锂离子电池负极材料NiO的合成与电化学性能改善
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着锂离子电池的广泛应用,锂离子电池负极材料成为了研究的热点。NiO由于其高比容量、无毒、价廉、原料丰富等优点倍受关注,是非常有前景的锂离子电池负极材料。本文主要研究内容是探索制备高容量NiO的方法及改善NiO电极的循环性能。
     采用电化学沉积法以镍铵络合物为电解液制备了表面形貌分别为颗粒状、棒状及片状多孔的NiO薄膜。其形貌与电沉积的电流密度大小有关,随着沉积电流密度的减小,薄膜的表面积增加,薄膜的循环稳定性提高。0.1 mA cm-2电流密度下电沉积的片状多孔薄膜循环50次后的容量保持率为49.5%,高于1 mAcm-2电流密度下电沉积的颗粒状薄膜的23.1%。
     采用化学浴沉积法以尿素为原料制备了泡沫镍负载NiO球状多孔膜。多孔结构提高了电极的电化学性能。进一步通过电沉积法在NiO膜表面镀镍,制备了球状多孔NiO/Ni复合薄膜。与Ni复合不仅提高了膜的导电性,还能有效维持NiO的球状多孔结构。镀镍后的NiO/Ni膜循环性能明显提高,在2 C倍率下循环50次后的可逆容量为506 mAh g-1,容量保持率为90.4%。
     采用氨水挥法诱导法制备了泡沫镍负载“三明治”形貌NiO薄膜,并基于扫描电镜和透射电镜观察探索了其形成过程及原理。它的特殊“三明治”层状结构使它具有良好的导电性和结构稳定性,该薄膜在2 C倍率下循环50次后的可逆容量为400 mAh g-1,容量保持率为78%。
     采用静电纺丝法制备了NiO及NiO/Ag复合纳米线,该纳米线由NiO和Ag的纳米颗粒组成。采用沉淀—水热法制备了NiO和NiO/CNT复合纳米材料,其中NiO为纳米片状结构,连接在纳米碳管上。这些纳米复合材料不仅具有高的比表面积,而且通过与高导电性材料的复合,可提高其导电性能,是具有应用潜力的锂离子电池电极材料。
Along with the broad applications of lithium ion batteries, anode materials for lithium ion battery are researched abundantly. NiO has been paid much attention due to its attractive advantages such as high theoretic capacity, nontoxicity and low material cost. The main content of the present research is to explore new synthesis methods and improve the cycling performance of NiO as an anode material for lithium ion batteries.
     NiO films with different morphologies were prepared by electrodeposition, including dence film, nanorod-like film and net-like porous film. The morphology is determined by the current density. With the decrease of the current density, the specific surface area as well as the cycling performance of the film increase. The specific capacity of the porous film deposited at 0.1 mA cm-2 retains 49.5% of that in the 2nd cycle, higher than that of the dence film deposited at 1 mA cm-2 (23.1%).
     Nickel foam-supported porous NiO/Ni films were prepared by chemical bath deposition and electrodeposition. The Ni plating can enhance the conductivity and the stability of the structure. This porous NiO/Ni film exhibits excellent cycling performance, its reversible capacity sustains 506 mAh g-1 after 50 cycles at 2 C, which retains 90.4% of that in the 2nd cycle.
     Sandwich-like Ni(OH)2 and NiO films are synthesized by a simple ammonia-evaporation method on nickel foam. A plausible formation mechanism is proposed based on the observations of scanning electron microscopy and transmission electron microscopy. The reversible capacity of the sandwich-like NiO film sustains 400 mAh g-1 after 50 cycles at 2 C, which retains 78% of that in the 2nd cycle. The high rate capability and reversibility of this NiO film can be attributed to its unique sandwich-like architecture.
     NiO and NiO/Ag hybrid nanofibers were prepared by electrospinning. The nanofibers are composited by little NiO and Ag nanoparticles. NiO and NiO/CNT were prepared by deposition-hydrothermal method, in which the NiO nanoplates attachs to the CNT. These nanocomposites not only have high surface area, but also have enhanced conductivity. They are promising electrode material for Li ion battery.
引文
[1]李国欣.新型化学电源导论.上海:上海复旦大学出版社[M],1992.
    [2]J.M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithium batteries. Nature, 2001,414:359-367.
    [3]C. Liu, F. Li, L.P. Ma, H.M. Cheng. Advanced materials for energy storage. Advanced Materials,2010,22, E28-E62.
    [4]T. Nagaura, K. Tozawak. Lithium ion rechargeable battery. Progress in Batteries and Solar Cells,1990,9:209-210.
    [5]R.J. Brodd, K.R. Bullock, R.A. Leising, R.L. Middaugh, J.R. Miller, E. Takeuchi. Batteries, 1977 to 2002. Journal of the Electrochemical Society,2004,151(3):K1-K11.
    [6]P. Ramadass, B. Haran, R. White, B.N. Popov. Capacity fade of Sony 18650 cells cycled at elevated temperature -Part Ⅱ Capacity fade analysis. Journal of Power Sources,2002,112: 614-620.
    [7]Y.P. Wu, E. Rahm, R. Holze. Effects of heteroatoms on electrochemical performance of electrode materials for lithium ion batteries. Electrochimica Acta,2002,47:3491-3507.
    [8]郭炳煜,徐微,王先友,肖立新.锂离子电池.长沙:中南大学出版社[M],2002.
    [9]黄可龙,王兆翔,刘素琴.锂离子电池原理及关键技术[M],北京:化学工业出版社,2008
    [10]B.D. Pietro, M. Patriarca, B. Scrosati. On the use of rocking chair configurations for cyclable lithium organic electrolyte batteries. Journal of Power Sources,1982,8(2-3):289-299.
    [11]J. M. Paulsen, J. R. Muller-Nehaus, J. R. Dahn. Layered LiCoO2 with a different oxygen stacking (O2 structure) as a cathode material for rechargeable lithium batteries. Journal of the Electrochemical Society,2000,147 (2):508-516.
    [12]D. Huang. Solid solution:new cathodes for next generation lithium-ion batteries. Advanced Battery Technologies,1998,11:23-27.
    [13]J. Zhang, Y.J. Xiang, Y. Yu, S. Xie, G.S. Jiang, C.H. Chen. Electrochemical evaluation and modification of commercial lithium cobalt oxide powders. Journal of Power Sources,2004, 132(1-2):187-194.
    [14]S.B. Park, H.C. Shin, W.G. Lee, W.I. Cho, H. Jang. Improvement of capacity fading resistance of LiMn2O4 by amphoteric oxides. Journal of Power Sources,2008,180(1): 597-601.
    [15]M. Molenda, R. Dziembaj, Z. Piwowarska, M. Drozdek. Electrochemical properties of C/LiMn2O4.ySy (0≤y≤0.1) composite cathode materials. Solid State Ionics,2008,179(1-6): 88-92.
    [16]H.K. Gil, T.M. Seung, S.K. Hyung, K.S. Yang. Synthesis of spherical Li[Ni(1/3-z)Co(1/3-Z)Mn(1/3-z)Mgz]O2 as positive electrode material for lithium-ion battery. ElectrochimicaActa,2006,51:2447-2453.
    [17]X.M. He, J.G. Li, R.S. Zhao. Stannum doping of layered LiNi3/8Co2/8Mn3/8O2 Cathode materials with high rate capability for Li-ion batteries. Journal of Power Sources,2006, 158(1):524-528.
    [18]D.C. Li, K. Yasuhiro, K. Koichi, N. Hideyuki, S. Yuichi. Preparation and electrochemical characteristics of Li(Ni1/3Mn1/3Co1/3)O2 coated with metal oxides coating. Journal of Power Sources,2006,160:1342-1348.
    [19]Y.J. Kim, J. Cho, T.J. Kim. Suppression of Cobalt Dissolution from the LiCoO2 Cathodes with Various Metal-Oxide Coatings. Journal of the Electrochemical Society,2003,150(12): A 1723-A 1725.
    [20]C. H. Mi, X. B. Zhao, G. S. Cao, J. P. Tu. In situ synthesis and properties of carbon-coated LiFePO4 as Li-ion battery cathodes. Journal of the Electrochemical Society,2005,152(3): A483-A487.
    [21]J.Y. Xiang, J.P. Tu, L. Zhang, X.L. Wang, Y. Zhou, Y.Q. Qiao, Y. Lu. Improved electrochemical performances of 9LiFePO4·Li3V2(PO4)/C composite prepared by a simple solid-state method, Journal of Power Sources,2010,195 (24):8331-8335.
    [22]L. Zhang, X.L. Wang, J.Y. Xiang, Y. Zhou, S.J. Shi, J.P. Tu. Synthesis and electrochemical performances pf Li3V2(PO4)3/(Ag+C) composite cathode, Journal of Power Sources,2010, 195 (15):5057-5061.
    [23]H. Shi, J. Barker, M.Y. Saidi, R. Kosbang. Structure and lithium intercalation properties of synthetic and natural graphite. Journal of the Electrochemical Society,1996,143 (11): 3466-3472.
    [24]K. Tatsumi, A. Mabuchi. The influence of the graphitic structure on the electrochemical characteristics for the anode of secondary lithium batteries. Journal of the Electrochemical Society,1995,142(3):716-720.
    [25]LA. Courtney, J.R. Danhn, Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. Journal of the Electrochemical Society,1997, 144 (6):2045-2052.
    [26]C. Kim, M. Noh, M. Choi, J. Cho, B. Park. Critical size of a nano SnO2 electrode for Li-secondary battery. Chemistry of Materials,2005,17 (12):3297-3301.
    [27]Y. Wang, J.Y. Lee, H.C. Zeng. Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chemistry of Materials, 2005,17 (15):3899-3903.
    [28]Y. Wang, J.Y. Lee. Molten salt synthesis of tin oxide nanorods:morphological and electrochemical features. The Journal of Physical Chemistry B,2004,108 (46):17832-17837.
    [29]Y. Zhang, Y. Liu, M. Liu. Nanostructured columnar tin oxide thin film electrode for lithium ion batteries. Chemistry of Materials,2006,18 (19):4643-4646.
    [30]Y. Sharma, N. Sharma, G.V.S. Rao, B.V.R. Chowdari. Studies on nano-CaO·SnO2 and nano-CaSnO3 as anodes for Li-ion batteries. Chemistry of Materials,2008,20 (21):6829-6839.
    [31]M.S. Park, Y.M. Kang, S.X. Dou, H.K. Liu. Reduction-free synthesis of carbon-encapsulated SnO2 nanowires and their superiority in electrochemical performance. The Journal of Physical Chemistry C,2008,112 (30):11286-11289.
    [32]X.W. Lou, D. Deng, J.Y. Lee, L.A. Archer. Preparation of SnO2/carbon composite hollow spheres and their lithium storage properties. Chemistry of Materials,2008,20 (20):6562-6566.
    [33]O.U. Krasovec, B. Orel, S. Hocevar, I. Musevic. Electrochemical and spectroelectrochemical properties of SnO2 and SnO2/Mo transparent electrodes with high ion-storage capacity. Journal of the Electrochemical Society,1997,144 (10):3398-3409.
    [34]L. Yuan, J. Wang, S.Y. Chew, J. Chen, Z.P. Guo, L. Zhao, K. Konstantinov, H.K. Liu. Synthesis and characterization of SnO2-polypyrrole composite for lithium-ion battery. Journal of Power Sources,2007,174 (2):1183-1187.
    [35]Y. Idota, T. Kubota, A, Matsufuji, Y, Markawa, T. Miyasaka. Tin-based amorphous oxide:a high-capacity lithium-ion-storage material. Science,1997,276 (5317):1395-1397.
    [36]J. Hassoun, S. Panero, P. Simon, P.L. Taberna, B. Scrosati. High-rate, long-life Ni-Sn nanostructured electrodes for lithium-ion batteries. Advanced Materials,2007,19 (12):1632-1635.
    [37]F.S. Ke, L. Huang, H.B. Wei, J.S. Cai, X.Y. Fan, F.Z. Yang, S.G. Sun. Fabrication and properties of macroporous tin-cobalt alloy film electrodes for lithium-ion batteries. Journal of Power Sources,2007,170 (2):450-455.
    [38]F.S. Ke, L. Huang, H.H. Jiang, H.B. Wei, F.Z. Yang, S.G. Sun. Fabrication and properties of three-dimensional macroporous Sn-Ni alloy electrodes of high preferential (110) orientation for lithium ion batteries. Electrochemistry Communications,2007,9 (2):228-232.
    [39]L. Huang, Y. Yang, L.J. Xue, H.B. Wei, F.S. Ke, J.T. Li, S.G. Sun. Electrodeposition and electrochemical properties of novel ternary tin-cobalt-phosphorus alloy electrodes for lithium-ion batteries. Electrochemistry Communications,2009,11 (1):6-9.
    [40]Y.L. Kim, S.J. Lee, H.K. Baik, S.M. Lee. Sn-Zr-Ag alloy thin-film anodes. Journal of Power Sources,2003,119-121:106-109.
    [41]W.M. Zhang, J.S. Hu, Y.G Guo, S.F. Zheng, L.S. Zhong, W.G. Song, L.J. Wan. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Advanced Materials,2008,20 (6):1160-1165.
    [42]H.J. Ahn, K.W. Park, Y.E. Sung. Synthesis and characterization of Sn nanophases in a Ta2O5 martix. Chemistry of Materials,2004,16 (10):1991-1995.
    [43]M. Noh, Y. Kim, M.G. Kim, H. Lee, H. Kim, Y. Kwon, Y. Lee, J. Cho. Monomer-capped tin metal nanoparticles for anode materials in lithium secondary batteries. Chemistry of Materials,2005,17 (13):3320-3324.
    [44]T. Takamura, S. Ohara, M. Uehara, J. Suzuki, K. Sekine. A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life. Journal of Power Sources, 2004,129(1):96-100.
    [45]H. Jung, M. Park, Y.G. Yoon, G.B. Kim, S.K. Joo. Amorphous silicon anode for lithium-ion rechargeable batteries. Journal of Power Sources,2003,115 (2):346-351.
    [46]H. Kim, B. Han, J. Choo, J. Cho. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angewandte Chemie International Edition, 2008,47(52):10151-10154.
    [47]G.A. Roberts, E.J. Cairns, J.A. Reimer. Magnesium silicide as negative electrode material for lithium-ion batteries. Journal of Power Sources,2002,110 (2):424-429.
    [48]Y.L. Kim, H.Y. Lee, S.W. Jang, S.H. Lim, S.J. Lee, H.K. Baik, Y.S. Yoon, S.M. Lee. Electrochemical characteristic of Co-Si alloy and multilayer films as anodes for lithium ion microbatteries. Electrochimica Acta,2003,48 (18):2593-2597.
    [49]Z.B. Sun, X.D. Wang, X.P. Li, M.S. Zhao, Y. Li, Y.M. Zhu, X.P. Song. Electrochemical properties of melt-spun Al-Si-Mn alloy anodes for lithium-ion batteries. Journal of Power Sources,2008,182 (1):353-358.
    [50]B. Guo, J. Shu, Z. Wang, H. Yang, L. Shi, Y. Liu, L. Chen. Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries. Electrochemistry Communications,2008,10 (12):1876-1878.
    [51]Z. Wen. Electrochemical studies of quadruple lithium silicic oxynitride as anode material for lithium-ion batteries. Electrochemical and Solid-State Letters,2007,10 (2):A21-A24.
    [52]G.X. Wang, J.H. Ahn, J. Yao, S. Bewlay, H.K. Liu. Nanostructured Si-C composite anodes for lithium-ion batteries. Electrochemistry Communications,2004,6 (7):689-692.
    [53]N. Dimov, S. Kugino, M. Yoshio. Mixed silicon-graphite composites as anode material for lithium ion batteries:Influence of preparation conditions on the properties of the material. Journal of Power Sources,2004,136 (1):108-114.
    [54]X. Yang, Z. Wen, X. Xu, Z. Gu, S. Huang. Study on the Li+ insertion/extraction for silicon nanosized silver composite electrode. Electrochemical and Solid-State Letters,2007,10 (3): A52-A55.
    [55]S.J. Lee, H.Y. Lee, Y. Park, H.K. Baik, S.M. Lee. Si(-Zr)/Ag multilayer thin-film anodes for microbatteries. Journal of Power Sources,2003,119:117-120.
    [56]M. Yoshio, S. Kugino, N. Dimov. Electrochemical behaviors of silicon based anode material. Journal of Power Sources,2006,153 (2):375-379.
    [57]D.Q. Shi, J.P. Tu, Y.F. Yuan, H.M. Wu, Y. Li, X.B. Zhao. Preparation and electrochemical properties of mesoporous Si/ZrO2 nanocomposite film as anode material for lithium ion battery. Electrochemistry Communications,2006,8 (10):1610-1614.
    [58]P. Poizot. S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature,2000,407 (6803): 496-499.
    [59]J.M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithium batteries. Nature,2001,414 (6861):359-367.
    [60]A. Debart, L. Dupont, P. Poizot, J.B. Leriche, J.M. Tarascon. A Transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium. Journal of the Electrochemical Society,2001,148 (11):A1266-A1274.
    [61]D. Larcher, G. Sudant, J.B. Leriche, Y. Chabre, J.M. Tarascon. The electrochemical reduction of Co3O4 in a lithium cell. Journal of the Electrochemical Society,2002,149 (3):A234-A241.
    [62]B. Laik, P. Poizot, J.M. Tarascon. The electrochemical quartz crystal microbalance as a means for studying the reactivity of Cu2O toward lithium. Journal of the Electrochemical Society, 2002,149(3):A251-A255.
    [63]M. Morcrette, P. Pozier, L. Dupont, E. Mugnier, L. Annier, J. Galy, J.M. Tarascon. A reversible copper extrusion-insertion electrode for rechargeable Li batteries. Nature Materials, 2003,2 (11):755-761.
    [64]D. Larcher, C. Masquelier, D. Bonnin, Y. Chabre, V. Masson, J.B. Leriche, J.M. Tarascon. Effect of particle size on lithium intercalation into α-Fe2O3. Journal of the Electrochemical Society,2003,150(1):A133-A139.
    [65]R. Dedryvere, S. Laruelle, S. Grugeon, P. Poizot, D. Gonbeau, J.M. Tarascon. Contribution of X-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO toward lithium. Chemistry of Materials,2004,16 (6):1056-1061.
    [66]S. Grugeon, S. Laruelle, L. Dupont, F. Chevallier, P.L. Taberna, P. Simon, L. Gireaud, S. Lascaud, E. Vidal, B. Yrieix, J.M. Tarascon. Combining electrochemistry and metallurgy for new electrode designs in Li-ion batteries. Chemistry of Materials,2005,17 (20):5041 5047.
    [67]P.G. Bruce, B. Scrosati, J.M. Tarascon. Nanomaterials for rechargeable lithium batteries. Angewandte Chemie International Edition,2008,47 (16):2930-2946.
    [68]D. Liu, Q. Zhang, P. Xiao, B.B Garcia, Q. Guo, R. Champion, G. Cao. Hydrous manganese dioxide nanowall arrays growth and their Li+ ions intercalation electrochemical properties. Chemistry of Materials,2008,20 (4):1376-1380.
    [69]J. Chen, L. Xu, W. Li, X. Gou. a-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Advanced Materials,2005,17 (5):582-586.
    [70]M.V Reddy. T. Yu, C.H.S. Ow, Z.X. Shen, C.T. Lim, G.V.S Rao, B.V.R. Chowdari. α-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Advanced Functional Materials,2007, 17 (15):2792-2799.
    [71]Z.M. Cui, L.Y. Jiang, W.G. Song, Y.G. Guo. High-yield gas-liquid interfacial synthesis of highly dispersed Fe3O4 nanocrystals and their application in lithium-ion batteries. Chemistry of Materials,2009,21 (6):1162-1166.
    [72]K.T. Nam, D.W. Kim, P.J. Yoo, C.Y. Chiang, N. Meethong, P.T. Hammond, Y.M. Chiang, A.M. Belcher. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science,2006,312 (5775):885-888.
    [73]W.Y. Li, L.N. Xu, J. Chen. Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Advanced Functional Materials,2005,15 (5):851-857.
    [74]Y. Sharma, N. Sharma, G.V.S. Rao, B.V.R. Chowdari. Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Advanced Functional Materials 2007,17 (5): 2855-2861.
    [75]黄小华,纳米复合化对锂离子电池NiO负极材料电化学性能的改善[博士毕业论文].杭州:浙江大学材料系,2009.
    [76]J.Y. Xiang, J.P. Tu, Y.F. Yuan, X.L. Wang, X.H. Huang, Z.Y. Zeng. Electrochemical investigation on nanoflower-like CuO/Ni composite film as anode for lithium ion batteries. Electrochimica Acta,2009,54 (4):1160-1165.
    [77]Y.M. Kang, K.T. Kim, K.Y. Lee, S.J. Lee, J.H. Jung, J.Y. Lee. Improvement of initial coulombic efficiency of Co3O4 by ballmilling using Ni as an additive. Journal of the Electrochemical Society,2003,150 (11):A1538-A1543.
    [78]Q. Pan, M. Wang, H. Wang, J. Zhao, G. Yin. Novel method to deposit metal particles on transition metal oxide films and its application in lithium-ion batteries. Electrochimica Acta, 2008,54(2):197-202.
    [79]J.C. Park, J. Kim, H. Kwon, H. Song. Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Advanced Materials,2009,21 (7):803-807.
    [80]S.K. Mhaju, F. Jiao, A. Debart, P.G. Bruce. Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries. Journal of Chemical Physics,2007,9 (15): 1837-1842.
    [81]N. Sharma, K.M. Shaju, G.V.S. Rao, V.R. Chowdari. Mixed oxides Ca2Fe2O5 and Ca2Co2O5 as anode materials for Li-ion batteries. Electrochimica Acta,2004,49 (7):1035-1043.
    [82]S.F. Zheng, J.S. Hu, L.S. Zhong, W.G. Song, L.J. Wan, Y.G. Guo. Introducing dual functional CNT networks into CuO nanomicrospheres toward superior electrode materials for lithium-ion batteries. Chemistry of Materials,2008,20 (11):3617-3622.
    [83]L. Wang, Y. Yu, P.C. Chen, D.W. Zhang, C.H. Chen. Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries. Journal of Power Sources,2008,183 (2):717-723.
    [84]H.J. Liu, S.H. Bo, W.J. Cui, F. Li, C.X. Wang, Y.Y. Xia. Nano-sized cobalt oxide/mesoporous carbon sphere composites as negative electrode material for lithium-ion batteries. Electrochimica Acta,2008,53 (22):6497-6503.
    [85]W. Yao, J. Yang, J. Wang, L. Tao. Synthesis and electrochemical performance of carbon nanofiber-cobalt oxide composites. Electrochimica Acta,2008,53 (24):7326-7330.
    [86]A. Debart, L. Dupont, R. Patrice, J.M. Tarascon. Reactivity of transition metal (Co, Ni, Cu) sulphides versus lithium:The intriguing case of the copper sulphide. Solid State Sciences, 2006,8 (6):2006:640-651.
    [87]N. Pereira, L. Dupont, J.M. Tarascon, L.C. Klein, G.G. Amatucci. Electrochemistry of Cu3N with lithium. A complex system with parallel process. Journal of the Electrochemical Society, 2003,150(9):A1273-A1280.
    [88]F. Gillot, L. Monconduit, M. Morcrette, M.L. Doublet, L. Dupont, J.M. Tarascon. On the reactivity of Li8-yMnyP4 toward lithium. Chemistry of Materials,2005,17 (14):3627-3635.
    [89]T. Ohzuku, A. Ueda, N. Yamamoto. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. Journal of the Electrochemical Society,1995,142 (5):1431-1435.
    [90]P. Reale, S. Panero, F. Ronci, V.R. Albertini, B. Scrosati. Iron-substituted lithium titanium spinels:structural and electrochemical characterization. Chemistry of Materials,2003,15 (18):3437-3442.
    [91]L. Kavan, M. Zukalova, M. Kalbac, M. Graetzel. Lithium insertion into anatase inverse opal. Journal of the Electrochemical Society,2004,151 (8):A1301-A1307.
    [92]L. Aldon, P. Kubiak, A. Picard, J.C. Jumas, J. Olivier-Fourcade. Size particle effects on lithium insertion into Sn-doped TiO2 anatase. Chemistry of Materials,2006,18 (6): 1401-1406.
    [93]L.J Fu, H. Liu, H.P. Zhang, C. Li, T. Zhang, Y.P. Wu, H.Q. Wu. Novel TiO2/C nanocomposites for anode materials of lithium ion batteries. Journal of Power Sources,2006, 159(1):219-222.
    [94]J. Xie, G.S. Cao, X.B. Zhao, Y.D. Zhong, M.J. Zhao. Electrochemical performances of nanosized intermetallic compound CoSb2 prepared by solvothermal route. Journal of the Electrochemical Society,2004,151 (11):A1905-A1910.
    [95]J. Xie, X.B. Zhao, G.S. Cao, S.F. Su. Improvement of electrochemical performances of CoSb3 anode by using nanosized particles. Journal of the Electrochemical Society,2005,152 (3): A601-A606.
    [96]J. Morales, L. Sanchez, F. Martiz, J.R. Ramos-Barrado, M. Sanchez. Synthesis, characterization, and electrochemical properties of nanocrystalline silver thin films obtained by spray pyrolysis. Journal of the Electrochemical Society,2004,151 (1):A151-A157.
    [97]G. Taillades, J. Sarradin. Silver: high performance anode for thin film lithium ion batteries. Journal of Power Sources,2004,125 (2):199-205.
    [98]J.L.C. Rowsell, V. Pralong, L.F. Nazar. Layered lithium iron nitride:a promising anode material for Li-ion batteries. Journal of the Amarican Chemical Society,2001,123 (35): 8598-8599.
    [99]X.Y. Deng, Z. Zhong. Preparation of nano-NiO by precipitation and reaction in solution and competitive balance. Materials Letters,2004,58:276-280.
    [100]Y.J. Qi, H.Y. Qi, J.H. Li, C.J. Lu. Synthesis, microstructures and UV-vis absorption properties of beta-Ni(OH)2 nanoplates and NiO nanostructures. Journal of Crystal Growth, 2008,310 (18):4221-4425.
    [101]W. Zhou, M. Yao, L.Guo, Y.M. Li, J.H. Li, S. Yang. Hydrazine-linked convergent self-assembly of sophisticated concave polyhedrons of (3-Ni(OH)2 and NiO from nanoplate building blocks. Journal of the Amarican Chemical Society,2009,131:2959-2964.
    [102]Y.G. Li, B. Tang, Y.Y. Wu. Ammonia-evaporation-induced synthetic method for metal(cu, zn, cd, ni) hydroxide/oxide nanostructures. Chemistry of Materials,2008,20:567-576.
    [103]C. Coudun, J.F. Hochepied. Nickel hydroxide "stacks of pancakes" obtained by the coupled effect of ammonia and template agent. J. Phys. Chem. B,2005,109:6069-6074.
    [104]D.B. Kuang, B.X. Lei, Y.P. Pan, X.Y. Yu, C.Y. Su. Fabrication of novel hierarchical β-Ni(OH)2 and nio microspheres via an easy hydrothermal process. The Journal of Physical Chemistry C,2009,113:5508-5513.
    [105]S.A. Needham, G.Y. Wang, H.K. Liu. Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries. Journal of Power Sources,2006,159:254-257.
    [106]S.M. Zhang, H.C. Zeng.Self-assembled hollow spheres of β-Ni(OH)2 and their derived nanomaterials. Chemistry of Materials 2009,21,871-883.
    [107]G. Duan, W. Cai, Y. Luo, F. Sun. A hierarchically structured Ni(OH)2 monolayer hollow-sphere array and its tunable optical properties over a large region. Advanced Functional Materials,2007,17 (4):644-650.
    [108]Y.N. Nuli, S.L. Zhao, Q.Z. Qin. Nanocrystalline tin oxide and nickel oxide film anodes for Li-ion batteries. Journal of Power Sources,2003,114:113-120.
    [109]K.F. Chiu, C. Y. Chang C. M. Lin. The electrochemical performance of bias-sputter-deposited nanocrystalline nickel oxide thin films toward lithium. Journal of the Electrochemical Society,2004,152:A1188-A1192.
    [110]Y. Wang, Q.Z. Qin. A nanocrystalline nio thin-film electrode prepared by pulsedlaser ablation for li-ion batteries. Journal of the Electrochemical Society,2002,149:A873-A878.
    [111]H.B. Wang, Q.M. Pan, X.P. Wan, G.P. Yin, J.W. Zha. Improving electrochemical performance of NiO films by electrodeposition on foam nickel substrates, Journal of Applied Electrochemistry,2009,9:1597-1602.
    [112]X.H. Xia, J.P. Tu, J. Zhang, X.L. Wang, W.K. Zhang, H. Huang Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition, Solar Energy Materials and Solar Cells,2008,92:628-633.
    [113]B. Varghese, M.V. Reddy, Z. Yanwu, C.S. Lit, T C Hoong, G.V.S. Rao, B.V.R. Chowdari, A.T.S. Wee, C.T. Lim, C.H. Sow. Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chemistry of Materials,2008,20 (10):3360-3367.
    [114]E. Hosono, S. Fujihara, I. Honma, H. Zhou. The high power and high energy densities Li ion storage device by nanocrystalline and mesoporous Ni/NiO covered structure. Electrochemistry Communications,2006,8 (2):284-288.
    [115]Y. Wang, Y.F. Zhang, H.R. Liu, S.J. Yu, Q.Z. Qin. Nanocrystalline NiO film anode with MgO coating for Li-ion batteries. Electrochimica Acta,2003,48 (28):4253-4259.
    [116]X.H. Huang, J.P. Tu, B. Zhang, C.Q. Zhang, Y. Li, Y.F. Yuan, H.M. Wu. Electrochemical properties of NiO-Ni nanocomposite as anode material for lithium ion batteries. Journal of Power Sources,2006,161(1):541-544.
    [117]X.H. Huang, J.P. Tu, Z.Y. Zeng, J.Y. Xiang, X.B. Zhao. Nickel foam-supported porous NiO/Ag film electrode for lithium-ion batteries. Journal of the Electrochemical Society,2008, 155(6):A438-A441.
    [118]X.H. Huang, J.P. Tu, X.H. Xia, X.L. Wang. Nickel foam-supported NiO/Ag porous spheres prepared by electrodeposition as anode for lithium-ion batteries. Advanced. Materials Research,2008,47-50:621-624.
    [119]Y. Wang, Y.F. Zhang, H.R. Liu, S.J. Yu, Q.Z. Qin. Nanocrystalline NiO film anode with MgO coating for Li-ion batteries. Electrochimica Acta,2003,48 (28):4253-259.
    [120]X.H. Huang, J.P. Tu, C.Q. Zhang, X.T. Chen, Y.F. Yuan, H.M. Wu. Spherical NiO-C composite for anode material of lithium ion batteries. Electrochimica Acta,2007,52 (12): 4177-4181.
    [121]X.H. Huang, J.P. Tu, C.Q. Zhang, J.Y. Xiang. Net-structured NiO-C nanocomposite as Li-intercalation electrode material. Electrochemistry Communications,2007,9 (5): 1180-1184.
    [122]X.H. Huang, J.P. Tu, X.H. Xia, X.L. Wang, J.Y. Xiang. Nickel foam-supported porous NiO/polyaniline film as anode for lithium ion batteries. Electrochemistry Communications, 2008,10(9):1288-1290.
    [123]S.Y. Han, D. H. Lee, Y. J. Chang, S.O. Ryu, T.J. Lee, C.H. Changa. The growth mechanism of nickel oxide thin filmsby room-temperature chemical bath deposition. Journal of the Electrochemical Society,2006,153 (6):C382-C386.
    [124]J.Y. Xiang, J.P. Tu, J. Zhang, J. Zhong, J.P. Cheng. Incorporation of MWCNTs into leaf-like CuO nanoplates for superior reversible Li-ion storage. Electrochemistry Communications, 2010,12(8):1103-1107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700