titania nanowire arrays were deposited on Ti substrates by the interactions of Ti and H2O2 solutions with the additives of melamine and nitric acid, through controlling the low-temperature growth via adjusting carefully the reaction parameters. Titania polyhedra were fabricated by the reactions between metallic Ti and and H2O2 solutions containing NaF and nitric acid, followed by calcination and water-washing. Hollow titania polyhedra were achieved directly by oxidation of Ti with H2O2 solutions containing melamine, NaF and nitric acid, followed by a subsequent calcination. The structure, morphology and photon-induced property of the achieved titania were investigated in detail with various techniques of field emission scanning electron microscope (FE-SEM), high-resolution transmission electron microscope (HR-TEM), X-ray diffaraction (XRD), UV-Vis diffuse reflectance spectra (UV-Vis DRS), Raman spectra, X-ray photoelectron spectra (XPS), differential thermogravimetric (DTG) and N2 adsorption. The photocatalytic activity of the achieved titania was evaluated by photodegradation of rhodamine B in water.
     Follows are the main results obtained:
     1. Titania nanowire arrays. An approach to fabricate titania nanowire arrays on Ti substrates was developed succesffuly. The method is simple and can be scaled-up easily, with good reproducibility and involves no templates or catalysts. Under the low temperature of 80℃, metallic Ti was oxidized by H2O2 to form a porous amorphous titania film on the surface. Hydrated Ti(Ⅳ) ions were released to the solution at the same time. Once the Ti(Ⅳ) ions in the solution reached a critical concentration, titania precipitated from the solution, predominantly through heterogeneous nucleation on the titania film formed previously on the Ti substrates. On the other hand, the melamine in the acidic solution decomposed to from cyanuric acid, which was adsorbed on the precipitated titania nanocrystals through bridging by-OH groups. Because of the various densities of-OH groups on different planes of the titania nanocrystals, the selective absorption of cyanuric acid is possible. As a result, the precipitated titania nanocrystals, although poorly-crystallized, self-assembled to form nanowires with an average diameter of 25 nm and an aspect ration of ca.40, through the "oriented attachment" mechanism. The crystallinity of the nanowires was improved significantly by a subsequent calcination in air at 450℃The nanowire arrays possessed an activity to assist photodegradation of rhodamine B in water higher than that of the P25 counterpart.
     2. Titania (hollow) polyhedra. With the additives of certain amounts of NaF and nitric acid in the H2O2 solution, polyhedra mainly consisted of Na3TiF6 were achieved on the Ti surface while maintaining at 80℃for 10 min to 96 h. The initial reaction for 30 min resulted in cubes, which evolved to octahedron with the prolonged reaction duration. Most of Na3TiF6 decomposed to NaF and TiO2, which inititated at 209℃, during the subsequent calcination. The later was titania thin plates with a thickness of ca.20 nm that interlocked with each other to form a polyhedron. After a further water-washing to remove NaF and the remained Na3TiF6, phase pure TiO2 can be achieved. The titania polyhedra, which exhibited an indirect band gap of 3.11 eV, possessed a high specific surface area of 196.3 m2/g. The remarkable photocatalytic activity was confirmed by photodegradation of rhodamine B in water. Hollow titania polyhedra were achieved directly by oxidation of Ti at 80℃for 72 h, with H2O2 solutions containing melamine, NaF and nitric acid, followed by a subsequent calcination.
引文
[1]H. Zhang, J. F. Banfield. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates:Insights from TiO2. Journal of Physical Chemistry B, 2000,104(15):3481-3487.
    [2]M. P. Finnegan, H. Zhang, J. F. Banfield. Phase stability and transformation in titania nanoparticles in aqueous solutions dominated by surface energy. Journal of Physical Chemistry C,2007,111 (5):1962-1968.
    [3]A. L. Linsebigler, G. Lu, J. T. Yates. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results. Chemical Reviews,1995,95 (3):735-758.
    [4]A. Fujishima, X. Zhang, D. A.Tryk. TiO2 photocatalysis and related surface phenomena. Surface Science Reports,2008,63 (12):515-582.
    [5]M. Tomkiewicz. Scaling properties in photocatalysis. Catalysis Today,2000,58 (2-3): 115-123.
    [6]S. Kambe, S. Nakade, Y. Wada, T. Kitamura, S. Yanagida. Effects of crystal structure, size, shape and surface structural differences on photo-induced electron transport in TiO2 mesoporous electrodes. Journal of Materials Chemistry,2002,12 (3):723-728.
    [7]R. R. Bacsa, J. Kiwi. Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid. Applied Catalysis B,1998,16 (1):19-29.
    [8]T. Ohno, K. Tokieda, S. Higashida, M. Matsumura. Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Applied Catalysis A,2003,244 (2): 383-391.
    [9]S. K. Pradhan, P. J.Reucroft, F.Yang. A. Dozier, Growth of TiO2 nanorods by metalorganic chemical vapor deposition. Journal of Crystal Growth,2003,256 (2):83-88.
    [10]E. O. Zayim. Optical and electrochromic properties of sol-gel made anti-reflective WO3-TiO2 films. Sol. Energ. Mater. Sol. Cell.2005,87 (4):695-703.
    [11]V. Lafond, P. H. Mutin, A. Vioux. Control of the texture of titania-silica mixed oxides prepared by nonhydrolytic sol-gel. Chemistry of Materials,2004,16 (25):5380-5386.
    [12]Y. V. Kolen'ko, K. A. Kovnir, A. I. Gavrilov, A. V. Garshev, J. Frantti, O. I. Lebedev, B. R. Churagulov, G. Van Tendeloo, M. Yoshimura. Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide. Journal of Physical Chemistry B,2006, 110 (9):4030-4038.
    [13]C. Wang, Z. X. Deng, G. Zhang, S. Fan, Y. Li. Synthesis of nanocrystalline TiO2 in alcohols. Powder Technol,2002,125 (1):39-44.
    [14]K. G. Ong, O. K. Varghese, G. K. Mor, C. A. Grimes. Numerical simulation of light propagation through highly-ordered titania nanotube arrays:dimension optimization for improved photoabsorption. J. Nanosci. Nanotechnol,2005,5 (11):1801-1808.
    [15]G. S. Kim, H. K. Seo, V. P. Godble, Y. S. Kim, O. B. Yang, H. S. Shin. Electrophoretic deposition of titanate nanotubes from commercial titania nanoparticles:Application to dye-sensitized solar cells. Electrochemistry Communications,2006,8(6):961-966.
    [16]W. H. Leng, W. C. Zhu, J. Ni, Z. Zhang, J. Q. Zhang, C. N. Cao. Photoelectrocatalytic destruction of organics using TiO2 as photoanode with simultaneous production of H2O2 at the cathode. Applied Catalysis A,2006,300 (1):24-35.
    [17]X. Peng, A. Chen. Aligned TiO2 nanorod arrays synthesized by oxidizing titanium with acetone. Journal of Materials Chemistry,2004,14(16):2542-2548.
    [18]S. Daothong, N. Songmee, S. Thongtem, P. Singjai. Size-controlled growth of TiO2 nanowires by oxidation of titanium substrates in the presence of ethanol vapor. Scripta materialia,2007,57 (7):567.
    [19]K. Huo, X. M. Zhang, L. S. Hu. One-step growth and field emission properties of quasialigned TiO2 nanowire/carbon nanocone core-shell nanostructure arrays on Ti substrates. Applied physics letters,2008,93:13-15.
    [20]K. Y. Cheung, C. T. Yip, B. A. Djurisic, Y. H. Leung, W. K. Chan. Long K-doped titania and titanate nanowires on Ti foil and Fluorine-doped Tin oxide/quartz substrates for solar-cell applications. Advanced Functional Materials,2007,17:555-562.
    [21]Z. F. Liu, T. Yamazaki, Y. B. Shen, D. Meng, T. Kikuta, N. Nakatani. Synthesis of titanate nanorods by high-temperature oxidation. Journal of Physical Chemistry C,2008,112: 4545-4549.
    [22]B. Xiang, Y. Zhang, Z. Wang, X. H. Luo, Y. W. Zhu, H. Z. Zhang, D. P. Yu.Field-emission properties of TiO2 nanowire arrays. Journal of Physics D:Applied Physics,2005,38 (8): 1152-1155.
    [23]J. C. Lee, K. S. Park, T. G. Kim, H. J. Choi, Y. M. Sung. Controlled growth of high-quality TiO2 nanowires on sapphire and silica. Nanotechnology,2006,17:4317-4319.
    [24]J. M. Wu, H. C. Shih, W. T. Wu. Formation and photoluminescence of single-crystalline rutile TiO2 nanowires synthesized by thermal evaporation. Nanotechnology,2006,17:105.
    [25]K. F. Zmbov, J. L. Margrave. Mass spectrometric studies at high temperatures. XVI. Sublimation pressures for titanium (Ⅲ) fluoride and the stabilities of TiF2 (g) and TiF (g). Journal of Physical Chemistry,1967,71 (9):2893-2895.
    [26]G. H. Wu, J. P. Wang, D. F. Thomas, and C. Aicheng. Synthesis of F-doped flower-like TiO2 nanostructures with high photoelectrochemical activity. Langmuir,2008,24,3503-3509.
    [27]M. Liu, L. Piao, W. Lu, S. Ju, L. Zhao, C. Zhou, H. Li and W. Wang. Flower-like TiO2 nanostructures with exposed {001} facets:Facile synthesis and enhanced photocatalysis. Nanoscale,2010,2,1115-1117.
    [28]B. Liu, J. E. Boercker and E. S. Aydil. Oriented single crystalline titanium dioxide nanowires. Nanotechnology,2008,19:505604.
    [29]W. L. Wang, J. Li, and N. Wang. Formation of titania nanoarrays by hydrothermal reaction and their application in photovoltaic cells. Journal of the American Ceramic Society,2008, 91(2):628-631.
    [30]J. M. Wu. Low-temperature preparation of titania nanorods through direct oxidation of titanium with hydrogen peroxide. Journal of Crystal Growth,2004,269 (4):347-355.
    [31]张天伟,定向生长二氧化钛纳米棒阵列的低温制备及其光催化性能,浙江大学硕士学位论文,2006.03.
    [32]J. M. Wu, B. Qi. Low-temperature growth of a nitrogen-doped titania nanoflower film and its ability to assist photodegradation of Rhodamine B in water. Journal of Physical Chemistry C, 2007,111:666-673.
    [33]L. Jiang, Y. J. Zhong, G. C. Li. A simple H2O2-assisted route to hollow TiO2 structures with different crystal structures and morphologies. Materials Research Bulletin,2009,44: 999-1002.
    [34]O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, E. C. Dickey, C. A. Grimes. Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Advanced Materials,2003,15 (78):624-627.
    [35]D. W. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen and E. C. Dickey. Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research, 2001,169:3331-3334.
    [36]C. M. Ruan, M. Paulose, O. K. Varghese, G. K. Mor and C. A. Grimes. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. Journal of Physical Chemistry B, 2005,109,15754-15759.
    [37]J. M. Macak, P. Schmuki. Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes. Electrochimica Acta,2006,52 (3):1258-1264.
    [38]H. J. Oh, J. H. Lee, Y. S. Jeong, Y. J. Kim, C. S. Chi. Microstructural characterization of biomedical titanium oxide film fabricated by electrochemical method. Surface & Coatings Technology,2005,198:247-252.
    [39]H. J. Oh, J. H. Lee, Y. J. Kim, S. J. Suh. J. H. Leed, C. S. Chi. Surface characteristics of porous anodic TiO2 layer for biomedical applications. Materials Chemistry and Physics, 2008,109:10-14.
    [40]K. C. Popat, L. Leoni, C. A. Grimes, T. A. Desai. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials,2007,28 (21):3188-3197.
    [41]Osamu Yamamoto, Kelly Alvarez, Tamotsu Kikuchi, Masayuki Fukuda. Fabrication and characterization of oxygen-diffused titaniumfor biomedical applications. Acta Biomaterialia, 2009,5:3605-3615.
    [42]W. Zhang, L. Zou, L. Z. Wang. Photocatalytic TiO2 adsorbent nanocomposites prepared via wet chemical impregnation for wastewater treatment:A review. Applied Catalysis a General, 2009,371:1-9.
    [43]Z. Liu, X. Zhang, S. Nishimoto, M. Jin, D. A. Tryk, T. Murakami, A. Fujishima. Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol. Journal of Physical Chemistry C,2008,112(1):253-259.
    [44]Y. K. Lai, L. Sun, Y. C. Chen, H. F. Zhuang, C. J. Lin, and J. W. Chin. Effects of the Structure of TiO2 Nanotube Array on Ti Substrate on Its Photocatalytic Activity. Journal of The Electrochemical Society,2006,153(7):123-127.
    [45]H. Pan, X. F. Qiu, L. N. Ivanov, H. M. Meyer, W. Wang, W. G. Zhu, M. P. Paranthaman, Z. Y. Zhang, G. Eres, B. H. Gu. Fabrication and characterization of brookite-rich, visible light-active TiO2 films for water splitting. Applied Catalysis B:Environmental,2009,93: 90-95.
    [46]V. V. Kislyukl, O. P. Dimitriev. Nanorods and Nanotubes for Solar Cells. Journal of Nanoscience and Nanotechnology,2008,8:131-148.
    [47]A. J. Frank, N. Kopidakis, J. L. Coord. Electrons in nanostructured TiO2 solar cells:transport, recombination and photovoltaic properties. Coordination Chemistry Reviews,2004,248: 1165.
    [48]G.K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes. A review on highly ordered, vertically oriented TiO2 nanotube arrays:Fabrication, material properties, and solar energy applications. Solar Energy Materials & Solar Cells,2006,90:2011-2075.
    [49]A. Rothschild, F. Edelman, Y. Komem, F. Cosandey. Sensing behavior of TiO2 thin films exposed to air at low temperatures. Sensors and Actuators B,2000,67:282-289.
    [50]S. Yoriya, H. E. Prakasam, O. K. Varghese, K. Shankar, M. Paulose, G. K. Mor, T. J. Latempa. Initial studies on the hydrogen gas sensing properties of highly-ordered high aspect ratio TiO2 nanotube-arrays 20 μm to 222 μm in length. Sensor Letters,2006,4(3):334-339.
    [51]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science,2001,293:269-271.
    [52]V N. Kuznetsov, N. Serpone. Visible light absorption by various titanium dioxide specimens. Journal of Physical Chemistry B,2006,110:25203-25209.
    [53]J. Y. Lee, J. Park, J. H. Cho, Electronic properties of N-and C-doped TiO2. Applied Physics Letters,2005,87:901-904.
    [54]H. Kisch, S. Sakthivel, M. Janczarek, and D. Mitoraj. A low-band gap, nitrogen-modified titania visible-light photocatalyst. J. Phys. Chem. C,2007,111:11445-11449.
    [55]Y. B. Mao, M. Kanungo, T. Hemraj-Benny, S. Wong. Synthesis and growth mechanism of titanate and titania one-dimensional nanostructures self-assembled into hollow micrometer-scale spherical aggregates. Journal of Physical Chemistry B,2006,110:702.
    [56]J. G. Yu, W. Liu, H. G. Yu. A one-pot approach to hierarchically nanoporous titania hollow microspheres with high photocatalytic activity. Crystal Growth and Design,2008,8:930.
    [57]C. Z. Wu, Y. Xie. A new synergic-assembly strategy towards three-dimensional (3D) hollow nanoarchitectures. Journal of Nanoscience and Nanotechnology,2008,8:6208.
    [58]Y. Matono, M. Nakagawa, S. Matsuya, K. Ishikawa, Y. Terada. Corrosion behavior of pure titanium and titanium alloys in various concentrations of acidulated phosphate fluoride (APF) solutions. Dental Materials,2006,25:104.
    [59]K. Borowiec, A.Przepiera, and K. Kolbreck. Intrinsic kinetics of the oxidation of Na2TiF6 and Na3TiF6. Journal of Thermal Analysis,1991,37:637.
    [60]J. M. Wu, S. Hayakawa, K. Tsuru, A. Osaka. Low-temperature preparation of anatase and rutile layers on titanium substrates and their ability to induce in vitro apatite deposition. Journal of the American Ceramic Society,2007,87:1635-1642.
    [61]K. Shankar, J. I. Basham, N. K. Allam, O. K. Varghese, G. K. Mor, X. J. Feng. Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. Journal of Physical Chemistry C,2009,113:6327-6359.
    [62]陈琦丽,唐超群,肖循,丁时锋.二氧化钛纳米晶的制备及光催化活性研究.材料科学与工程学报.2003,21(14):518-520.
    [63]N. Xiao, Z. H. Li, J. W. Liu, Y. Gao. A facile template-free method for preparing bi-phase TiO2 nanowire arrays with high photocatalytic activity. Materials Letters,2010,64: 1776-1778.
    [64]X. Chen, S. S. Mao. Titanium dioxide nanomaterials:synthesis, properties, modications, and applications. Chemical Reviews,2007,107 (7):2891-2959.
    [65]Y. C. Zhu, H. L. Li, Y. Koltypin, Y. R. Hacohen, A. Gedanken. Sonochemical synthesis of titania whiskers and nanotubes. Chemical Communications,2001,24:2616-2617.
    [66]王昭,毛峰,黄祥平,魏慧丽,张昌远,冯笙琴.二氧化钛纳米棒自组装纤维的水热一步合成及其光催化性能.材料科学与工程学报.2009,27(1):96-98.
    [67]Z. Miao, D. S. Xu, J. H. Ouyang, G. L. Guo, X. S. Zhao, Y. Q. Tang. Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires. Nano Letters,2002,2: 717-720.
    [68]J. M. Wu, H. X. Xue. Photocatalytic active titania nanowire arrays on Ti substrates. Journal of the American Ceramic Society,2009,92(9):2139-2143.
    [69]D. Mitoraj and H. Kisch. The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light. Angewandte Chemie International Edition,2008,47:9975-9978.
    [70]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社,2002,37-38.
    [71]W. F. Zhang, Y. L. He, M. S. Zhang. Raman scattering study on anatase TiO2 nanocrystals. Journal of Physics D:Applied Physic,2000,33(8):912-916.
    [72]S. Ono, T. Funato, Y. Inoue, T. Munechika, T. Yoshimura, H. Morita, S. I. Rengakuji, C. Shimasaki. Determination of melamine derivatives, melame, meleme, ammeline and ammelide by high-performance cation-exchange chromatography. Journal of Chromatography A,1998,815:197-204.
    [73]J. Polleux, N. Pinna, M. Antonietti, M. Niederberger. Ligand-directed assembly of preformed titania nanocrystals into highly anisotropic nanostructures. Advanced Materials,2004,16: 436-439.
    [74]Y. B. Mao, M. Kanungo, T. H. Benny, S. Wong. Synthesis and growth mechanism of titanate and titania one-dimensional nanostructures self-assembled into hollow micrometer-scale spherical aggregates. Journal of Physical Chemistry B,2006,110:702.
    [75]J. G. Yu, W. Liu, H. G. Yu. A one-pot approach to hierarchically nanoporous titania hollow microspheres with high photocatalytic activity. Crystal Growth and Design,2008,8:930.
    [76]J. J. Teo, Y. Chang, H. C. Zeng. Fabrications of hollow nanocubes of Cu2O and Cu via reductive self-assembly of CuO nanocrystals. Langmuir,2006,22:736-769.
    [77]S. H. Jiao, K. Jiang, Y. H. Zhang, M. Xiao, L. F. Xu, D. S. Xu. Nonspherical half-shells by ultrasonic cleavage of the hollow polyhedral particles in water. Journal of Physical Chemistry C,2008,112:3358.
    [78]H. L. Cao, X. F. Qian, X. Wang, D. Ma, J. Yin, Z. K. Zhu. High symmetric 18-facet polyhedron nanocrystals of Cu7S4 with a hollow nanocage. Journal of the American Chemical Society,2005,127:16-24.
    [79]H. G. Yang, H. C. Zeng. Self-construction of hollow SnO2 octahedra based on two-dimensional aggregation of nanocrystallites. Angewandte Chemie International Edition, 2004,43:5930.
    [80]Y. Yang, D. S. Kim, R. Scholz, M. Knez, S. M. Lee, U. Gosele, M. Zacharias. Hierarchical three-dimensional ZnO and their shape-preserving transformation into hollow ZnAl2O4 nanostructures. Chemistry of Materials,2008,20:3487.
    [81]Z. Y. Jiang, Z. X. Xie, X. H. Zhang, S. C. Lin, T. Xu, S. Y. Xie, R. B. Huang, L. S. Zheng. Synthesis of single-crystalline ZnO polyhedral submicrometer-sized hollow beads using laser-assisted growth with ethanol droplets as soft templates. Advanced Materials,2004,16: 904.
    [82]B. P. Jia, L. Gao. Growth of well-defined cubic hematite single crystals:oriented aggregation and Ostwald ripening. Crystal Growth and Design,2008,8:1372.
    [83]J. H. Zhang, Q. H. Kong, J. Du, D. K. Ma, G. C. Xi, and Y. T. Qian. Formation, characterization, and magnetic properties of Fe3O4 microoctahedrons. J. Cryst. Growth,2007, 308:159.
    [84]W. Zhou, M. Yao, L. Guo, Y. M. Li, J. H. Li, and S. H. Yang. Hydrazine-linked convergent self-assembly of sophisticated concave polyhedrons of β-Ni(OH)2 and NiO from nanoplate building blocks. Journal of the American Chemical Society,2009,131:2959.
    [85]R. Yu, T. Ren, K. J. Sun, Z. C. Feng, G. N. Li, and C. Li. Shape-controlled copper selenide nanocubes synthesized by an electrochemical crystallization method. Journal of Physical Chemistry C,2009,113:10833.
    [86]B. Liu, H. C. Zeng. Fabrication of ZnO "dandelions" via a modified kirkendall process. Journal of the American Chemical Society,2004,126 (51):16744-16746.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700