氨络合物体系电积镍的阴阳极机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Investigation on Cathode & Anode Reaction Mechanism of Nickel Electrodeposition in Ammonia Complex
  • 作者:郑利峰
  • 论文级别:硕士
  • 学科专业名称:材料学
  • 学位年度:2004
  • 导师:张九渊 ; 郑国渠
  • 学科代码:080502
  • 学位授予单位:浙江工业大学
  • 论文提交日期:2004-04-01
摘要
与传统的镍电积技术相比,氨络合物体系电积金属镍有着众多的优势和特点。本文在前期工艺研究的基础上着重对氨络合物体系电积金属镍的反应机理、镍在玻璃碳上的电化学成核机理、阳极黑镍的形成机理、阳极析氮过程及Ti基IrO_2涂层阳极对析氮的电催化活性进行了系统研究。
     在第三章中首先对氨络合物体系电积金属镍的工艺进行了总结,并通过极化曲线测量,对氨络合物体系中镍阴极电沉积电化学行为进行了研究,系统探讨了溶液中总镍离子浓度、氨水浓度、氯化铵浓度、阴离子及温度等工艺条件对镍阴极还原的影响,而后着重对电积镍的反应机理进行了研究。
     稳态极化曲线测定表明在NH_3·H_2O浓度为1.25~2.75mol·L~(-1)的范围之内,直接在电极上放电的络合离子形式为Ni(NH_3)~(2+)。不锈钢电极上电积镍的电化学阻抗行为表明氨络合物体系镍电沉积过程是二次放电过程,中频感抗弧是由于中间吸附产物NiOH_(ads)的弛豫现象引起,低频容抗弧可能是由于吸附氢原子对镍结晶的阻滞作用引起,依据实验结果提出了氨络合物体系镍电沉积的反应机理和等效电路模型。同时采用稳态技术测定稳态极化曲线,对氨络合物体系阴极电积镍的动力学过程进行了研究。
     在第四章中,通过采用循环伏安法和恒电位阶跃法研究了氨络合物体系中镍存玻璃碳上电结晶的初期行为。结果表明,镍在该基体上的沉积没有经历UPD过程,镍的电沉积经历了晶核形成过程,在所研究的外加电位范围内,其电结晶按连续成核和三维生长方式进行,外加电位对晶体生长具有显著的影响。通过分析恒电位暂态曲线,求出镍离子的扩散系数D,以及不同外加电位下的饱和晶核数密度N_(sat),探讨了外加电位对成核作用的影响。
     在第五章中,通过循环伏安法、恒电流还原法及电化学阻抗谱技术对黑镍的形成过程及反应机理进行了初步研究,并通过X射线衍射技术对黑镍的物相进行了表征。研究结果表明,镍的形成过程首先涉及到一个前置化学步骤,即氨络合物离解出Ni~(2+),Ni~(2+)与溶液中的OH~-反应生成Ni(OH)_2颗粒,随后发生Ni(OH)_2颗粒的氧化反应,氧化过程中可能出现γ-NiOOH与水反应自放电生成α-Ni(OH)_2的催化反应过程。黑镍形成过程是一个不可逆反应过程。
    
     黑镍的产物可能包括p一NiooH、丫一iooH,而且还可能包含其它的高价镍
    化合物,比如Ni3O4,NiZO3,NIOZ等。
     阳极反应的电化学阻抗谱表明,氧化电位较低时Ni(OH):氧化生成黑镍的过
    程主要受电化学反应所控制,电位较高时,黑镍形成过程主要受电化学反应及扩
    散混合控制,电位进一步增加,析氮反应占据主导优势,阳极氧化过程仍主要受
    电化学反应及扩散混合控制。在本章节最后,还通过循环伏安法研究探讨了温度、
    氯化镍浓度、氨水浓度、氯化按浓度对黑镍生成量的影响。
     在第六章中首先通过采用线性扫描技术对氯盐氨络合物体系Ti基RuO:涂层
    阳极、Ti基Iro:涂层阳极的析氮过程进行了研究,对三种含有不同氧化物涂层
    电极的析氮电催化性能进行了比较,并结合扫描电镜(sEM)及能谱(EDx)
    探讨了不同析氮电催化活性的原因。研究结果表明,当电极电位低于11V
     (vs.sCE)时,Ti基RuO:涂层阳极、Ti基IrO:涂层阳极析气反应主要为析氮反
    应,氮气的产生主要是由于氨水在电极上发生电化学氧化引起的。Ti基含PdRuTi
    的I泊:涂层阳极具有最佳的析氮电催化活性,其可能原因是金属元素PdRuTi的
    存在导致该电极表面特征裂纹最宽且最深,氧化物涂层总析氮面积增多,电催化
    活性增加C
Compared with the traditional nickel electrodeposition techniques, nickel electrodeposition carried out in leaching solution containing ammonia and chloride has great priorities and characteristics. Based on the nickel electrodeposition process, the nickel electrodeposition mechanism, the electrochemical nucleation of nickel on vitreous carbon, the redox process of black nickel formed on anode, the nitrogen evolution on anode and electrocatalytic activity for nitrogen evolution of Ti based IrO2 anodes were investigated systematically.
    In the third chapter of this thesis, the nickel electrodeposition process in leaching solution containing ammonia and chloride was summarized, and the electrochemical behaviour of nickel electrodeposition in ammonia complex bath was investigated by measuring polarization curves. The effects of total nickel, ammonia, ammonium chloride concentrations in the electrolyte as well as its anion species and temperature were studied systematically. What's more, the electrodeposition mechanism of nickel in leaching solution containing ammonia and chloride was elucidated emphatically.
    It is demonstrated by measuring steady state polarization curves that Ni(NH3)2+ is the direct discharge ion within ammonia concentration range from 1.25 to 2.75 mol L-1. The electrochemical impedance spectroscopy of nickel electrodeposition indicates that nickel electrodeposition occurs in two steps, the medium frequency inductive loop is ascribed to the relaxation of the electrode coverage by an adsorbed intermediate such as NiOHads, the low frequency capacitive loop may be due to the inhibition of nickel electrodeposition by adsorbed hydrogen. The mechanism and equivalent circuit of nickel electrodeposition were proposed on the basis of the analysis of electrochemical impedance spectroscopy. Meanwhile, the kinetics law of nickel electrodeposition was investigated by means of steady-state polarization
    
    
    curves.
    In the fourth chapter of this thesis, the initial stages of electrocrystallization of nickel on vitreous carbon from a leaching solution containing ammonia and chloride were illustrated in terms of cyclic voltammetric and chronoamperometric techniques. The results show that the deposition of nickel on the substrate do not undergo UPD process, but undergoes nucleation process. In the experimental conditions, the electrocrystallization of nickel follows the mechanism of three dimensional progressive nucleation and growth. By analyzing of the potentiostatic transients, the diffusion coefficient D of the depositing nickel ions and saturated nucleus number density Nsat were estimated, the effects of applied potential on nucleation and growth ware also discussed.
    In the fifth chapter of this thesis, the cyclic voltammetry, and galvanostatic reduction and electrochemical impedance spectroscopy techniques were used to investigate the redox process and reaction mechanism of black nickel formed on anode. Moreover, the X-ray diffraction technique was used to examine black nickel species. The results show that the formation process of black nickel is quasi-reversible, it is involved in pre-adsorption transformation process( CE ), ie Ni2 + is dissociated firstly from ammonia complex, and then combines with OH" into Ni(OH)2 particles, which are oxidized on anode. During the anodic process, Ni(OH)2 which on further charge or overcharge forms NiOOH, and NiOOH which on self-discharge with H2O forms a-Ni(OH)2. This reaction process is probably defined as self-catalytic reaction. It is demonstrated by XRD and chemical analysis that high valent compounds such as Ni3O4, NiO2, Ni2O3 besides-NiOOH, y-NiOOH may be formed on electrode surface. The electrochemical impedance spectroscopy of anodic reaction shows that the formation of black nickel was mainly controlled by electrochemical reaction at low anodic potential, and is mainly controlled by electrochemical reaction and diffusion at high anodic potental. With the increasing of anodic potential., the formation of black nickel is still controlled by electrochemical re
引文
[1] 宋光铃,曹楚南,林海潮.不锈钢钝化-过钝化过渡区电极过程的交流阻抗分析[J].中国腐蚀与防护学报,1993,13(1):1~9
    [2] 陈长风,路民旭,赵国仙等.N80钢CO_2腐蚀电极过程交流阻抗分析[J].金属学报,2002,38(7):770~774
    [3] 王佳,曹楚南.缓蚀剂阳极脱附现象的研究Ⅱ.缓蚀剂阳极脱附对电极阻抗的影响[J].中国腐蚀与防护学报,1994,15(4):247~252
    [4] 张鸣镝,曹楚南,林海潮.铁在盐酸中腐蚀电位下的EIS及添加缓蚀剂的影响[J].中国腐蚀与防护学报,1993,13(2):101~109
    [5] 吴丽蓉,胡学文,许崇武.用EIS快速评估有机涂层防护性能的方法[J].腐蚀科学与防护技术,2000,12(3):182~184
    [6] 宋诗哲,王维.碳钢表面钛酸酯及其PVC复合修饰膜的阻抗谱特征[J].中国腐蚀与防护学报,1995,15(4):273~278
    [7] 王胜先,林薇薇,段洪东等.硅烷改性丙烯酸系乳胶涂料抗蚀性的阻抗谱研究[J].中国腐蚀与防护学报,1998,18(1):62~66
    [8] 马厚义,李桂秋,陈慎豪.连续电荷反应的阻抗谱与电极反应机制的关系[J].物理化学学报,1998,14(9):833~840
    [9] E.B.Castro, M.J.de Giz and E.R.Gonzalez et al. An electrochemical impedance study on the kinetics and mechanism of the hydrogen evolution reaction on nickel molybdenite electrodes[J]. Electrochim Acta. 1997,42(6):951~959
    [10] Lijun Bai and B.E.Conway. AC impedance of faradaic reaction involving electrosorbed intermediates: Examination of conditions leading to pseudoinductive behavior represented in three-dimensional impedance spectroscopy diagrams[J]. J. Electrochem. Soc. 1991,138 (10):2897~2907
    [11] I.Epelboin, R.Wiart. Mechanism of the electrocrystallization of nickel and cobalt in acidic solution[J]. J. Electrochem. Soc. 1971, 118(10): 1577~1582
    [12] E.Chassaing, M.Joussellin and R.Wiart. The kinetics of nickel electrodeposition inhibition by adsorbed hydrogen and anions[J]. J. Electroanal. Chem. 1983,157:75~88
    [13] Sandra W. Watson and Richard P. Walters. The effect of chromium particles on
    
    nickel electrodeposition[J]. J. Appl. Electrochem. 1991,138(12):3633~3637
    [14] Sandra W. Watson. Electrochemical study of SiC particles occlusion during nickel electrodeposition[J]. J. Electrochem Soc., 1993,140(8):2235~2238
    [15] I.Epelboin, M.Joussellin and R.Wiart. Impedance measurements for nickel deposition in sulfate and chloride electrolytes[J]. J. Electroanal. Chem. 1981,119:61~71
    [16] M.Holm and T.J.O'Keefe. Evaluation of nickel deposition by electrochemical impedance spectroscopy[J]. J Appl. Electrochem. 2000,30:1125~1132
    [17] I.Epelboin, M.Joussellin and R.Wiart. Impedance of nickel deposition from sulfate and chloride electrolytes[J]. J. Electroanal. Chem. 1979,101:281~284
    [18] 李君,王殿龙,陈莉等.电沉积Ni-PSZ梯度镀层过程中阴极电流效率的研究[J].电化学.1997,3(1):61~66
    [19] 薛江云,吴继勋,杨德钧.电沉积铜镍纳米多层膜的机理[J].北京科技大学学报.1996,18(增刊):46~49
    [20] Abyaneh M Y, Fleischmann M. The electrocrystallisation of nicke[J]. J Electroanal Chem, 1981,119:187.
    [21] Abyaneh M Y, Fleischmann M. The electrocrystallisation of nickel[J]. Transaction of the institute of Metal Finishing, 1980,58(3):91.
    [22] Amblard J, Froment M, Maurin Get al. The electrocrystallisation of nickel on vitreous carbon, a kinetic and structural study of nucleation and coalescence[J]. Journal of Electroanalytical Chemistry and Interfactial Electrochemisty, 1982,134(2):345.
    [23] Amblard J, Froment M , Maurin Get al. Nickel electrocrystallisation form nucleation to textures[J]. Electrochim Acta, 1983,28(7):909.
    [24] E.Gomez, C. Muller, R. Pollina et al. Studies of electrodeposition of nickel: different nickel(Ⅱ) and sulphonated additive concentration[J]. J Electroanal Chem, 1992,333:47~64.
    [25] Albalat R, Gomez E, Muller C et al. Electrochemical nucleation of nickel on vitreous carbon electrodes: the influence of organic additives[J]. J Appl Electrochem, 1991,21:709~715.
    
    
    [26] E.Gomez, C.Muller, W.G.Proud et al. Electrodeposition of nickel on vitreous carbon: influence of potential on deposit morphology[J]. J Appl Electrochem, 1992,22:872~876.
    [27] B.C.Tripathy, P. Singh, D.M.Muir et al. Effect of organic extractants on the electrocrystallization of nickel from aqueous sulphate solutions[J]. J Appl Electrochem, 2001,31:301~305.
    [28] U. S. Mohanty, B.C. Tripathy, P. Singh et al. Effect of pyridine and its derivatives on the electrodeposition of nickel from aqueous sulfate solutions[J]. J Appl Electrochem, 2001,31:579~583.
    [29] 左正忠,夏绍春.抗有机杂质镀镍添加剂对镍沉积晶体成核过程的影响[J].武汉大学学报(自然科学版),1998,44(2):150~154
    [30] 许书楷,周绍民.某些添加剂对镍在玻璃碳上电结晶的影响[J].厦门大学学报(自然科学版),1987,26(6):705
    [31] 黄令,董俊修,许书楷等.钕离子作用下的镍电沉积初期行为研究[J].材料保护,1999,32(2):1~3
    [32] Bode H, Dehmelt K, Witte J. Zur kennlinie der nickel hydroxide electrode[J]. Electrochim Acta, 1966,11 : 1079~1087.
    [33] 查伞性.电极过程动力学导论[M].北京,科学出版社,2002:400。
    [34] Yibo Mo, et al. In situ quartz crystal microbalance studies of nickel hydrous oxide films in alkaline electrolytes[J]. J Electrochem Soc, 1996,143(1):37~43.
    [35] Min-Seuk Kim, et al. A study on the phase transformation of electrochemically precipitated nickel hydroxides using an electrochemical quartz crystal microbalance[J]. J Electrochem Soc, 1998,145(2):507~511.
    [36] Deepika Singh. Characteristics and effects of γ-NiOOH on cell performance and a method to quantify it in nickel electrode[J]. J Electrochem Soc, 1998,145(1):116~120.
    [37] Robert Kostecki, et al. Electrochemical and in situ raman spectroscopic characterization of nickel hydroxide electrodes[J]. J Electrochem Soc, 1997,144(2):486~493.
    [38] Min-Seuk Kim, et al. A study of the electrochemical redox behavior of
    
    electrochemically precipitated nickel hydroxides using electrochemical quartz crystal microbalance[J]. J Electrochem Soc, 1997,144(5): 1537~1543.
    [39] Guzman Rss, et al. Non-equilibrium effects in the nickel hydroxide electrode[J]. J Appl Electrochem, 1979,9(2):183~189.
    [40] Gassa L M, et al. A potentiondynamic study of anodic film formation on nickel in borate solution[J]. J Appl Electrochem, 1983,13(2):135~145.
    [41] Burke L D, et al. Influence of pH on the redox behaviour of hydrous nickel oxide[J]. J Electroanal Chem, 1982,134(2):353~362.
    [42] Jiang Z, et al. Study of the oxidation layer on the nickel surface in 1M NaOH solution using the in situ photothermal spectroscopy method[J]. J Electroanal Chem, 1991,316(1~2): 199~209.
    [43] Hahn F, et al. In situ Uwisible spectroscopic investigation of the nickel electrode-alkaline solution interface[J]. Electrochim Acta, 1986,31 (3):335~342.
    [44] Hahn F, et al. In situ investigation of the behaviour of a nickel electrode in alkaline solution by UV-visible and IR reflectance spectroscopies[J]. Electrochim Acta, 1987,32(11):1631~1636.
    [45] Zhang C, et al. The anodic oxidation of nickel in alkaline media studied by spectroelectrochemical techniques[J]. J Electrochem Soc, 1987,134(12):2966~2970.
    [46] Hopper M A, et al. An optical study of the growth and oxidation of nickel hydroxide film[J]. J Electrochem Soc, 1973,120(2): 183~197.
    [47] Beden B, et al. The anodic layer on nickel in alkaline solution : An investigation using in situ IR spectroscopy[J]. Electrochim Acta, 1988,33(11): 1695~1698.
    [48] Melendres C A, et al. In sity laser Raman spectroscopic study of anodic corrosion film on nickel and cobalt[J]. J Electrochem Soc, 1984,131 (10):2239~2243.
    [49] Melendres C A, et al. On the composition of the passive film on nickel: A surface enhanced Raman spectroelectrochemical study[J]. J Electroanal Chem, 1992,333(1~2):103~113.
    [50] 翟大程等.镍在碱溶液中阳极氧化膜的拉曼光谱[J].复旦学报(自然科学版),1994,33(6):685~692。
    
    
    [51] 詹惠芳.电解氧化法制备黑镍的研究与应用[J].有色金属(冶炼部分),1994,3:14~16。
    [52] Thomas P Murphy, et al. Oxidation states in nickel oxide electrochromism[J]. Solar Energy Materials and Solar Cells,1995,39:377~389.
    [53] 唐谟堂,杨声海.Zn(Ⅱ) -NH3-NH4C1-H2O体系电积锌工艺及阳极反应机理[J].中南工业大学学报,1999,30(2):153~156
    [54] 王鹏等.垃圾渗沥液中氨氮的电化学氧化[J].中国环境科学,2000,20(4):289~291
    [55] A.C.A de Vooys et al. The role of adsorbates in the electrochemical oxidation of ammonia on noble and transition metal electrodes[J]. J. Electroanal. Chem, 2001,506:127~137.
    [56] B.A.Lopez de Mishma et al. Electrochemical oxidation of ammonia in alkaline solutions: its application to an amperometric sensor[J]. Electrochim Acta, 1998,43(3~4):395~404
    [57] S.Wasmus, E.J.Vasini, M.Krausa, H.T.Mishima, W.Vielstich.[J]. Electrochim Acta, 1994,39:23.
    [58] R.Ukropec, b.F.M.Kuster, J.C.Schouten, R.A.Van Santen.[J]. Appl. Catal. B, 1999,23:45
    [59] N.Ⅰ.Ⅱ'chenko.[J]. Russ. Chem. Rev, 1976,45:1119.
    [60] g.Papapolymerou, V.Bontozoglou. [J]. J. Mol.Catal. A, 1997,120: 165.
    [61] J.M.Bradley, A.Hopkinson, DA.King.[J]. J.Phys.Chem, 1995,99:17032.
    [62] H.gerischer, A.Mauerer.[J]. J.Electroanal.Chem, 1970,25:421.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700