碱性电池、锂离子电池及燃料电池镍基电极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碱性锌锰原电池和镍系列蓄电池广泛应用在便携式电子产品中,具有高性能价格比。近年来以球形β-NiOOH替代碱性锌锰电池中全部或部分MnO_2正极材料的高功率新型原电池首先在日本被开发出来。NiOOH是生产这种新电池的关键材料。球形β-NiOOH在碱性电解质中储存性能差且Zn-NiOOH原电池因一次性用价格较贵的NiOOH而成本高。MH-Ni蓄电池与其它高能电池相比具有非常好的安全性能,很适合大规模开发用作电动车动力电池。然而普通球形β-Ni(OH)_2正极材料不能很好地满足MH-Ni动力电池的高温、大电池充放电等要求。
     锂离子电池在目前大规模商品化的电池中综合性能最好、发展最快。但锂离子电池主要使用的正极材料LiCoO_2不仅价格高而且对环境有污染。开发性优价廉的锂离子电池正极材料对于锂离子电池更大规模的使用和更大范围的应用很是迫切和重要。LiNiO_2系列材料具有容量高、功率大、价格适中等优点被研究用来替代LiCoO_2,但LiNiO_2系列材料也存在合成困难、容量衰减快、热稳定性差、储存性能不佳等缺点,从而影响其实用化。
     低温燃料电池比能量高于锂离子电池、镍氢电池等普通电池,是目前研究开发最活跃的电池体系。贵金属Pt是氢等燃料氧化和氧气还原电催化活性最高的单质金属催化剂。但纯Pt等贵金属Pt资源储量有限,价格昂贵,使低温燃料电池成本居高不下,严重阻碍其商品化推广使用。
     本论文就是为了解决上述这些问题而展开,有关结果如下:
     1、碱性电池NiOOH和Ni(OH)_2正极材料
     以球形β-Ni(OH)_2为前驱体在KOH溶液中通过K_2S_2O_8化学氧化制备NiOOH并考察了制备条件对产物的影响。低浓度KOH溶液(1-3M)只能够得到低氧化值的产物,高浓度KOH溶液(6-9M)中可以得到高氧化值的产物且其氧化值随K_2S_2O8与β-Ni(OH)_2的反应当量比增大而升高。控制反应条件可以得到氧化值从_2.95(纯β-NiOOH相)到3.55(纯γ-NiOOH相)的一系列NiOOH产物。NiOOH氧化值越高,产物中γ相NiOOH含量越大,密度越小,球形颗粒碎裂得越严重,比表面积越大,K含量越大,Ni含量越小,质量比放电容量越小,在KOH溶液中的储存稳定性越好,热分解行为越接近γ-NiOOH。γ-NiOOH的热分解行为比β-NiOOH复杂,在加热过程会失去层间嵌合水,发生层间距收缩,经过二步热分解层状结构成氧化物。从放电比容量、储存稳定性、振实密度等因素考虑,采用氧化值为3.04的NiOOH作为碱性Zn-NiOOH原电池的正极材料既可以获得较大的体积比放电容量又可具有较佳的储存稳定性。
     以Al取代球形α-Ni(OH)_2为前驱体在6M的KOH溶液中与过量K_2S_2O8反应制备了Al取代球形γ-NiOOH。用XRD、SEM、FTIR、TGA-DTG、TPD-MS和HT-XRD等对Al取代球形α-Ni(OH)_2和γ-NiOOH进行了表征。发现Al取代球形α-Ni(OH)_2氧化生成Al取代球形γ-NiOOH时层间距变小,层间嵌合物变少,振实密度变大。Al取代γ-NiOOH的热分解行为与Al取代α-Ni(OH)_2类似但热稳定性不及Al取代α-Ni(OH)_2好。与球形β-NiOOH相比, Al取代球形γ-NiOOH不仅具有较高的质量比放电容量(353mAhg-1)而且在碱性电解液中还具有良好的储存稳定性。Al取代γ-NiOOH与球形β-NiOOH都具有良好充放循环性能。Al取代球形γ-NiOOH振实密度(1.51 gcm-3)虽大于非规则碎片状γ-NiOOH(1.01 gcm-3),但还是小于球形β-NiOOH的振实密度(_2.45 gcm-3)。
     以球形β-Ni(OH)_2颗粒为种子通过受控结晶在其表面沉积β-Co(OH)_2制备了β-Co(OH)_2包覆球形β-Ni(OH)_2。在制备β-Co(OH)_2包覆球形β-Ni(OH)_2过程中加入K_2S_2O8则可制得β-CoOOH包覆球形β-NiOOH。β-Co(OH)_2包覆球形β-Ni(OH)_2和β-CoOOH包覆球形β-NiOOH比未包覆的样品具有更好的充电氧化、放电还原及充放电循环性能。β-CoOOH包覆球形β-NiOOH在碱性电解液中比未包覆的球形β-NiOOH具有更好的储存稳定性。以β-Co(OH)_2包覆球形β-Ni(OH)_2制成的MH-Ni蓄电池比未包覆的球形β-Ni(OH)_2制成的MH-Ni蓄电池具有更好的高倍率充放电特性、活性物质利用率、高温充电效率及充放电循环性能。以β-CoOOH包覆球形β-NiOOH为正极材料制成的Zn-NiOOH成品电池不仅具有原电池的方便而且具有蓄电池的经济环保。Zn-NiOOH电池1000mA大电流放电至1.1V的持续时间可达56min,是碱锰电池五倍以上,工作电压平台比碱锰电池也约高0.3V左右。而以包覆的球形β-NiOOH和MnO_2混合作为正极材料的Zn-NiOOH/MnO_2原电池既保持Zn-NiOOH原电池的方便与大功率放电性能又具有较低的成本,而且其储存稳定性比用未包覆的球形β-NiOOH制成的Zn-NiOOH/MnO_2原电池得到很大改善。
     _2、锂离子电池LiNiO_2@LiCoO_2正极材料
     以球形核壳结构β-NiOOH@CoOOH为前驱体与LiOH在空气气氛下烧结反应合成LiNiO_2-LiCoO_2复合正极材料并考察了反应温度和时间对产物结构的影响。反应温度低或时间短,产物层状结构和结晶程度差;反应温度高或时间长,产物结晶程度增高但层状结构变差而且Ni与Co发生迁移形成各处Ni与Co浓度相同的LiNi1-xCoxO_2固溶体,得不到具有核壳结构的产物。在600oC下反应24小时可以得到XRD衍射峰003与104强度比高达1.79的具有良好层状结构的球形核壳结构LiNiO_2@LiCoO_2复合材料。以球形β-NiOOH@CoOOH为前驱体合成得到产物的层状结构特征比以球形β-NiOOH和β-Ni(OH)_2为前驱体在相同情况条件下合成得到的产物都要好。I003/I104比为1.79的球形核壳结构LiNiO_2@LiCoO_2复合材料壳层主要为LiCoO_2,核主要为LiNiO_2。LiNiO_2@LiCoO_2首次放电容量为181.41mAhg-1,充放电循环_20次以后容量保持率还可达97%而LiNiO_2只有88%。LiNiO_2@LiCoO_2储存性能也要优于没有LiCoO_2壳层包覆的LiNiO_2。以球形β-NiOOH@CoOOH作为前驱体制备LiNiO_2@LiCoO_2不需要氧气氛和很高的合成温度,有利于材料的大规模工业化生产,且产物性能良好。
     3、低温燃料电池核壳结构Ni@Pt电催化剂
     以NiCl_2和H_2PtC_(l6)为金属盐,乙二醇为溶剂,水合肼为还原剂,采用逐步还原法制备了不同Ni Pt比值的Pt为壳层Ni为核的核壳结构Ni@Pt复合粒子电催化剂。用TEM、XRD、XPS等表征方法测试了所合成电催化剂的粒径大小、物相结构及表面组成。作为核的Ni粒子平均粒径为8.6nm,随Pt比例的增高,核壳复合粒子的粒径逐渐增加,当Pt与Ni比值为2时的粒子达12.1nm。Ni@Pt复合粒子的核壳界面可能为NiPt合金层,壳层主要为Pt。纳米核壳结构Ni@Pt复合粒子的甲醇氧化电催化性能和抗类CO中间产物中毒性能比纯Pt都要好得多。在合成的NiPt01、NiPt02、NiPt05、NiPt10、NiPt20等5个纳米核壳结构Ni@Pt电催化剂中,NiPt01(即Pt与Ni的摩尔比为1:10)的电催化性能最高(甲醇催化氧化电流密度为_290.3 mAmg-1Pt)抗类CO中间产物中毒能力也最强。即使在酸性电解质中纳米核壳结构Ni@Pt电催化剂因Ni核被外面富Pt壳层所包覆而具有良好的耐腐蚀稳定性。纳米核壳结构Ni@Pt复合粒子同样具有比纯Pt更好的氧还原电催化性能。纳米核壳结构Ni@Pt电催化剂因Pt充分分布在纳米电催化剂颗粒的表面,且富Pt壳层还含有Ni起到协同催化作用,因此不论是对甲醇的电催化氧化还是对氧的电催化还原的催化性能都比纳米纯Pt电催化剂要高得多,贵金属Pt得到充分地利用,从而能够降低燃料电池成本。
Alkaline Zn-MnO_2 primary batteries and nickel-based rechargeable batteries are widely applied in portable electronics, which have high ratio of performance and cost. A new type of high powder primary battery with sphericalβ-NiOOH positive electrode material has been developed in Japan recent years. However, the storage stability ofβ-NiOOH is very poor in electrolyte. The synthetic method and performance improvement of NiOOH are keys for the production of this new type of battery. MH-Ni rechargeable battery has better safe performance compared to other high energy batteries, which is more suitably used in electric vehicle. However, the common sphericalβ-Ni(OH)_2 can not well meet the demand in electric vehicle battery such as high temperature and current charge and discharge, etc.
     Lithium ion rechargeable battery has the best comprehensive performance and most fast development among the large scale commercial batteries. But the commonly used LCoO_2 positive electrode material in the battery is high cost and harmful to the environment. The low cost and high performance positive electrode material substituting for LCoO_2 is very important and urgent for the extend application of lithium ion rechargeable battery. The LiNiO_2 serial positive electrode materials have advantages such as high specific capacity, specific power and moderate cost, etc. However, the disadvantages of LiNiO_2 such as hard preparation, fast capacity decay, bad storage stability, etc have hampered its practical application.
     The specific energy of low temperature fuel cells is higher than that of common batteries such as lithium ion and MH-Ni rechargeable batteries. The research of fuel cells is the most active among all electrochemical power sources at present. Pt has the highest electrocatalytic activity than other elements in the fuel cell oxidation and oxygen reduction reactions. But the catalytic activity of pure Pt is not satisfied for the application of direct methanol fuel cells, etc. Furthermore, the cost of Pt is very high, which seriously hinders the commercial use of low temperature fuel cells.
     This thesis is in order to solve the above problems and the results are following:
     1. NiOOH and Ni(OH)_2 as positive electrode materials for alkaline batteries
     The NiOOH products were prepared by chemical oxidation of sphericalβ-Ni(OH)_2 with K_2S_2O8 in KOH solution and the effects of preparation conditions were investigated. The NiOOH with low nickel oxidation state was obtained only in low concentration of KOH solution (1-3M). The NiOOH with high nickel oxidation state was got in high concentration KOH solution (6-9M). The nickel oxidation state of products increased with the ratio of K_2S_2O8 andβ-Ni(OH)_2 increased or the KOH solution increased from 3M to 6M. The NiOOH with nickel oxidation state from _2.95 (pureβ-NiOOH phase) to 3.55 (pureγ-NiOOH phase) can be obtained by controlled the synthetic conditions. As the nickel oxidation state of NiOOH increased, theγ-NiOOH phase content increased, tap density decreased, spherical particles broke more seriously, specific surface increased, K content increased, Ni content decreased, specific discharge capacity decreased, storage stability in KOH electrolyte increased and the thermal behavior was more similar to pureγ-NiOOH. The NiOOH with nickel oxidation state of 3.04 was suitable as positive electrode material for alkaline Zn-NiOOH primary battery for comprehensive concern.
     The spherical Al substitutedγ-NiOOH was synthesized by oxidation of spherical Al substitutedα-Ni(OH)_2 with K_2S_2O_8 in 6M KOH solution. The samples were characterized by XRD, SEM, FTIR, TGA-DTG, TPD-MS and HT-XRD. The results indicated that the interlayer distance and the intercalated species decreased while the tap density increased when the Al substitutedα-Ni(OH)_2 was oxidized to Al substitutedγ-NiOOH. And the Al substitutedγ-NiOOH has similar thermal behavior to Al substitutedα-Ni(OH)_2 but the thermal stability of Al substitutedγ-NiOOH was inferior to that of Al substitutedα-Ni(OH)_2. The spherical Al substitutedγ-NiOOH has higher specific discharge capacity of 353mAhg-1 and better storage stability in KOH electrolyte than sphericalβ-NiOOH. Both of spherical Al substitutedγ-NiOOH andβ-NiOOH have good charge-discharge cycleability. The spherical Al substitutedγ-NiOOH has higher tap density (1.53gcm-3) than un-sphericalγ-NiOOH (1.01 gcm-3) but it is lower compared to sphericalβ-NiOOH (2.45 gcm-3).
     β-Co(OH)_2 coated sphericalβ-Ni(OH)_2 was prepared by the precipitation of β-Co(OH)_2 on the surface of sphericalβ-Ni(OH)_2 particles. Theβ-CoOOH coated sphericalβ-NiOOH was obtained by adding K_2S_2O8 following the product ofβ-Co(OH)_2 coated sphericalβ-Ni(OH)_2. Cyclic voltammetry measurement demonstrated that the coated sphericalβ-Ni(OH)_2 andβ-NiOOH.have better electrochemical performance in charge-discharge and cyclability than uncoated ones, respectively. The sphericalβ-NiOOH also has better storage stability in alkaline electrolyte than uncoated one. The MH-Ni rechargeable battery withβ-Co(OH)_2 coated sphericalβ-Ni(OH)_2 as electrode material has better specific charge-discharge performance, higher active material utilization, charge efficiency at elevate temperature and cycleability than the MH-Ni rechargeable battery with uncoated sphericalβ-Ni(OH)_2 as positive electrode material. The Zn-NiOOH battery withβ-CoOOH coated sphericalβ-NiOOH as positive electrode material can be used not only conveniently as primary battery but also repeatedly as rechargeable battery. The 1000 mA discharge time of Zn-NiOOH battery to 1.1 V is 56 min, which is more than five times and about 0.3 V higher of discharge voltage than conventional alkaline Zn-MnO_2 primary battery. The alkaline Zn-NiOOH/MnO_2 primary battery then has both lower cost compared to Zn-NiOOH battery and higher power compared to alkaline Zn-MnO_2 battery.
     _2. LiNiO_2@LiCoO_2 as positive electrode material for lithium ion battery The spherical LiNiO_2-LiCoO_2 composite positive electrode material was prepared by sintering sphericalβ-NiOOH@CoOOH with LiOH in air atmosphere. The product with bad stoichiometry and low crystallinity was obtained at too low temperature or short time. The reaction temperature was too high or the reaction time was too long, resulting in production without core-shell structure with bad stoichiometry and high crystallinity. The LiNiO_2@LiCoO_2 with the highest XRD peak intensity ratio of 003 and 004 of 1.79 and the best stoichiometry was obtained from sphericalβ-NiOOH@CoOOH at 600oC and _24 h, which also has the best layered structure than ones from sphericalβ-NiOOH orβ-Ni(OH)_2. The first discharge capacity of this LiNiO_2@LiCoO_2 with core-shell structure is 181.41mAhg-1. The LiNiO_2@LiCoO_2 also has better cycleability and storage stability than LiNiO_2. The synthesis of LiNiO_2@LiCoO_2 from sphericalβ-NiOOH@CoOOH can be carried out in air amphorae and at low temperature, which is very facile in large scale produce.
     3. Ni@Pt core-shell nanoparticle as electrocatalyst for low temperature fuel cells The Ni@Pt nanoparticles with Ni core and Pt shell as electrocatalysts were prepared by successive reduction of nickel and Pt ions with hydrazine in glycol solution. The mean particle size of core-shell nanoparticles increased with the ratio of Pt and Ni increased. The interface of Ni core and Pt shell might be NiPt alloy and the shell was main Pt. The Ni@Pt core-shell nanoparticles have higher catalytic efficiency of methanol oxidation and CO tolerance than pure Pt, especially the NiPt01 sample (01 donate the molar ratio of Pt and Ni is 1:10). The NiPt01 also had good stability in acid electrolyte because the Ni core was coated by Pt. The Ni@Pt core-shell nanoparticles also had better electrochemical oxygen reduction catalytic efficiency than pure Pt by rotating disc electrode tests. The noble metal of Pt was most efficiently dispersed on the un-noble metal of Ni core surface, and the nickel underlay the Pt had co-catalytic effect. Therefore the catalytic efficiency of Ni@Pt core-shell nanoparticles was very high and the noble metal of Pt was most utilized, the cost of fuel cells could be decreased.
引文
[1] Jurgen O. Handbook of battery materials [M]. S. l.: John Wiley & Sons Ltd., 1998.
    [2] 李荻. 电化学原理[M]. 北京: 北京航空航天大学出版社, 1998.
    [3] 郭炳焜, 李新海, 杨松青. 化学电源—电池原理及制造技术[M]. 长沙: 中南工业大学出版社, 2001.
    [4] 吴宇平, 万春荣, 姜长印. 锂离子二次电池[M]. 北京: 化学化工出版社, 2002.
    [5] 衣宝廉. 燃料电池—原理?技术?应用[M]. 北京: 化学化工出版社, 2003.
    [6] Wielstich W., Gasteiger H. A., Lamm A. Handbook of Fuel Cells-Fundamentals, Technology, Applications [M]. S. l. : John Wiley & Sons Ltd., 2003.
    [7] 李景虹. 先进电池材料[M]. 北京: 化学化工出版社, 2004.
    [8] 查全性. 化学电源选论[M]. 武汉: 武汉大学出版社, 2005.
    [9] 毛宗强. 燃料电池[M]. 北京: 化学化工出版社, 2005.
    [10] 管从胜, 杜爱玲, 杨玉国. 高能化学电源[M]. 北京: 化学化工出版社, 2005.
    [11] 陈军, 陶占良, 苟兴龙. 化学电源 原理、技术与应用[M]. 北京: 化学工业出版社, 2006.
    [12] 袁国辉. 电化学电容器[M]. 北京: 化学工业出版社, 2006.
    [13] http://www.baj.or.jp.
    [14] http://www.scientific-computing.com.
    [15] http://info.pf.hc360.com.
    [16] 汤宏伟, 陈宗璋, 钟发平. 泡沫镍的制备工艺及性能参数[J]. 电池工业, 2002, 7: 315-318.
    [17] 董全峰, 詹亚丁, 金明钢, 黄镇财, 郑明森, 尤金跨, 林祖赓. 锡镍合金的制备及电化学性能[J]. 电池, 2005, 35: 3-5.
    [18] Antolini E., Salgado J. R. C., Gonzalez E. R. The methanol oxidation reaction on platinum alloys with the first row transition metals - The case of Pt-Co and -Ni alloy electrocatalysts for DMFCs: A short review [J]. Appl. Catal. B Environ, 2006, 63: 137-149.
    [19] Polzot P., Grugoon S., Grugoon S. Nano-sized transitions-metal oxide as negative electrode material for lithium-ion batteries [J]. Nature, 2000, 407: 496-499.
    [20] 邢伟, 李丽, 阎子峰, Lu G. Q. 介孔氧化镍的合成表征和在电化学电容器中的应用[J]. 化学学报, 2005, 63: 1775-1781.
    [21] 袁安保, 张鉴清, 曹楚南. 镍电极研究进展[J]. 电源技术, 2001, 25: 53-59.
    [22] 周勤俭, 袁庆文, 覃事彪, 王利君, 曾子高, 董正强. 正极材料α-Ni(OH)2 的研究进展[J]. 电池, 2003, 33: 93-95.
    [23] 刘小虹, 余兰. 碱性电池用纳米氢氧化镍研究进展[J]. 电源技术, 2003, 27: 425-428.
    [24] 邓润荣, 方春, 刘勇标, 吴前麒, 陈力中. 锌镍电池的研制与开发[J]. 电池, 2004, 34: 50-52.
    [25] 高效岳, 沙永香, 唐琛明, 蒋正治, 宋美华, 沈涛. 锌镍一次电池的研制与实效试验[J]. 电池, 2003, 33: 305-307.
    [26] 刘澧浦, 周震涛. 羟基氧化镍的研究进展[J]. 电源技术, 2004, 28: 520-524.
    [27] 符显珠, 李俊, 林敬东, 廖代伟. 碱性Zn-NiOOH/MnO2 一次电池的性能研究[J]. 电源技术, 2005, 29: 762-764.
    [28] Fu X. Z., Zhu Y. J., Xu Q. C., Li J., Pan J. H., Xu J. Q., Lin J. D., Liao D. W. Nickel oxyhydroxides with various oxidation states prepared by chemical oxidation of spherical β-Ni(OH)2 [J]. Solid State Ionics, 2007, 178: 987-993.
    [29] Fu X. Z., Wang X., Xu Q. C., Li J., Xu J. Q., Lin J. D., Liao D. W. Physical characterization, electrochemical performance and storage stability of spherical Al-substituted gamma-NiOOH [J]. Electrochim. Acta, 2007, 52: 2109-2115.
    [30] Fu X. Z., Xu Q. C., Hu R. Z., Pan B. X., Lin J. D., Liao D. W. β-CoOOH coated spherical β-NiOOH as the positive electrode material for alkaline Zn-NiOOH battery [J]. J. Power Sources, 2007, 164: 916-920.
    [31] Rossen E. Structure and electrochemistry of LixMnyNi1-yO2 [J]. Solid State Ionics, 1992, 57: 311-318.
    [32] Whittingham M. S. Lithium batteries and cathode materials [J]. Chem. Rev., 2004, 104: 4271-4301.
    [33] 刘汉三, 杨勇, 张忠如, 林祖赓.锂离子电池正极材料锂镍氧化物研究新进展[J]. 电化学, 2001, 7: 145-154.
    [34] 谭显艳, 胡国荣, 高旭光, 禹筱元. 正极材料LiNi1/3Co1/3Mn1/3O2 的研究进展[J]. 电池, 2005, 35: 315-316.
    [35] 欧阳红勇, 李正南, 陈坚. 锂离子电池镍系正极材料的掺杂研究进展[J]. 矿冶工程, 2005, 25: 78-81.
    [36] Tiwari S., Poillerat K., Poillerat G. Electrocatalysis of oxygen evolution/reduction on LaNiO3 prepared by a novel malic acid-aided method [J]. J. Appl. Electrochem. 1998, 28: 114-119.
    [37] 国土资源部信息中心. 世界矿产资源年评[M]. 北京: 地质出版社, 2002.
    [38] 李金惠. 废电池管理与回收[M]. 北京: 化学工业出版社, 2005.
    [39] http://metal.i001.com.
    [40] http://news.vlongbiz.com.
    [41] http://www.cnsteelinfo.net.
    [42] http://www.chinairn.com.
    [43] http://www.yxmetal.worldmetal.cn.
    [44] http://www.imtc.com.cn.
    [45] http://www.smm.com.cn.
    [46] 翟秀静. 新能源技术[[M]. 北京: 化学工业出版社, 2005.
    [47] Christopher K. D., 郭凯声. 冉隆华便携式电子产品的电池革命[J]. 科学(上海), 1999, 10: 45-49.
    [48] Rand D. A. J. 等编, 郭永榔等译 阀控式铅酸蓄电池[M]. 北京: 机械工业出版社, 2007.
    [49] 阮喻, 沈卫东, 杜明磊, 王建立, 张颖超, 刘驰. 便携式PEMFC移动电源系统的设计与研究[J]. 电源技术, 2004, 28: 141-145.
    [50] 李菁. UPS蓄电池的选择[J]. 通信电源技术, 2002, 6: 38-40.
    [51] 厉海艳, 李全安, 文九巴, 张清, 张荥渊. 动力电池的研究应用及发展趋势[J]. 河南科技大学学报(自然科学版), 2005, 26: 35-40.
    [52] 卢世刚., 刘莎. 电动汽车用动力电池的主要发展方向[J]. 新材料产业, 2005, 4: 49-54.
    [53] 邱纲, 陈勇, 李东. 电动汽车用动力电池的现状及发展趋势[J]. 辽宁工学院学报, 2004, 24: 41-44.
    [54] 刘亚飞, 白厚善. 动力电池及其材料的发展动向[J]. 稀土信息, 2003, 7: 8-12.
    [55] 孟良荣, 王金良, 电动车电池现状与发展趋势[J]. 电池工业, 2006, 11: 202-206.
    [56] 郭自强. 电动车电池概况及发展前景[J]. 电池工业, 2004, 9: 283-286.
    [57] 崔艳华, 孟凡明. 钒电池储能系统的发展现状及其应用前景[J]. 电源技术, 2005, 29: 776-780.
    [58] 张华民, 周汉涛, 赵平, 衣宝廉. 储能技术的研究开发现状及展望[J]. 能源工程, 2005, 3: 1-7.
    [59] http://www.chinabattery.org.
    [60] 毕道治. 便携式小型充电电池的发展[J]. 电池工业, 2007, 11: 44-50.
    [61] http://kjxm.gdstc.gov.cn.
    [62] 谭永东. 锂离子电池市场趋势与产业格局[J]. 新材料产业, 2004, 129: 11-15.
    [63] http://it.sohu.com.
    [64] http://data.chinabyte.com.
    [65] http://www.cinic.org.cn.
    [66] http://www.cebike.com.
    [67] 全林. 科技史简论[M]. 北京: 科学出版社, 2002.
    [68] 袁楚. 电池的历史[J]. 数字通信, 2006, 2: 56-58.
    [69] Dell R. M. Batteries: fifty years of materials development [J]. Solid State Ionics, 2000, 134: 139-158.
    [70] Vincent C. A. Lithium batteries: a 50-year perspective, 1959–2009 [J]. Solid State Ionics, 2000, 134: 159-167.
    [71] Wielstich W., Gasteiger H. A., Lamm A. Handbook of Fuel Cells-Fundamentals, Technology, Applications [M]. S. l.: John Wiley & Sons Ltd, 2003.
    [72] http://portal.isiknowledge.com.
    [1] Glemser O., Einerhand J. Diestruktur hoherer Nickel hydroxide [J]. Z. Anorg Allg Chem. 1950, 261:43-51.
    [2] Halpert G. Past development and the future of nickel electrode cell technology [J]. J. Power Sources, 1984, 12: 177-192.
    [3] 陈军, 陶占良. 镍氢二次电池[M]. 北京: 化学化工出版社, 2006.
    [4] 袁安保, 张鉴清, 曹楚南. 镍电极研究进展[J]. 电源技术, 2001, 25: 53-59.
    [5] Bode H., Wittej K. Zur kenntnisder nickelhydroxidelktode —I. U ber das nickel ( Ⅱ) hydroxidhydrat [J]. Electrochim. Acta, 1966, 11: 1079 -1087.
    [9] Oliva P., Leonardi J., Laurent J. F., Delmas C., Braconnier J. J., Figlarz M., Fievet F., Guibert A. D. Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides [J]. J. Power Sourcers, 1982: 8: 229-255.
    [10] Zimmerman A. H. Technological implications in studies of nickel electrode performance and degradation [J]. J. Power Sources, 1984, 12: 233-245.
    [11] Fritts D. H. An estimation of the mechanical strees in nickel electrode sinter and its implications for nickel electrode construction [J]. J. Power Sources, 1984, 12: 267-275.
    [12] Oshitani M., Takayama T., Takashima K. A study on the swelling of a sintered nickel hydroxide electrode [J]. J. Power Sources, 1986, 16: 403-412.
    [13] Barnard R., Randell C. F., Tye F. L. Studies concerning charged nickel hydroxide electrodes. I. Measurement of reversible potentials [J]. J. Appl. Electrochem. 1980, 10: 109-125.
    [14] Corringan D. A., Knight S. L. Electrochemical and Spectroscopic Evidence on the Participation of Quadrivalent Nickel in the Nickel Hydroxide Redox Reaction [J]. J. Electrochem. Soc. 1989, 136: 613-619.
    [15] Faure C., Delmas C., Fouassier M. Characterization of a turbostratic α-nickel hydroxide quantitatively obtained from NiSO 4 solution [J]. J. Power Sources, 1991, 35: 279-290.
    [16] Lukovtsev P. D., Slaidin G. J. Proton diffusion through nickel oxide [J]. Electrochim. Acta, 1962, 6: 17-21.
    [17] Tuomi D., Crawford G. J. B. The nickel positive electrode. Ⅱ. Semiconduction and electrode performance [J]. J. Electrochem. Soc., 1968, 115: 450-451.
    [18] Takehara Z., Kato M., Yoshizawa S. Electrode kinetics of nickel hydroxide in alkaline solution [J]. Electrochim. Acta, 1971, 16: 833-843.
    [19] Zimmerman A. H., EFFA. P. K. Discharge kinetics of the nickel electrode [J]. J. Electrochem. Soc., 1984, 131: 709-713.
    [20] Motupally S., Streinz C. C., Weidner J. W. Proton Diffusion in Nickel Hydroxide Films [J]. J. Electmchem. Soc., 1995, 142: 1401-1408.
    [21] Motupally S., Streinz C. C., Weidner J. W. Proton Diffusion in Nickel Hydroxide- Prediction of Active Material Utilization [J]. J. Electmchem. Soc., 1998, 145: 29-34.
    [22] 刘寿长,王文祥. 氢氧化镍活性、堆积密度、形貌与结构研究[J]. 电源技术, 1995, 19: 28-32.
    [23] 姜长印, 万春荣, 张泉荣, 章金基. 高密度高活性球形氢氧化镍的制备与性能控制[J]. 电源技术, 1997, 21: 243-248.
    [24] Watanabe K., Kikuoka T., Kumagai N. Physical and electrochemical characteristic of nickel hydroxide as a positive material for rechargeable alkaline batteries [J]. J. Appl. Electrochem. 1995, 25: 219-225.
    [25] Bemard M. C., Cortes R. Structural defects and electrochemical reactivity of β-Ni(OH)2 [J]. J. Power Sources, 1996, 63: 247-254.
    [26] 万春荣, 章金基, 姜长印. 氢氧化亚镍的性能与结构之间关系的研究[J]. 清华大学学报(自然科学版), 1998, 38: 95-98.
    [27] 彭美勋, 沈湘黔, 王零森. 球形Ni(OH)2的微结构与电化学性能的关系[J]. 电源技术, 2005, 29: 211-213.
    [28] 程风云, 唐致远, 郭鹤桐. 球形Ni(OH)2 粒径分布对电化学活性的影响[J]. 天津大学学报, 2000, 33: 56-58.
    [29] U?ates M. E., Folquer M. E., Vilche J. R., Arvia A. J. The influence of foreign cations on the electrochemical behavior of the nickel hydroxide electrode [J]. J. Electrochem. Soc., 1992, 139: 2697-2704.
    [30] Hua Z. W., Jun K. J., Mei Y. H., Jun Z. D. A study of the electrochemistry of nickel hydroxide electrodes with various additives [J]. J. Power Sources, 1995, 56: 75-79.
    [31] Ding Y. C., Yuan J. L., Chang Z. R. Cyclic voltammetry response of coprecipitated Ni(OH)2 electrode in 5M KOH solution [J]. J. Power Sources, 1997, 69: 47-54.
    [32] 任小华, 蒋文全, 李莉, 傅钟臻, 周辉, 王超群. 部分杂质对球形氢氧化镍结构及电性能的影响[J]. 电源技术, 1998, 22: 43-46.
    [33] Pickeet D. F., Maloyj T. Microdlectrode studies of electrochemically coprecipitated cobalt hydroxide in nickel hydroxide electrodes [J]. J. Electrochem. Soc, 1978, 125: 1026-1032.
    [34] Sooka K. Studies on the effect of cobalt addition to the nickel hydroxide electrode [J]. J. Appl. Electrochem., 1986, 16: 274-280.
    [35] Armstrong R. D., Briggs G. W. D., Charles E. A. Some effects of the addition of cobalt to the nickel hydroxide electrode [J]. J. Appl. Electrochem., 1988, 18: 215-219.
    [36] Audemer A., Delahaye A., Farhi R., Sac-Epée N., Tarascon J. M. Electrochemical and Raman studies of Beta type nickel hydroxides Ni1-xCox(OH)2 electrodematerials [J]. J. Electrochem. Soc., 1997, 144: 2614-2620.
    [37] 袁安保, 张鉴清, 成少安, 曹楚南. 钴及其化合物对镍电极放电容量和循环寿命的影响[J]. 电源技术, 2000, 24: 74-76.
    [38] 余丹梅, 陈昌国, 文莉, 周上祺. 锌的添加方式对氢氧化镍结构和性能的影响[J]. 化学通报, 2004, 7: 532-535.
    [39] 曹小燕, 毛立彩, 周作祥. 氢氧化镍电极及其添加剂[J]. 电池, 1994, 24: 236-239.
    [40] Oshitani M., Yufu H., Takashima K., Tsuji S., Matsumaru Y. Development of a pasted nickel electrode with high active material utilization [J]. J. Electrochem. Soc., 1989, 136: 1590— 1593.
    [41] 潘铮铮, 王荣, 周震, 阎杰. 球型氢氧化镍表面包覆 CoOOH 的研究[J]. 电源技术, 2001, 25: 200-202.
    [42] 胡泽星, 袁庆文, 周勤俭, 覃事彪, 贺万宁, 殷春梅. 球形氢氧化镍表面包覆Co(OH)2的研究[J]. 冶金工程, 2004, 24: 79-82.
    [43] 杜晓华, 姜长印. 覆钴层晶型对球形Ni(OH)2电化学性能的影响[J]. 电源技术, 2002, 26: 346-348.
    [44] Mi X., Gao X. P., Jiang C. Y., Geng M. M., Yan J., Wan C. R. High temperature performances of yttrium-doped spherical nickel hydroxide [J]. Electrochim. Acta, 2004, 49: 3361–3366.
    [45] Hu W. K., Gao X. P., Geng M. M., Gong Z. X., Noreus D. Synthesis of CoOOH Nanorods and Application as Coating Materials of Nickel Hydroxide for High Temperature Ni-MH Cells [J]. J. Phys. Chem. B, 2005, 109: 5392-5394.
    [46] He X. M., Ren J. G., Li W., Jiang C. Y., Wan C. R. Ca3(PO4)2 coating of spherical Ni(OH)2 cathode materials for Ni–MH batteries at elevated temperature [J]. Electrochim. Acta, 2006, 51: 4533-4536.
    [47] He X. M., Jiang C. Y., Li W., Wan C. R. Co/Yb Hydroxide Coating of Spherical Ni(OH)2 Cathode Materials for Ni–MH Batteries at Elevated Temperatures [J]. J. Electrochem. Soc., 2006, 153: A566-A569.
    [48] Ren J. X., Yan J., Zhou Z., Wang X. J., Gao X. P. High-temperature electrochemical performance of spherical Ni(OH)2 coated with Lu(OH)3 [J]. Int. J. Hydrogen Energy, 2006, 31: 71-76.
    [49] Vishnu K. P., Mridula D., Indira L., Shukla A. K., Ganesh K. V., Munichandraiah L. N. Stabilized α-Ni(OH)2 as Electrode Material for Alkaline Secondary Cells [J]. J. Electrochem. Soc., 1994, 141: 2956-2959.
    [50] Sugimoto A., Ishida S., Hanawa K. Preparation and characterization of Ni/Al-Layered Double Hydroxide [J]. J. Electrochem. Soc., 1999, 146: 1251-1255.
    [51] 解晶莹, 张全生, 刘剑峰, 史鹏飞. 镍氢氧化物研究进展[J]. 电源技术, 1999, 23: 238-244.
    [52] 杨书廷, 陈改荣, 尹艳红, 陈红军. 亚微米级球形α-Ni(OH)2的制备、结构及性能[J]. 电池, 2001, 31: 107-109.
    [53] 周勤俭, 袁庆文, 覃事彪, 王利君, 曾子高, 董正强. 正极材料α-Ni(OH)2 的研究进展[J]. 电池, 2003, 33: 93-95.
    [54] Chen H., Wang J. M., Pan T., Zhao Y. L., Zhang J. Q., Cao C. N. The structure and electrochemical performance of spherical Al-substituted α-Ni(OH)2 for alkaline rechargeable batteries [J]. J. Power Sources, 2005, 143: 243–255.
    [55] Faure C., Delmas C. Electrochemical behaviour of α-cobalted nickel hydroxide electrodes [J]. J. Power Sources, 1991, 36: 497-506.
    [56] Faure C., Delmas C., Borthomieu Y. The effect of cobalt on the chemical and electrochemical behaviour of the nickel hydroxide electrode [J]. Mater. Sci. & Eng., 1992, B13: 89-96.
    [57] Guerlou-Demourgues L., Delmas C. Electrochemical behavior of the Manganses-Substituted Nickel hydroxide [J]. J. Electrochem. Soc.,1996, 143: 561-566.
    [58] Guerlou-Demourgues L., Delmas C. Structure and properties of precipitated nickel-iron hydroxides [J]. J. Power Sources, 1993, 45: 281-289.
    [59] Guerlou-Demourgues L., Delmas C. Effect of iron on the electrochemical properties of the nickel hydroxide electrode [J]. J. Electrochem. Soc., 1994, 141: 713-717.
    [60] 周震, 阎杰, 林进. 纳米Ni(OH)2的质丁扩散行为研究[J]. 电源技术, 1999, 23: 319-321.
    [61] 彭美勋, 王零森, 沈湘黔, 危亚辉, 贺万宁. β 球形氢氧化镍的微观结构及其形成机理[J]. 中国有色金属学报, 2003, 13: 131-135.
    [62] 刘小虹, 余兰. 碱性电池用纳米氢氧化镍研究进展[J]. 电源技术, 2003, 27: 425-428.
    [63] 李稳, 姜长印, 万春荣. 纳米氢氧化镍的研究进展[J]. 电池, 2004, 34: 440-441.
    [64] Reisner D.E., Salkind A. J., Strutt P. R., Xiao T. D. Nickel hydroxide and other nanophase cathode materials for rechargeable batteries [J]. J. Power Sources, 1997, 65: 231-233.
    [65] 周根陶, 刘双怀, 郑永飞. 沉淀转化法制备不同形状的氢氧化镍及氧化镍超微粉末的研究[J].无机化学学报, 1997, 13: 43-47.
    [66] 夏熙, 魏莹. 纳米级β-Ni(OH)2的制备和放电性能[J].无机材料学报, 1998, 13: 674-678.
    [67] 赵力, 周德瑞, 张翠芬. 纳米氢氧化镍的研制置其电化学性能[J]. 化学通报, 2001, 64: 513-515.
    [68] 刘长久, 叶乃清, 刁汉明. 纳米氧化镍氢氧化镍复合电板材料的制备及其电化学性能[J]. 应用化学, 2001, 18: 335—337.
    [69] 彭成红, 刘澧浦, 李祖鑫. 纳米氢氧化锦材料的研制[J]. 电池, 200l, 31: 175-177.
    [70] 崔静洁, 张校刚, 刘洪涛. 单分散纳米Ni(OH) 2 的制备及其电化学性能[J]. 应用化学, 2004, 21: 446-449.
    [71] Han X. J., Xie X. M., Xu C. Q., Zhou D. R., Ma Y. L. Morphology and electrochemical performance of nano-scale nickel hydroxide prepared by supersonic coordination-precipitation method [J]. Opt. Mater., 2003, 23: 465-470.
    [72] Yang D. N., Wang R. M., Zhang J., Liu Z. F. Synthesis of nickel hydroxide nanoribbons with a new phase: A solution chemistry approach [J]. J. Phys. Chem. B, 2004, 108: 7531-7533.
    [73] Zhou H. B., Zhou Z. T. Preparation, structure and electrochemical performances of nanosized cathode active material Ni(OH)2 [J]. Solid State Ionics, 2005, 176: 1909-1914.
    [74] He X. M., Li J. J., Cheng H. W., Jiang C. Y., Wan C. R. Controlled crystallization and granulation of nano-scale beta-Ni(OH)2 cathode materials for high power Ni-MH batteries [J]. J. Power Sources, 2005, 152: 285-290.
    [75] Han X. J., Xu P., Xu C. Q., Zhao L., Mo Z. B., Liu T. Study of the effects of nanometer beta-Ni(OH)2 in nickel hydroxide electrodes [J]. Electrochim. Acta, 2005, 50: 2763-2769.
    [76] Chen D. L., Gao L. A new and facile route to ultrafine nanowires,superthin flakes and uniform nanodisks of nickel hydroxide [J]. Mater. Chem. Phys., 2005, 405: 159-164.
    [77] Li W. Y., Zhang S. Y., Chen J. Synthesis, characterization, and electrochemical application of Ca(OH)2-, Co(OH)2-, and Y(OH)3-coated Ni(OH)2 tubes [J]. J. Phys. Chem. B, 2005, 109: 14025-14032.
    [78] Yang D. N., Wang R. M., He M. S., Zhang J., Liu Z.F. Ribbon- and board like nanostructures of nickel hydroxide: Synthesis, characterization, and electrochemical properties [J]. J. Phys. Chem. B, 2005, 109:7654-7658.
    [79] Zhao Y. F., Zhu Z. W., Zhuang Q. K. The relationship of spherical nano-Ni(OH)2 microstructure with its voltammetric behavior [J]. J. Solid State Electrochem., 2006, 10: 914-919.
    [80] Hu W. K., Gao X. P., Noreus D., Burchardt T., Nakstad N. K. Evaluation of nano-crystal sized alpha-nickel hydroxide as an electrode material for alkaline rechargeable cells [J]. J. Power Sources, 2006, 160: 704-710.
    [81] Guan X.Y., Deng J. C. Preparation and electrochemical performance of nano-scale nickel hydroxide with different shapes [J]. Mater. Lett., 2007, 61: 621-625.
    [82] 邓润荣, 方春, 刘勇标, 吴前麒, 陈力中. 锌镍电池的研制与开发[J]. 电池, 2004, 34: 50-52.
    [83] 高效岳, 沙永香, 唐琛明, 蒋正治, 宋美华, 沈涛. 锌镍一次电池的研制与实效试验[J]. 电池, 2003, 33: 305-307.
    [84] 符显珠, 李俊, 林敬东, 廖代伟. 碱性Zn-NiOOH/MnO2 一次电池的性能研究[J]. 电源技术, 2005, 29: 762-764.
    [85] 忻乾康, 朱效铭. 添加剂对碱性锌镍电池性能的影响[J]. 电池, 2006, 36: 222-223.
    [86] 夏熙, 潘仁. β-NiOOH的制备及充放电性能[J]. 应用化学, 2001, 18: 76-78.
    [87] 刘澧浦, 周震涛. 羟基氧化镍的研究进展[J]. 电源技术, 2004, 28: 520-524.
    [88] 高飞, 沈正浩, 阎登明. β-NiOOH 的制备和性能[J]. 电源技术, 2004, 28: 704-706.
    [89] 吴芳芳, 王建明, 陈蕙, 张鉴清. 不同相结构 NiOOH 的制备及其物理化学性能[J]. 电源技术, 2004, 28: 700-703.
    [90] Barde F., Palac M. R., Beaudoin B., Tarascon J. M. Ozonation: A Unique Route To Prepare Nickel Oxyhydroxides.Synthesis Optimization and Reaction Mechanism Study [J]. Chem. Mater., 2005, 17: 470-476.
    [91] Fu X. Z., Zhu Y. J., Xu Q. C., Li J., Pan J. H., Xu J. Q., Lin J. D., Liao D. W. Nickel oxyhydroxides with various oxidation states prepared by chemical oxidation of spherical β-Ni(OH)2 [J]. Solid State Ionics, 2007, 178: 987-993.
    [92] Fu X. Z., Wang X., Xu Q. C., Li J., Xu J. Q., Lin J. D., Liao D. W. Physical characterization, electrochemical performance and storage stability of spherical Al-substituted gamma-NiOOH [J]. Electrochim. Acta, 2007, 52: 2109-2115.
    [93] Taucher-Mautner W., Kordesch K. Studies of pasted nickel electrodes to improve cylindrical nickel-zinc cells [J]. J. Power Sources, 2004, 132: 275-281.
    [1] Whittingham M. S. Lithium batteries and cathode materials [J]. Chem. Rev., 2004, 104: 4271-4301.
    [2] Delmas C., Menetrier M., Croguennec L., Saadoune I., Rougier A., Pouillerie C., Prado G., Grune M., Fournes L. An overview of the Li(Ni, M)O2 systems: syntheses, structures and properties [J]. Electrochim. Acta, 1999, 45: 243-253.
    [3] 阮艳莉, 韩恩山, 张西慧. 尖晶石型锂锰氧化物正极材料的研究进展[J]. 电源技术, 2003, 27: 400-403.
    [4] 甘晖, 童庆松, 汪冰冰, 连锦明. 锂离子蓄电池正极活性材料磷酸亚铁锂[J]. 电源技术, 2003, 27: 339-342.
    [5] Koksbang R., Barker J., Saidim Y. Cathode materials for lithium rocking chair batteries [J]. Solid State Ionics, 1996, 84: 1-21.
    [6] Takahashi Y., Akimoto J., Gotoh Y., Kawaguchi K., Mizuta S. Single Crystal Growth and Structural Chemistry of Li1?zNi1+zO2 with z=0.075 [J]. J. Solid State Chem., 2001, 160: 178-183.
    [7] 刘汉三, 杨勇, 张忠如, 林祖赓. 锂离子电池正极材料锂镍氧化物研究新进展[J]. 电化学, 2001, 7: 145-154.
    [8] Barboux P., Tarascon J. M., Shokoohi F. K. The use of acetates as recursors for the low temperature synthesis of LiNiO2 and LiCoO2 intercalation compounds [J]. J. Solid State Chem., 1991, 94: 185-193.
    [9] Schoonman J., Tuller H. L., Kelder E. M. Defect chemical aspects of lithium-ion battery cathodes [J]. J. Power Sources, 1999, 81-82: 44-48.
    [10] Lu C. H., Lee C. Reaction mechanism and kinetics analysis of lithium nickel oxided ursing solid-state reaction [J]. J. Mater. Chem., 2000, 10: 1403-1407.
    [11] Morales J., Perez-Vicente C., Tirado J. N. Cation distribution and chemical deintercalation of Li1-x Ni1+x O2 [J]. Mater. Res. Bull., 1990, 25: 623-627.
    [12] Ohzuku T. Electrochemistry and structural chemistry of LiNiO2(R-3m) for 4 volt secondary lithium cells [J]. J. Electrochem. Soc., 1993, 140: 1862-1869.
    [13] Croguennec L., Pouillerie C., Delmas C. NiO2 obtained by electrochemical lithium deintercalation from lithium nickelate: Structural modifications [J]. J. Electrochem. Soc., 2000, 147: 1314-1321.
    [14] Peres J. P., Delmas C. Lithium/vacancy ordering in the monoclinic LixNiO2 (0.50≤ x ≤0.75) solid solution [J]. Solid State Ionics, 1999, 116: 19-27.
    [15] Delemas C. Lithium batteries: a new tool in solid state chemistry [J]. J. Inorg. Mater., 1999, 1: 11-19.
    [16] Rossen E. Structure and electrochemistry of LixMnyNi1-yO2 [J]. Solid State Ionics, 1992, 57: 311-318.
    [17] Broussely M., Bieensan P., Simon B. Lithium insertion into host materials: the key to success for Li ion batteries [J]. Electrochim. Acta, 1999, 45: 3-22.
    [18] Liu H. S., Zhang Z. R., Gong Z. L., Yang Y. On the origin of deterioration for LiNiO2 cathode material during storage in air [J]. Electrochem. Solid State Lett., 2004, 7: A190-A193
    [19] Palacin M. R., Larcher D., Audemer A., Epee N. S., Amatucci G., Tarascon J. M. Low-temperature Synthesis of LiNiO2, Reaction Mechanism, Stability and Electrochemical Properties [J]. J. Electrochem. Soc., 1997, 144: 4226-4236.
    [20] Maruta J.,Yasuda H.,Yamachi M. Low-temperature synthesis of lithium nickelate positive active material from nickel hydroxide for lithium cells [J]. J. Power Sources, 2000, 90: 89-94.
    [21] Sun Y. Z., Wan P. Y., Pan J. Q., Xu C. C., Liu X. G. Low temperature synthesis of layered LiNiO2 cathode material in air atmosphere by ion exchange reaction [J]. Solid State Ionics, 2006, 177: 1173-1177.
    [22] 唐致远, 李建刚, 薛建军, 周征. LiNiO2的制备与改性的探讨[J]. 电池, 2001, 31: 10-13.
    [23] 欧阳红勇, 李正南, 陈坚. 锂离子电池镍系正极材料的掺杂研究进展[J]. 矿冶工程, 2005, 25: 78-81.
    [24] 翟金玲, 魏进平, 杨晓亮, 高学平, 阎杰. 锂离子蓄电池正极表面包覆研究进展[J]. 电源技术, 2005, 29: 765-770.
    [25] Sun Y. K., Taek M. S., Kim M. H., Prakash J., Amine K. Synthesis and Characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the Microscale Core-Shell Structure as the Positive Electrode Material for Lithium Batteries [J]. J. Am. Chem. Soc., 2005, 127: 13411-13418.
    [26] 崔萌佳, 戴永年, 姚耀春, 王凤, 李伟宏. 锂离子电池正极材料表面包覆的研究进展[J]. 云南冶金, 2004, 33: 40-43.
    [27] 高原, 顾大明, 史鹏飞. 锂离子电池正极材料LiNiO2的研究进展[J]. 电池, 2005, 35: 471-473.
    [28] 应皆荣, 姜长印, 万春荣. 溶胶凝胶法制备LiNixCo1-XO2正极材料的研究进展[J]. 化学世界, 2001, 3: 157-160.
    [29] 高德淑, 苏光耀, 肖启振, 李文, 李朝辉. 锂离子电池正极材料LiNiO2的研究进展[J]. 电池工业, 2004, 9: 300-304.
    [30] Larcher D., Palacin M. R., Amatucci G. G., Tarascon J. M. Electrochemically active LiCoO2 and LiNiO2 made by cationic exchange under hydrothermal conditions [J]. J. Electrochem. Soc. 1997, 144: 408-417.
    [31] Tong D. G., Lai Q. Yu., Wei N. N., Ji X. Y. Synthesis of LiCo0.3Ni0.7O2 by using β-Co0.3Ni0.7OOH and LiOH·H2O as starting materials [J]. Mater. chem. phys., 2006, 96: 124-128.
    [32] Fujita Y., Amine K., Maruta J., Yasuda H. LiNi1-xCoxO2 prepared at low temperature using β-Ni1-xCoxOOHand either LiNO3 or LiOH [J]. J. Power Sources, 1997, 68: 126-130.
    [33] Alcantara R., Lavela P., Tirado J. L. Changes in structure and cathode performance with composition and preparation temperature of lithium cobalt nickel oxide [J]. J. Electrochem. Soc., 1998, 145: 730-736.
    [34] Richard K. B., Ryoji K., Mitchell J. B. Effects of sintering temperature on the structure of the layered phase Lix(Ni0.8Co0.2)O2 [J]. J. Eletrochem. Soc., 2000, 147: 4045-4051.
    [35] Liu H. S., Li J., Zhang Z. R., Gong Z. L., Yang Y. The effects of sintering temperature and time on the structure and electrochemical performance of LiNi0.8Co0.2O2 cathode materials derived from sol-gel method [J]. J. Solid State Electrochem., 2003, 7: 456-462.
    [36] Rougier A., Saadoune I. Effect of Cobalt Substitution on Cationic Distribution in LiNi1-yCoyO2 Electrodes Materials [J]. Solid State Ionics, 1996, 90: 83-90.
    [37] 袁荣忠, 瞿美臻, 于作龙. 锂离子电池镍系正极材料的热稳定性研究进展[J]. 无机材料学报, 2003, 18: 973-979.
    [38] Graetz J., Ahn C. C., Yazami R., Fultz B. An Electron Energy-Loss Spectrometry Study of Charge Compensation in Li0.8Ni0.8Co0.2O2 [J]. J. Phys. Chem. B, 2003, 107: 2887-2891.
    [39] Cho J., Jung H.S., Park Y. C., Kim G. B., Lim H. S. Electrochemical Properties and Thermal Stability of LiaNi1–xCoxO2 Cathode Materials [J]. J. Electrochem. Soc., 2000, 147: 15-20.
    [40] Epifanio A. D., Croce F., Ronci F., Rossi A. V., Traversa E., Scrosati B. Effect of Mg2+ Doping on the Structural, Thermal, and Electrochemical Properties of LiNi0.8Co0.16Mg0.04O2 [J]. Chem. Mater., 2004, 16: 3559-3564.
    [41] Guilmard M., Croguennec L., Delmas C. Thermal Stability of Lithium Nickel Oxide Derivatives. Part II: LixNi0.70Co0.15Al0.15O2 and LixNi0.90Mn0.10O2 (x = 0.50 and 0.30). Comparison with LixNi1.02O2 and LixNi0.89Al0.16O2 [J]. Chem. Mater., 2003, 15: 4484-4493.
    [42] Liu H. S., Li J., Zhang Z. R., Gong Z. L., Yang Y. Structural, electrochemical and thermal properties of LiNi0.8?yTiyCo0.2O2 as cathode materials for lithium ion battery [J]. Electrochim. Acta, 2004, 49: 1151-1159.
    [43] 钟辉, 许惠. 锂离子电池正极材料LiCo0.3Ni0.7-xSrxO2 的合成及其电化学性能[J]. 中国有色金属学报2004, 14: 157-161.
    [44] Fey G. T. K., Che J. G., Subramania V., Osaka T. Preparation and electrochemical properties of Zn-doped LiNi0.8Co0.2O2 [J]. J. Power Sources, 2002, 112: 384–394.
    [45] 殷焕顺, 高德淑, 刘黎, 丁燕怀, 王承位. LiNi0.78Co0.2Pr0.02O2的制备及性能研究[J]. 电池, 2006, 36: 267-267.
    [46] Kubo K., Arai S., Yamada S., Kanda M. Synthesis and charge–discharge properties of LiNiCoyO2Fz [J]. J. Power Sources, 1999, 81–82: 599–603.
    [47] Rossen E., Jones C. D. W., Dahn J. R. Structure and electrochemistry of LixMnyNi1-y O2 [J]. Solid State Ionics, 1992, 57: 311-318.
    [48] Spahr M. E., Novák P., Schnyder B., Haas O., Nesper R. Characterization of layered lithium nickel manganese oxides synthesized by a novel oxidative coprecipitation method and their electrochemical performance as lithium insertion electrode materials [J]. J. Electrochem. Soc., 1998, 145: 1113-1121.
    [49] Ohzuku T., Makiura Y. Layered lithium insertion material of LiNi1/2Mn1/2O2: a possible alternative to LiCoO2 for advanced lithium-ion batteries [J]. Chem. Lett., 2001, 30: 744-745.
    [50] Lu Z., Beaulieu L. Y., Donaberger R. A., Thomas C. L., Dahn J. R. Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2. [J]. J. Electrochem. Soc., 2002, 149: A778-A791.
    [51] Jouanneau S., Macneil D. D., Lu Z., Beattie S. D., Murphy G., Dahn J. R. Morphology and safety of Li[NixCo1-2xMnx]O2 [J]. J. Electrochem. Soc., 2003, 150: A1299-A1304.
    [52] Makimura Y., Ohzuku T. Lithium insertion material of LiNi1/2Mn1/2O2 for advanced lithium-ion batteries [J]. J. Power Sources, 2003, 119-121:156-160.
    [53] Kang S. H., Kim J., Stoll M. E., Abraham D., Sun Y. K. Amine K. Comparative study of Li (Ni0.5?xMn0.5?x M2x′)O2 (M′ = Mg, Al, Co, Ni, Ti; x = 0, 0.025) cathode materials for rechargeable lithium batteries [J]. J. Power Sources, 2003, 119-121:150-155.
    [54] Tang A. D., Huang K. L. Structure and electrochemical properties of LiNi0.5AlxMn0.5?xO2 synthesized by a new sol–gel method [J]. J. Mater. chem. phys., 2005, 93: 6-9.
    [55] Kobayashi H., Arachi Y., Kageyama H., Sakaebe H., Tatsumi K., Mori D., Kanno R., Kamiyama T. Changes in the structure and physical properties of Li1?yNi0.5Mn0.4Ti0.1O2 (y=0 and 0.5) [J]. Solid State Ionics, 2004, 175: 221-224.
    [56] Jeong K. H., Ha H. W., Yun N. J., Hong M. Z., Kim K. Zr-doped Li[Ni0.5?xMn0.5?xZr2x]O2 (x = 0, 0.025) as cathode material for lithium ion batteries [J]. Electrochim. Acta, 2005, 50: 5349-5353.
    [57] Kang S. H., Belharouak I., Sun Y. K., Amine K. Effect of fluorine on the electrochemical properties of layered Li(Ni0.5Mn0.5)O2 cathode materials [J]. J. Power Sources, 2005, 146: 650-653.
    [58] Ohzuku T., Makimura Y. Layered lithium insertion material of Li[Ni1/3Co1/3Mn1/3]O2 for lithium-ion batteries [J]. Chem. Lett., 2001(7): 642-643.
    [59] 谭显艳, 胡国荣, 高旭光, 禹筱元. 正极材料LiNi1/3Co1/3Mn1/3O2的研究进展[J]. 电池, 2005, 35: 315-316.
    [60] Koyama Y., Tanaka I., Adachi H., Makimura Y., Ohzuku T. Crystal and electronic structures of superstructural Li[Co1/3Ni1/3Mn1/3]O2 (0≤x≤1) [J]. J. Power Sources, 2003, 119-121: 644-648.
    [61] Koyama Y., Yabuuchi N., Tanaka I., Adachi H., Ohzuku T. Solid-state chemistry and electrochemistry of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries: I. First-Principles Calculation on the crystal and electronic structures [J]. J. Electrochem. Soc., 2004, 151: A1545-A1551.
    [62] Kobayashi H., Arachi Y., Emura S., Kageyama H., Tatsumi K., Kamiyama T. Investigation of lithium de-intercalation mechanism for Li1-xNi1/3Mn1/3Co1/3O2 [J]. J. Power Sources, 2005, 146: 640-644.
    [63] Kim M. G., Shin H. J., Kim J. H., Park S. H., Sun Y. K. XAS investigation of inhomogeneous metal-oxygen bong covalency in bulk and surface for charge compensation in Li-ion battery cathode Li(Ni1/3Co1/3Mn1/3)O2 material [J]. J. Eelectrochem. Soc., 2005, 152: A1320-A1328.
    [64] Hwang B. J., Tsai Y. W., Carlier D., Ceder G. A combined computational/experimental study on LiNi1/3Co1/3Mn1/3O2 [J]. Chem. Mater., 2003, 15: 3676-3682.
    [65] Kim J. M., Chung H. T. The first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2 charged up to 4.7V [J]. Electrochim. Acta, 2004, 49: 937-944.
    [66] Kim G. H., Myung S. T., Kim H. S., Sun Y. K. Synthesis of spherical Li[Ni (1/3?z)Co(1/3?z)Mn(1/3?z)Mgz]O2 as positive electrode material for lithium-ion battery [J]. Electrochim. Acta, 2006, 51: 2447-2453.
    [67] Liao L., Wang X. Y., Luo X. F, Wang X. M., Gamboa S., Sebastian P. J. Synthesis and electrochemical properties of layered Li[Ni0.333Co0.333Mn0.293Al0.04]O2?zFz cathode materials prepared by the sol–gel method [J]. J. Power Sources, 2006, 160: 657-661.
    [68] Wang L. Q., Jiao L. F., Yuan H. T., Guo J., Zhao M., Li M. X., Wang Y. M. Synthesis and electrochemical properties of Mo-doped Li[Ni1/3Mn1/3Co1/3]O2 cathode materials for Li-ion battery [J]. J. Power Sources, 2006, 162: 1367-1372.
    [69] Kim G. H., Kim M. H., Myung S. T., Sun Y. K. Effect of fluorine on Li[Ni1/3Co1/3Mn1/3]O2?zFz as lithium intercalation material [J]. J. Power Sources 2005, 146: 602-605.
    [70] 应皆荣, 万春荣, 姜长印. LiNi0.8Co0.2O2的表面修饰及性能[J]. 清华大学学报(自然科学版), 2001, 41: 78-80.
    [71] Zhang Z. R., Liu H. S., Gong Z. L. Yang Y. A comparative study of electrochemical and surface properties of bare and TiO2-coated LiNi0.8Co0.2O2 electrodes [J]. J. Electrochem. Soc., 2004, 151: A599-603.
    [72] Kim G. H., Kim J. H., Myung S. T., Yoon C. S., Sun Y. K. Improvement of High-Voltage Cycling Behavior of Surface-Modified Li[Ni1/3Co1/3Mn1/3]O2 Cathodes by Fluorine Substitution for Li-Ion Batteries [J]. J.Electrochem. Soc., 2005, 152: A1707–A1713.
    [73] 顾大明, 史鹏飞, 宋振业, 张鼎. LiCoO2梯度包覆LiNi0.96Co0.04O2电极材料的电化学性能[J]. 无机化学学报, 2005, 21: 725-728.
    [74] Zhong S. W., Zhao Y. J., Lian F., Li Y., Hu Y., Li P. Z., Mei J., Liu Q. G. Characteristics and electrochemical performance of cathode material Co-coated LNiO2 for Li-ion batteries [J]. Trans. Nonferrous Met. Soc. China, 2006, 16: 137-141.
    [75] Sun Y. K., Myung S. T., Shin H. S., Bae Y. C., Yoon C. S. Novel Core-Shell Structured Li[(Ni0.8Co0.2)0.8 (Ni0.5Mn0.5)0.2]O2 via Coprecipitation as Positive Electrode Material for Lithium Secondary Batteries [J]. J. Phys. Chem. B, 2006, 110: 6810-6815.
    [1] 衣宝廉. 燃料电池—原理·技术·应用 [M]. 北京: 化学工业出版社, 2003.
    [2] Carrette L., Stimming U., Stimming U. Fuel cells-fundamentals and applications [J]. Fuel Cells, 2001, 1: 5-39.
    [3] 李文震, 孙公权, 严玉山, 辛勤. 低温燃料电池担载型贵金属催化剂[J]. 化学进展, 2005, 17: 761-772.
    [4] Ralph T. R., Hogarth M. P. Catalysis for low temperature fuel cells Part Ⅰ: the cathode challenges [J]. Platinum Metals Rev., 2002, 46: 3-14.
    [5] Ralph T. R., Hogarth M. P. Catalysis for Low Temperature Fuel Cells Part Ⅱ: The Anode Challenges [J]. Platinum Metals Rev., 2002, 46: 117-135.
    [6] Hogarth M. P., Ralph T. R. Catalysis for Low Temperature Fuel Cells Part Ⅲ: Challenges for the Direct Methanol Fuel Cell [J]. Platinum Metals Rev., 2002, 46: 146-164.
    [7] Zhigang Q., Arthur K. Activation of Low Temperature PEM Fuel Cells [J]. J. Power Sources, 2002, 111: 181-184.
    [8] Grgur B. N., Markovic N. M., Ross P. N. The Electrooxidation of H2 and H2/CO Mixtures on Carbon- Supported PtxMoy Alloy Catalysts [J]. J. Electrochem. Soc., 1999, 146: 1613-1619.
    [9] Heinzela H., Materials for fuel-cell technologies [J]. Nature, 2001, 414: 345-352.
    [10] Antolini E. Formation of carbon-supported PtM alloys for low temperature fuel cells: a review. [J]. Mater. Chem. Phys., 2003, 78: 563-573.
    [11] Wielstich W., Gasteiger H. A., Lamm A. Handbook of Fuel Cells-fundamentals, Technology, Applications [M]. S. l.: John Wiley & Sons Ltd., 2003.
    [12] 钟和香, 张华民, 张建鲁, 衣宝廉. 低温燃料电池中的非铂催化剂[J]. 化学通报, 2006, 69: 1-7.
    [13] Zhu W. Z., Deevi S. C. A review on the status of anode materials for solid oxide fuel cells [J]. Mater. Sci. Eng., A, 2003, 362: 228-239.
    [14] Jiang S. P., Chan S. H. A review of anode materials development in solid oxide fuel cells [J]. J. Mater. Sci., 2004, 39: 4405-4439.
    [15] 郭炳焜, 李新海, 杨松青. 化学电源—电池原理及制造技术[M]. 长沙: 中南工业大学出版社, 2001.
    [16] 徐常威. 直接碱性醇类燃料电池新型阳极催化剂的研究[D]. 广州: 中山大学, 2005.
    [17] Aricò A. S., Shukla A. K., Kim H., Park S., Min M., Antonucci V. An XPS study on oxidation states of Pt and its alloys with Co and Cr and its relevance to electroreduction of oxygen [J]. Appl. Surf. Sci., 2001, 172: 33-40.
    [18] Sawyer D. T., Day R. J. Kinetics for oxygen reduction at platinum, palladium and silver electrodes [J]. Electrochim. Acta, 1963, 8: 589-594.
    [19] Sepa D. B., Vojnovic M. V., Damjanovic A. Kinetics and mechanism of O2 reduction at Pt in alkaline solutions [J]. Electrochim. Acta, 1980, 25: 1491-1496.
    [20] Yeager E. Electrocatalysis for O2 reduction [J]. Electrochim. Acta, 1984, 29: 1527-1537.
    [21] Zagal J. H. Metallophthalocyanines as catalyst in electrochemical reactions [J]. Chem. Rev., 1992, 199: 89-136.
    [22] Sanjeev M., Supramaniam S., Manuel P. S., James M. B. Role of Structural and Electronic Properties of Pt and Pt Alloys on Electrocatalysis of Oxygen Reduction [J]. J. Electrochem. Soc., 1995, 142: 1409-1422.
    [23] Wee J. H., Lee K. Y. Overview of the development of CO-tolerant anode electrocatalysts for proton-exchange membrane fuel cells [J]. J. Power Sources, 2006, 157: 128-135.
    [24] Oetjen H. F., Schmidt V. M., Stimming U., Trila F. Performance Data of a Proton Exchange Membrane Fuel Cell using H2/CO as Fuel Gas [J]. J. Electrochem. Soc, 1996, 143: 3838-3842.
    [25] Divisek J., Oetjen H. F., Schmidt V. M., Stimming U. Components for PEM fuel cell systems using hydrogen and CO containing fuels [J]. Electrochim. Acta, 1998, 43: 3811-3815.
    [26] Baldauf M., Preidel W. Status of the development of a direct methanol fuel cell [J]. J Power Source, 1999, 84: 161-166.
    [27] Ren X. M., Zelenay P., Thomas S., Davey J., Gottesfeld S. Recent advances in direct methanol fuel cells at Los Alamos National Laboratory [J]. J. Power Sources, 2000, 86: 111-116.
    [28] Acres G. J. K. Recent advances in fuel cell technology and its applications [J]. J. Power Sources, 2001, 100: 60-66.
    [29] Parsons R., Noot T. J. The oxidation of small organic molecules [J]. J. Electroanal. Chem., 1988, 257: 9-45.
    [30] Wasmus S., Kuver A. Methanol oxidation and direct methanol fuel cells: a selective review [J]. J. Electroanal. Chem., 1999, 461: 14-31.
    [31] Nicol B. D. M., Rand D. A. J., Williams K. R. Direct methanol–air fuel cells for road transportation [J]. J. Power Sources, 1999, 83: 15-31.
    [32] Watanabe M., Motoo S. Enhancement of oxidation of carbon-monoxide on platinum by Ruthenium ad-atoms [J]. J. Electroanal. Chem., 1975, 60: 275-283.
    [33] Markovic N. M., Gasteiger H. A., Ross P. N., Jiang X., Villegas L., Weaver M. Electro-oxidation mechanisms of methanol and formic acid on Pt-Ru alloy [J]. Electrochim. Acta 1995, 40: 91-98.
    [34] Wang B. Recent development of non-platinum catalysts for oxygen reduction reaction [J]. J. Power Sources, 2005, 152: 1-15.
    [35] 魏子栋, 李莉, 李兰兰, 唐致远, 郭鹤桐. 氧电极催化材料的研究现状[J]. 电源技术, 2004, 28: 116-120.
    [36] 刘卫锋, 唐倩, 衣宝廉, 张华民. 燃料电池阴极催化剂的研究进展[J]. 电源技术, 2002, 26: 457-461.
    [37] 李旭光, 邢巍, 唐亚文, 陆天虹. 直接甲醇燃料电池阴极电催化剂的研究进展[J]. 化学通报, 2003, (8): 521-527.
    [38] 黄庆华, 李振亚, 王为. 电池用氧电极催化剂的研究现状[J]. 电源技术, 2003, 27: 241-244.
    [39] 张文强, 张萍. 质子交换膜燃料电池阴极铂合金催化剂研究进展[J]. 材料导报, 2004, 18: 45-48.
    [40] 黄庆红, 唐亚文, 马振旄, 陆天虹, 刘长鹏, 邢巍, 杨辉. 直接甲醇燃料电池阴极催化剂的研究进展[J].应用化学, 2005, 22: 1277-1281.
    [41] 麻晓霞, 任奇志, 马紫峰. 金属卟啉类化合物电催化剂研究进展[J]. 化学世界, 2005, (4): 243-246.
    [42] Zhang L., Zhang J. J., Wilkinson D. P., Wang H. J. Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions [J]. J. Power Sources, 2006, 156: 171-182.
    [43] 黄幼菊, 黄青丹, 黄红良, 李伟善. 燃料电池氧电极催化剂的研究现状[J]. 电池工业, 2007, 12: 57-60.
    [44] Yang H., Vogel W., Lamy C., Alonso-Vante N. Structure and Electrocatalytic Activity of Carbon-Supported Pt-Ni Alloy Nanoparticles Toward the Oxygen Reduction Reaction [J]. J. Phys. Chem. B, 2004, 108: 11024-11034.
    [45] Toda T., Igarashi H., Watanabe M. Role of Electronic Property of Pt and Pt Alloys on Electrocatalytic Reduction of Oxygen [J]. J. Electrochem. Soc., 1998, 145: 4185-4188.
    [46] Drillet J. F., Ee A., Friedemann J., K?tz R., Schnyder B., Schmidt V. M. Oxygen reduction at Pt and Pt70Ni30 in H2SO4/CH3OH solution [J]. Electrochim. Acta, 2002, 47: 1983-1988.
    [47] Paulus U. A., Wokaun A., Scherer G. G., Schmidt T. J., Stamenkovic V., Radmilovic V., Markovic N. M., RossP. N. Oxygen Reduction on Carbon-Supported Pt-Ni and Pt-Co Alloy Catalysts [J]. J. Phys. Chem. B, 2002, 106: 4181-4191.
    [48] Stamenkovic V. R., Fowler B., Mun B. S., Wang G. F., Ross P. N., Lucas C. A., Markovic N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability [J]. Science, 2007, 315: 493-497.
    [49] Wee J. H., Lee K. Y. Overview of the development of CO-tolerant anode electrocatalysts for proton-exchange membrane fuel cells [J]. J. Power Sources, 2006, 157: 128-135.
    [50] Hampson N. A., Willars M. J. McNicol B. D. The methanol-air fuel cell: A selective review of methanol oxidation mechanisms at platinum electrodes in acid electrolytes [J]. J. Power Sources, 1979, 4: 191-201.
    [51] Liu H. S., Song C. J., Zhang L., Zhang J. J., Wang H. J., Wilkinson D. P. A review of anode catalysis in the direct methanol fuel cell [J]. J. Power Sources, 2006, 155: 95-110.
    [52] Choi W. C., Jeon M. K., Kim Y. J., Woo S. I., Hong W. H. Development of enhanced materials for direct- methanol fuel cell by combinatorial method and nanoscience [J]. Catal. Today, 2004, 93: 517-522.
    [53] Antolini E., Salgado J. R. C., Gonzalez E. R. The methanol oxidation reaction on platinum alloys with the first row transition metals - The case of Pt-Co and -Ni alloy electrocatalysts for DMFCs: A short review [J]. Appl. Catal. B Environ, 2006, 63: 137-149.
    [54] Al-Saleh M. A., Al-Zakri A. S., Gultekin S. Preparation of Raney-Ni gas diffusion electrode by filtration method for alkaline fuel cells [J]. J. Appl. Electrochem., 1997, 27: 215-220.
    [55] Liu B. H., Li Z. P., Suda S. Anodic oxidation of alkali borohydrides catalyzed by nickel[J]. J. Electrochem. Soc., 2003, 150: A398-A402.
    [56] Kiros Y., Majari M., Nissinen T. A. Effect and characterization of dopants to Raney nickel for hydrogen oxidation [J]. J. Alloys Compd., 2003, 360: 279-285.
    [57] Rahim M. A. A., Hameed R. M. A., Khalil M. W. Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium [J]. J. Power Sources, 2004, 134: 160-169.
    [58] Skowronski J. M., Wazny A. Nickel foam-based Ni(OH)2/NiOOH electrode as catalytic system for methanol oxidation in alkaline solution [J]. J. New Mater. Electrochem. Syst., 2006, 9: 345-351.
    [59] Mckee D. W., Park M. S. Electrocatalysts for hydrogen/carbon monoxide fuel cell anodes: IV. Platinum-Nickel combinations. [J]. J. Electrochem. Soc., 1969, 116: 516-520.
    [60] Page T., Johnson R., Hormes J., Noding S., Rambabu B. A study of methanol electro-oxidation reactions in carbon membrane electrodes and structural properties of Pt alloy electro-catalysts by EXAFS [J]. J. Electroanal. Chem., 2000, 485: 34-41.
    [61] Liu F., Lee J. Y., Zhou W. Template Preparation of Multisegment PtNi Nanorods as Methanol Electro-Oxidation Catalysts with Adjustable Bimetallic Pair Sites [J]. J. Phys. Chem. B, 2004, 108: 17959-17963.
    [62] Mathiyarasu J., Remona A. M., Mani A., Phani K. L. N., Yegnaraman V. Exploration of electrodeposited platinum alloy catalysts for methanol electro-oxidation in 0.5 M H2SO4: Pt-Ni system [J]. J. Solid State Electrochem., 2004, 8: 968-975.
    [63] Zhao Y., E Y. F., Fan L. Z., Qiu Y. F., Yang S. H. A new route for the electrodeposition of platinum–nickel alloy nanoparticles on multi-walled carbon nanotubes [J]. Electrochim. Acta, 2007, 52: 5873-5878.
    [64] Park K. W., Choi J. H., Kwon B. K., Lee S. A., Sung H. Y. E., Ha H. Y., Hong S. A., Kim H., Wieckowski A. Chemical and Electronic Effects of Ni in Pt/Ni and Pt/Ru/Ni Alloy Nanoparticles in Methanol Electrooxidation [J]. J. Phys. Chem. B, 2002, 106: 1869-1877.
    [65] Park K. W., Choi J. H., Sung Y. E. Structural, Chemical, and Electronic Properties of Pt/Ni Thin Film Electrodes for Methanol Electrooxidation [J]. J. Phys. Chem. B, 2003, 107: 5851-5856.
    [66] Wang Z. B., Yin G. P., Zhang J., Sun Y. C., Shi P. F. Co-catalytic effect of Ni in the methanol electro-oxidation on Pt–Ru/C catalyst for direct methanol fuel cell [J]. Electrochim. Acta, 2006, 51: 5691-5697.
    [67] Drillet J. F., Ee A., Friedemann J., K?tz R., Schnyder B., Schmidt V. M. Oxygen reduction at Pt and Pt70Ni30 in H2SO4/CH3OH solution [J]. Electrochim. Acta, 2002, 47: 1983-1988.
    [68] Antolini E., Salgado J. R. C., Gonzalez E. R. Oxygen reduction on a Pt Ni /C electrocatalyst prepared by the borohydride method in H SO /CH OH solutions70 302 4 3 [J]. J. Power Sources, 2006, 155: 161-166.
    [69] Yang H., Coutanceau C., Léger J. M., Vante N. A., Lamy C. Methanol tolerant oxygen reduction on carbon-supported Pt–Ni alloy nanoparticles [J]. J. Electroanal. Chem., 2005, 576: 305-313.
    [70] Antolini E., Salgado J. R. C., Santos A. M., Gonzalez E. R. Carbon-supported Pt-Ni alloys prepared by the borohydride method as electrocatalysts for DMFCs [J]. Electrochem. Solid State Lett., 2005, 8: A226-A230.
    [71] Santos L. G. R. A., Oliveira C. H. F., Moraes I. R., Ticianelli E. A. Oxygen reduction reaction in acid medium on Pt–Ni/C prepared by a microemulsion method [J]. J. Electroanal. Chem., 2006, 596:141-148.
    [72] Min M. K., Cho J. H., Cho K. W., Kim H. Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications [J]. Electrochim. Acta, 2000, 45: 4211-4217.
    [73] Toda T., Igarashi H., Uchida H., Watanabe M. Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co [J]. J. Electrochem. Soc., 1999, 146: 3750-3756.
    [74] Abraham F. F., Tsai N. H., Pound G. M. Bond and Strain Energy Effects in Surface Segregation: An AtomicCalculation [J]. Surf. Sci., 1979, 83: 406-422.
    [75] 吴辉煌. 电化学[M]. 北京: 化学工业出版社, 2004.
    [1] 梁敬魁. 粉末衍射法测定晶体结构 [M]. 北京: 科学出版社, 2003.
    [2] 杜学礼, 潘子昂. 扫描电子显微镜分析技术[M]. 北京: 化学工业出版社, 1986.
    [3] 黄兰友, 刘绪平. 电子显微镜与电子光学[M]. 北京: 科学出版社, 1991.
    [4] 吴瑾光. 近代傅立叶变换红外光谱技术及应用[M]. 北京: 科学技术文献出版社, 1994.
    [5] Carlson T. A. 著 郁向荣 王殿勋 译. 光电子和俄歇能谱学[M]. 北京: 科学出版社, 1983
    [6] 刘振海. 热分析导论[M]. 北京: 化学工业出版社, 1991.
    [7] 刘维桥, 孙桂大. 固体催化剂实用研究方法[M]. 北京: 中国石化出版社, 2000.
    [8] 中南矿冶学院分析化学教研室. 化学分析手册[M]. 北京: 科学出版社, 1982.
    [9] 陈新坤. 原子发射光谱分析原理[M]. 天津: 天津科学技术出版社, 1991.
    [10] 查全性. 电极过程动力学导论[M]. 北京: 科学出版社, 2002.
    [11] 张忠如. 锂离子电池正极材料的表面改性研究[D]. 厦门大学: 2005.
    [12] 阿伦·J·巴德, 拉里·R·福克纳著 朱果逸, 董献堆, 邵元华. 译 电化学方法原理与应用[M]. 北京: 化学工业出版社, 2005.
    [13] 英国南安普顿电化学小组著 柳厚田等译. 电化学中的仪器方法[M]. 上海: 复旦大学出版社, 1992.
    [14] Winsel A., Fischer C. New apparatus for the measurement of the self-discharge of the nickel hydroxide electrode [J]. J. Power Sources, 1991, 34: 331-338.
    [15] 刘汉三. 锂离子电池正极材料锂镍氧系列化合物的合成、结构和性能研究[D]. 厦门大学: 2004.
    [1] Glemser O., Einerhand J. Diestruktur hoherer Nickel hydroxide [J]. Z. Anorg Allg Chem., 1950, 261: 43-51.
    [2] Glemser O., Einerhand J. über h?here Nickeloxide [J]. Z. Anorg. Allg. Chem., 1950, 261: 26-42.
    [3] Bode H., Dehmelt K., Witte J. Zur kenntnis der nickelhydroxidelktode-I. Uber das nickel ( Ⅱ) -hydroxidhydrat [J]. Electrochim. Acta, 1966, 11:1079-1087.
    [4] Bode H., Dehmelt K., Witte J. über die Oxidationsprodukte von Ni(II)-hydroxiden [J]. Z. Anorg. Allg. Chem., 1969, 366: 1–21.
    [5] Faure C., Delmas C., Willmann P. Preparation and characterization of cobalt-substituted α-nickel hydroxides stable in KOH medium Part I. α′-hydroxide with an ordered packing [J]. J. Power Sources, 1991, 35: 249-261.
    [6] Sac-Epée N., Palacin M. R., Beaudoin B., Delahaye-Vidal A., Jamin T., Chabre Y., Taraican J. M. On the origin of the second low-voltage plateau in secondary alkaline batteries with nickel hydroxide positive electrodes [J]. J. Electrochem. Soc, 1997, 144: 3896-3907.
    [7] Leger C., Tessier C., Menetrier M., Denage C., Delmas C. Investigation of the Second Discharge Plateau of the beta(III)-NiOOH/beta(II)-Ni(OH)2 System [J]. J. Electrochem. Soc., 1999, 146: 924-932.
    [8] Tessier C., Guerlou-Demourgues L., Faure C., Basterreix M., Nabias G., Delmas C. Structural and textural evolution of zinc-substituted nickel hydroxide electrode materials upon aging in KOH and upon redox cycling [J]. Solid State Ionics, 2000, 133: 11-23.
    [9] Bardé F., Palacin M. R., Chabre Y., Isnard O., Tarascon J. M. In Situ Neutron Powder Diffraction of a Nickel Hydroxide Electrode [J]. Chem. Mater., 2004, 16: 3936-3948.
    [10] Barde F., Palac?′n M. R., Beaudoin B., Tarascon J. M. Ozonation: A Unique Route To Prepare Nickel Oxyhydroxides. Synthesis Optimization and Reaction Mechanism Study [J]. Chem. Mater., 2005, 17: 470-476.
    [11] 高效岳, 沙永香, 唐琛明, 蒋正治, 宋美华, 沈涛. 锌镍一次电池的研制与实效试验[J]. 电池, 2003, 33: 305-307.
    [12] 符显珠, 李俊, 林敬东, 廖代伟. 碱性Zn-NiOOH/MnO2 一次电池的性能研究[J]. 电源技术, 2005, 29: 762-764.
    [13] Pan J. Q., Sun Y. Z., Wan P. Y., Wang Z. H., Liu X. G. Synthesis, characterization and electrochemical performance of battery grade NiOOH [J]. Electrochem. Commun., 2005, 7: 857-862.
    [14] Oliva P., Leonardi J., Laurent J. F., Delmas C., Braconnier J. J., Figlarz M., Fievet F., Guibert A. D. Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides [J]. J. Power Sourcers, 1982: 8: 229-255.
    [15] Barnard R., Randell C. F., Tye F. L. Studies concerning charged nickel hydroxide electrodes. I. Measurement of reversible potentials [J]. J. Apple. Electrochem.1980, 10: 109-125.
    [16] Horányi T. S. The thermal stability of the β-Ni(OH)2 - β-NiOOH system [J]. Thermochim. Acta, 1989, 137: 247-253.
    [17] Theresc G. H. A., Kamath P. V., Gopalakrishnan J. On the Existence of Hydrotalcite-Like Phases in the Absence of Trivalent Cations [J]. J. Solid State Chem., 1997, 128: 38-41.
    [18] Winsel A., Fischer C. New apparatus for the measurement of the self-discharge of the nickel hydroxide electrode [J]. J. Power Sources, 1991, 34: 331-338.
    [1] 高效岳, 沙永香, 唐琛明, 蒋正治, 宋美华, 沈涛. 锌镍一次电池的研制与实效试验[J]. 电池, 2003, 33: 305-307.
    [2] 符显珠, 李俊, 林敬东, 廖代伟. 碱性Zn-NiOOH/MnO2 一次电池的性能研究[J]. 电源技术, 2005, 29: 762-764.
    [3] Pan J. Q., Sun Y. Z., Wan P. Y., Wang Z. H., Liu X. G. Synthesis, characterization and electrochemical performance of battery grade NiOOH [J]. Electrochem. Commun., 2005, 7: 857-862.
    [4] Taucher-Mautner W., Kordesch K. Studies of pasted nickel electrodes to improve cylindrical nickel-zinc cells [J]. J. Power Sources, 2004, 132: 275-281.
    [5] Fu X. Z., Zhu Y. J., Xu Q. C., Li J., Pan J. H., Xu J. Q., Lin J. D., Liao D. W. Nickel oxyhydroxides with various oxidation states prepared by chemical oxidation of spherical β-Ni(OH)2 [J]. Solid State Ionics, 2007, 178: 987-993.
    [6] Barnard R., Randell C. F., Tye F. L. Studies concerning charged nickel hydroxide electrodes. I. Measurement of reversible potentials [J]. J. Appl. Electrochem., 1980, 10: 109-125.
    [7] Corringan D. A., Kinigh S. L. Electrochemical and spectroscopic evidence on the participation of quadrivalentnickel in the nickel hydroxide redox reaction [J]. J. Electrochem. Soc., 1989, 136: 613-619.
    [8] Faure C., Delmas C., Fouassier M. Characterization of a turbostratic α-nickel hydroxide quantitatively obtained from an NiSO4 solution [J]. J. Power Sources, 1991, 35: 279-290.
    [9] Oshitani M., Takayama T., Takashima K., Tsuji S. A study on the swelling of a sintered nickel hyolroxida electrode [J]. J. Appl. Electrochem., 1986, 16: 403-411.
    [10] Delmas C., Faure C., Borthomieu Y. The effect of cobalt on the chemical and electrochemical behaviour of the nickel hydroxide electrode [J]. J. Mater. Sci. Eng. B, 1992, 13: 89-96.
    [11] Bode H., Dehmelt K., Witte J. Zur kenntnis der nickelhydroxidelktode-I. Uber das nickel (Ⅱ )-hydroxidhydrat [J]. Electrochim. Acta, 1966, 11: 1079-1087.
    [12] Glemser O., Einerhand J. über h?here Nickeloxide [J]. Z. Anorg. Allg. Chem., 1950, 261: 26-42.
    [13] Sac-Epée N., Palacin M. R., Beaudoin B., Delahaye-Vidal A., Jamin T., Chabre Y., Taraican J. M. On the origin of the se cond low-voltage plateau in secondary alkaline batteries with nickel hydroxide positive electrodes [J]. J. Electrochem Soc, 1997, 144: 3896-3907.
    [14] Leger C., Tessier C., Menetrier M., Denage C., Delmas C. Investigation of the Second Discharge Plateau of the beta(III)-NiOOH/beta(II)-Ni(OH)2 System [J]. J. Electrochem. Soc., 1999, 146: 924-932.
    [15] Bardé F., Palacin M. R., Chabre Y., Isnard O., Tarascon J. M. In Situ Neutron Powder Diffraction of a Nickel Hydroxide Electrode [J]. Chem. Mater., 2004, 16: 3936-3948.
    [16] Barde F., Palac?′n M. R., Beaudoin B., Tarascon J. M. Ozonation: A Unique Route To Prepare Nickel Oxyhydroxides.Synthesis Optimization and Reaction Mechanism Study [J]. Chem. Mater., 2005, 17: 470-476.
    [17] Oshitani M., Yufu H., Takashima K., Tsuji S., Matsumaru Y. Development of a pasted nickel electrode with high active material utilization [J]. J. Electrochem. Soc, 1989, 136: 1590-1593.
    [18] Chang Z.R., Li G. G., Zhao Y. J., Chen J. G., Ding Y. C. Influence of preparation conditions of spherical nickel hydroxide on its electrochemical properties [J]. J. Power Sources, 1998, 74: 252-254.
    [19] Hu W. K., Noreus D. Alpha Nickel Hydroxides as Lightweight Nickel Electrode Materials for Alkaline Rechargeable Cells [J]. Chem. Mater., 2003, 15: 974-978.
    [20] Chen H., Wang J. M., Pan T., Zhao Y. L., Zhang J. Q., Cao C. N. The structure and electrochemical performance of spherical Al-substituted alpha-Ni(OH)2 for alkaline rechargeable batteries [J]. J. Power Sources, 2005, 143: 243-255.
    [21] Ehlsissen K. T., Delahaye-Vidal A., Genin P., Figlarz M., Willmann P. Preparation and Characterization of Turbostratic Ni/Al Layered Double Hydroxides for Nickel Hydroxide Electrode Applications [J]. J. Mater.Chem., 1993, 3: 883-888.
    [22] Kamath, P. V., Dixit, M., Indira, L., Shukla, A. K., Kumar, V. G., Munichandraiah, N. Stabilized alpha- Ni(OH)2 as electrode material for alkaline secondary cells [J]. J. Electrochem. Soc., 1994, 141: 2956-2959.
    [23] Sugimoto A., Ishida S., Hanawa K. Preparation and characterization of Ni/Al-layered double hydroxide [J]. J. Electrochem. Soc., 1999, 146: 1251-1255.
    [24] Liu B., Wang X. Y., Yuan H. T., Zhang Y. S., Song D. Y., Zhou Z. X. Physical and electrochemical characteristics of aluminium-substituted nickel hydroxide [J]. J. Appl. Electrochem. 1999, 29: 855-860.
    [25] Wang C.Y., Zhong S., Konstantinov K., Walter G., Liu H. K. Structural study of Al-substituted nickel hydroxide [J]. Solid State Ionics, 2002, 148: 503-508.
    [26] Zhang H. B., Liu H. S., Cao X. J., Li S. J., Sun C. C. Preparation and properties of the aluminum-substituted alpha-Ni(OH)2 [J]. Mater. Chem. Phy., 2003, 79: 37-42.
    [27] Demourgues-Guerlou L., Delmas C. New manganese-substituted nickel hydroxides: Part 2. Interstratification process upon ageing [J]. J. Power Sources, 1994, 52: 275-281.
    [28] Kamath P. V., Therese G.. H. A., Gopalakrishnan J. On the existence of hydrotalcite-like phases in the absence of trivalent cations [J]. J. Solid State Chem., 1997: 128: 38-41.
    [29] Rajamathi M., Kamath P. V., Seshadri R. Polymorphism in nickel hydroxide: role of interstratification [J]. J. Mater. Chem., 2000, 10: 503-506.
    [30] Ramesh T. N., Vishnu Kamath P. Synthesis of nickel hydroxide: Effect of precipitation conditions on phase selectivity and structural disorder [J]. J. Power Sources, 2006, 156: 655-661.
    [31] Surea A., Orel B., Phihlar B., Bukovec P. Optical, spectroelectrochemical and structural properties of sol-gel derived Ni-oxide electrochromic film [J]. J. Electroanal. Chem., 1996, 408: 83-100.
    [32] Bihan S., Figlarz M. évolution thermique d'un hydroxyde de nickel lamellaire mal organisé avec des molécules d'eau en insertion entre les feuillets: comparaison avec l'hydroxyde de nickel cristallisé Ni(OH) 2 [J]. Thermochim. Acta, 1973, 6: 319-326.
    [1] Pickeet D. F., Maloyj T. Microelectrode studies of electrochemically coprecipitated cobalt hydroxide in nickel hydroxide electrodes [J]. J. Electrochem. Soc., 1978, 125: 1026-1032.
    [2] Halpert G.. Past development and the future of nickel electrode cell technology [J]. J. Power Sources, 1984, 12: 177-192.
    [2] Sooka K. Studies on the effect of cobalt addition to the nickel hydroxide electrode [J]. J. Appl. Electrochem., 1986, 16: 274-280.
    [3] Armstrong R. D., Briggs G. W. D., Charles E. A. Some effects of the addition of cobalt to the nickel hydroxide electrode [J]. J. Appl. Electrochem., 1988, 18: 215-219.
    [4] Oshitani M., Yufu H., Takashima K., Tsuji S., Matsumaru Y. Development of a pasted nickel electrode with high active material utilization [J]. J. Electrochem. Soc., 1989, 136: 1590-1593.
    [5] Audemer A., Delahaye A., Farhi R., Sac-Epée N., Tarascon J. M. Electrochemical and Raman studies of Beta type nickel hydroxides Ni1-xCox(OH)2 electrodematerials [J]. J. Electrochem. Soc., 1997, 144: 2614-2620.
    [6] Yuan A. B., Cheng S. A., Zhang J. Q., Cao C. N. Effects of metallic cobalt addition on the performance of pasted nickel electrodes [J]. J. Power Sources, 1999, 77: 178-182.
    [7] 袁安保, 张鉴清, 成少安, 曹楚南. 钴及其化合物对镍电极放电容量和循环寿命的影响[J]. 电源技术, 2000, 24: 74-76.
    [8] Sjovall R. The effect of Co addition on the positive active material in Ni-Cd pocket-plate batteries [J]. J. Power Sources, 2000, 90: 153-155.
    [9] Elumalai P., Vasan H. N., Munichandraiah N. Electrochemical studies of cobalt hydroxide - an additive for nickel electrodes [J]. J. Power Sources, 2001, 93: 201-208.
    [10] Ding Y. C., Yuan J. L., Wang Z. Y., Ding Y., Guo B. S. Effects of surface modification of Ni(OH)2 powders on the performance of nickel cathodes [J]. J. Power Sources, 1997, 66: 55-59.
    [11] Wang X.Y., Yan J., Zhou Z., Lin J., Yuan H. T., Song D. Y., Zhang Y. S., Zhu L. G. Electrochemical characteristics of nickel hydroxide modified by electroless cobalt coating [J]. Int. Hydrogen Energy, 1998, 23: 873-878.
    [12] Cheng S. A., Leng W. H., Zhang J. Q., Cao C. N. Electrochemical properties of the pasted nickel electrode using surface modified Ni(OH)2 powder as active material [J]. J. Power Sources, 2001, 101: 248-252.
    [13] 潘铮铮, 王荣, 周震, 阎杰. 球型氢氧化镍表面包覆 CoOOH 的研究[J]. 电源技术, 2001, 25: 200-202.
    [14] 杜晓华, 姜长印. 覆钴层晶型对球形Ni(OH)2电化学性能的影响[J]. 电源技术, 2002, 26: 346-348.
    [15] 胡泽星, 袁庆文, 周勤俭, 覃事彪, 贺万宁, 殷春梅. 球形氢氧化镍表面包覆Co(OH)2的研究矿[J]. 冶金工程, 2004, 24: 79-82.
    [16] Hu W. K. Gao X. P., Geng M. M. Gong Z. X., Noreus D. Synthesis of CoOOH Nanorods and Application as Coating Materials of Nickel Hydroxide for High Temperature MH-Ni Cells [J]. J. Phys. Chem. B, 2005, 109: 5392-5394.
    [17] 高效岳, 沙永香, 唐琛明, 蒋正治, 宋美华, 沈涛. 锌镍一次电池的研制与实效试验[J]. 电池, 2003, 33: 305-307.
    [18] Pan J. Q., Sun Y. Z., Wan P. Y., Wang Z. H., Liu X. G. Synthesis, characterization and electrochemical performance of battery grade NiOOH [J]. Electrochem. Commun., 2005, 7: 857-862.
    [19] Li W. Y., Zhang S. Y., Chen J. Synthesis, characterization, and electrochemical application of Ca(OH)2-, Co(OH)2-, and Y(OH)3-coated Ni(OH)2 tubes [J]. J. Phys. Chem. B, 2005, 109: 14025-14032.
    [20] Oliva P., Leonardi J., Laurent J. F., Delmas C., Braconnier J. J., Figlarz M., Fievet F., Guibert A. D. Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides [J]. J. Power Sourcers, 1982, 8: 229-255.
    [1] Whittingham M. S. Lithium batteries and cathode materials [J]. Chem. Rev., 2004, 104: 4271-4301.
    [2] Delmas C., Menetrier M., Croguennec L., Saadoune I., Rougier A., Pouillerie C., Prado G., Grune M., Fournes L. An overview of the Li(Ni, M)O2 systems: synthesis, structures and properties [J]. Electrochim. Acta, 1999, 45: 243-253.
    [3] 阮艳莉, 韩恩山, 张西慧. 尖晶石型锂锰氧化物正极材料的研究进展[J]. 电源技术, 2003, 27: 400-403.
    [4] 甘晖, 童庆松, 汪冰冰, 连锦明. 锂离子蓄电池正极活性材料磷酸亚铁锂[J]. 电源技术, 2003, 27: 339-342.
    [5] Koksbang R., Barker J., Saidim Y. Cathode materials for lithium rocking chair batteries [J]. Solid State Ionics, 1996, 84: 1-21.
    [6] 刘汉三, 杨勇, 张忠如, 林祖赓. 锂离子电池正极材料锂镍氧化物研究新进展[J]. 电化学, 2001, 7: 145-154.
    [7] Barboux P., Tarascon J. M., Shokoohi F. K. The use of acetates as recursors for the low temperature synthesis of LiNiO2 and LiCoO2 intercalation compounds [J]. J. Solid State Chem., 1991, 94: 185-193.
    [8] Schoonman J., Tuller H. L., Kelder E. M. Defect chemical aspects of lithium-ion battery cathodes [J]. J. Power Sources, 1999, 81-82: 44-48.
    [9] Palacin M. R., Larcher D., Audemer A., Epee N. S., Amatucci G. G., Tarascon J. M. Low-temperature Synthesis of LiNiO2, Reaction Mechanism, Stability and Electrochemical Properties [J]. J. Electrochem. Soc., 1997, 144: 4226-4236.
    [10] Maruta J., Yasuda H., Yamachi M. Low-temperature synthesis of lithium nickelate positive active material from nickel hydroxide for lithium cells [J]. J. Power Sources, 2000, 90: 89-94.
    [11] Sun Y. Z., Wan P. Y., Pan J. Q., Xu C. C., Liu X. G. Low temperature synthesis of layered LiNiO2 cathode material in air atmosphere by ion exchange reaction [J]. Solid State Ionics, 2006, 177: 1173-1177.
    [12] Ohzuku T. Electrochemistry and structural chemistry of LiNiO2(R-3m) for 4 volt secondary lithium cells [J]. J. Electrochem. Soc., 1993, 140: 1862-1869.
    [13] Croguennec L., Pouillerie C., Delmas C. NiO2 obtained by electrochemical lithium deintercalation from lithium nickelate: Structural modifications [J]. J. Electrochem. Soc., 2000, 147: 1314-1321.
    [14] Peres J. P., Delmas C. Lithium/vacancy ordering in the monoclinic LixNiO2 (0.50≤ x ≤0.75) solid solution [J]. Solid State Ionics, 1999, 116: 19-27.
    [15] Delemas C. Lithium batteries: a new tool in solid state chemistry [J]. J. Inorg. Mater., 1999, 1: 11-19.
    [16] Rossen E. Structure and electrochemistry of LixMnyNi1-yO2 [J]. Solid State Ionics, 1992, 57: 311-318.
    [17] Broussely M., Bieensan P., Simon B. Lithium insertion into host materials: the key to success for Li ion batteries [J]. Electrochim. Acta, 1999, 45: 3-22.
    [18] Liu H. S., Zhang Z. R., Gong Z. L., Yang Y. On the origin of deterioration for LiNiO2 cathode material during storage in air [J]. Electrochem. Solid State Lett., 2004, 7: A190-A193.
    [19] Alcantara R., Lavela P., Tirado J. L. Changes in structure and cathode performance with composition and preparation temperature of lithium cobalt nickel oxide [J]. J. Electrochem. Soc., 1998, 145: 730-736.
    [20] Richard K. B., Ryoji K., Mitchell J. B., Effects of sintering temperature on the structure of the layered phase Lix (Ni0.8Co0.2)O2 [J]. J. Eletrochem. Soc., 2000, 147: 4045-4051.
    [21] Liu H. S., Li J., Zhang Z. R., Gong Z.L., Yang Y. The effects of sintering temperature and time on the structure and electrochemical performance of LiNi0.8Co0.2O2 cathode materials derived from sol-gel method. [J]. J. Solid State Electrochem., 2003, 7: 456-462.
    [22] 张爱波, 刘建睿, 黄卫东. 锂离子蓄电池正极材料LiNix C o( 1-x)O 2 的研究进展[J]. 电源技术, 2003, 27: 4784-487.
    [23] Rougier A., Saadoune I. Effect of Cobalt Substitution on Cationic Distribution in LiNi1-yCoyO2 Electrodes Materials [J]. Solid State Ionics, 1996, 90: 83-90.
    [24] Graetz J., Ahn C. C., Yazami R., Fultz B. An Electron Energy-Loss Spectrometry Study of Charge Compensation in Li0.8Ni0.8Co0.2O2 [J]. J. Phys. Chem. B, 2003, 107: 2887-2891.
    [25] Cho J., Jung H. S., Park Y. C., Kim G. B., Lim H. S. Electrochemical Properties and Thermal Stability of LiaNi1–xCoxO2 Cathode Materials [J]. J. Electrochem. Soc., 2000, 147: 15-20.
    [26] Zhang Z. R., Liu H. S., Gong Z. L. Yang Y. A comparative study of electrochemical and surface properties ofbare and TiO2-coated LiNi0.8Co0.2O2 electrodes [J]. J. Electrochem. Soc., 2004, 151: A599-603.
    [27] 应皆荣, 万春荣, 姜长印. 用溶胶凝胶法在LiNi0.8Co0.2O2表面包覆SiO2[J]. 电源技术, 2001, 25: 401-404.
    [28] Sun Y. K., Taek M. S., Kim M. H., Prakash J., Amine K. Synthesis and Characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the Microscale Core-Shell Structure as the Positive Electrode Material for Lithium Batteries [J]. J. Am. Chem. Soc., 2005, 127: 13411-13418.
    [29] Zhong S. W., Zhao Y. J, Lian F., Li Y., Hu Y., Li P. Z, Mei J., Liu Q. G. Characteristics and electrochemical performance of cathode material Co-coated LNiO2 for Li-ion batteries [J]. Trans. Nonferrous Met. Soc. China. 2006, 16: 137-141.
    [30] Morales J., Perez-Vicente C., Tirado J. N. Cation distribution and chemical deintercalation of Li1-xNi1+xO2 [J]. Mater. Res. Bull., 1990, 25: 623-627.
    [1] Zhigang Q., Kaufman A. Activation of low temperature PEM fuel cells [J]. J. Power Sources, 2002, 111: 181-184.
    [2] 衣宝廉. 燃料电池—原理·技术·应用 [M]. 北京: 化学工业出版社, 2003.
    [3] Wasmus S., Kuver A. Methanol oxidation and direct methanol fuel cells: a selective review [J]. J. Electroanal. Chem., 1999, 461: 14-31.
    [4] Wee J. H., Lee K. Y. Overview of the development of CO-tolerant anode electrocatalysts for proton-exchange membrane fuel cells [J]. J. Power Sources, 2006, 157: 128-135.
    [5] Liu H. S., Song C. J., Zhang L., Zhang J. J., Wang H. J., Wilkinson D. P. A review of anode catalysis in the direct methanol fuel cell [J]. J. Power Sources, 2006, 155: 95-110.
    [6] AricòA. S., Shukla A. K., Kim H., Park S., Min M., Antonucci V. An XPS study on oxidation states of Pt and its alloys with Co and Cr and its relevance to electroreduction of oxygen [J]. Appl. Surf. Sci., 2001, 172: 33-40.
    [7] Min M. K., Cho J. H., Cho K. W., Kim H. Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications [J]. Electrochim. Acta, 2000, 45: 4211-4217.
    [8] Antolini E. Formation of carbon-supported PtM alloys for low temperature fuel cells: a review [J]. Mater. Chem. Phy., 2003, 78: 563-573.
    [9] Antolini E., Salgado J. R. C., Gonzalez E. R. The stability of Pt-M (M = first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells - A literature review and tests on a Pt-Co catalyst [J]. J. Power Sources, 2006, 160: 957-968.
    [10] Antolini E., Salgado J. R. C., Gonzalez E. R. The methanol oxidation reaction on platinum alloys with the first row transition metals - The case of Pt-Co and -Ni alloy electrocatalysts for DMFCs: A short review [J]. Appl.Catal. B Environ, 2006, 63: 137-149.
    [11] Zhu W. Z., Deevi S. C. A review on the status of anode materials for solid oxide fuel cells [J]. Mater. Sci. Eng., A, 2003, 362: 228-239.
    [12] Jiang S. P., Chan S. H. A review of anode materials development in solid oxide fuel cells [J]. J. Mater. Sci., 2004, 39: 4405-4439.
    [13] Drillet J. F., Ee A., Friedemann J., K?tz R., Schnyder B., Schmidt V. M. Oxygen reduction at Pt and Pt70Ni30 in H2SO4/CH3OH solution [J]. Electrochim. Acta, 2002, 47: 1983-1988.
    [14] Yang H., Coutanceau C., Léger J. M., Vante N. A., Lamy C. Methanol tolerant oxygen reduction on carbon-supported Pt–Ni alloy nanoparticles [J]. J. Electroanal. Chem., 2005, 576: 305-313.
    [15] Antolini E., Salgado J.R.C., Gonzalez E. R. Oxygen reduction on a Pt Ni /C electrocatalyst prepared by the borohydride method in H SO /CH OH solutions70 302 4 3 [J]. J. Power Sources, 2006, 155: 161-166.
    [16] Anderson M. L., Morris C. A., Stroud R. M., Merzbacher C. I., Rolison D. R. Colloidal gold aerogels: Preparation, properties, and characterization [J]. Langmuir, 1999, 15: 674-681.
    [17] Wu G., Chen Y. S., Xu B. Q. Remarkable support effect of SWNTs in Pt catalyst for methanol electro oxidation [J]. Electrochem. Commun., 2005, 7: 1237-1243.
    [18] Zhao D., Xu B. Q. Platinum covering of gold nanoparticles for utilization enhancement of Pt in electro- catalysts [J]. Phys. Chem. Chem. Phys., 2006, 43: 5106-5114.
    [19] Zhao D., Xu B. Q. Enhancement of Pt utilization in electrocatalysts by using gold nanoparticles [J]. Angew. Chem. Int. Ed., 2006, 45: 4955-4959.
    [20] Zhang J., Mo Y., Vukmirovic M. B., Klie R., Sasaki K., Adzic R. R. Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles [J]. J. Phys. Chem. B., 2004, 108: 10955-10964.
    [21] Toda T., Igarashi H., Uchida H., Watanabe M. Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co [J]. J. Electrochem. Soc., 1999, 146: 3750-3756.
    [22] Deivaraj T. C., Chen W. X., Lee J. Y. Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol [J]. J. Mater. Chem., 2003, 13: 2555-2560.
    [23] Park K. W., Choi J. H., Kwon B. K., Lee S. A., Sung H.Y. E., Ha H.Y., Hong S. A., Kim H., Wieckowski A. Chemical and Electronic Effects of Ni in Pt/Ni and Pt/Ru/Ni Alloy Nanoparticles in Methanol Electrooxidation [J]. J. Phys. Chem. B., 2002, 106: 1869-1877.
    [24] Bolzan A. E., Luna A. M. C., Visintin A., Salvarezza R. C., Arvia A. J. Smooth and rough platinum deposits resulting from the electroreduction of hydrous oxide platinum overlayers—a mechanistic approach [J]. Electrochim. Acta, 1988, 33: 1743-1749.
    [25] Visintin, A., Triaca, W. E., and Arvia, A. Changes in the Surface-Morphology of Platinum Electrodes Produced by the Application of Periodic Potential treatments in Alkaline Solution [J]. J. Electroanal. Chem., 1990, 284: 465-480.
    [26] Prabhuram J., Zhao T. S., Wong C. W., Guo J. W. Synthesis and physical/electrochemical characterization of Pt/C nanocatalyst for polymer electrolyte fuel cells [J]. J. Power Sources, 2004, 134: 1-6.
    [27] Clavilier J., Faure R., Guinet G., Durand R. Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the (111) and (110) planes [J]. J. Electroanal. Chem., 1980, 107: 205-209.
    [28] Clavilier J., Armand D., Wu B. L. Electrochemical study of the initial surface condition of platinum surfaces with (100) and (111) orientations [J]. J. Electroanal. Chem., 1982, 135: 159-166.
    [29] Zinola C. F., Luna A. M. C. Kinetics and mechanism of the electrochemical reduction of molecular oxygen on platinum in KOH: influence preferred crystallographic orientation [J]. J. Appl. Electrochem., 1994, 24: 531-541.
    [30] Markovic N., Gasteiger H., Ross P. N. Kinetics of oxygen reduction on Pt(hkl) electrodes: Implications for the crystallite size effect with supported Pt electrocatalysts [J]. J. Electrochem. Soc., 1997, 144: 1591-1597.
    [31] Choi W. C., Jeon M. K., Kim Y. J., Woo S. I., Hong W. H. Development of enhanced materials for direct-methanol fuel cell by combinatorial method and nanoscience [J]. Catal. Today, 2004, 93: 517-522.
    [32] Liu F., Lee J. Y., Zhou W. Template Preparation of Multisegment PtNi Nanorods as Methanol Electro-Oxidation Catalysts with Adjustable Bimetallic Pair Sites [J]. J. Phys. Chem. B., 2004, 108: 17959-17963.
    [33] Liu Z. L., Ling X. Y., Su X. D., Lee J. Y. Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell [J]. J. Phys. Chem. B., 2004, 108: 8234-8240.
    [34] Yu E. H., Scott K., Reeve R. W. A study of the anodic oxidation of methanol on Pt in alkaline solutions [J]. J. Electroanal. Chem., 2003, 547: 17-24.
    [35] Toda T., Igarashi H., Watanabe M. Role of Electronic Property of Pt and Pt Alloys on Electrocatalytic Reduction of Oxygen [J]. J. Electrochem. Soc., 1998, 145: 4185-4188.
    [36] Yang H., Vogel W., Lamy C., Alonso-Vante N. Structure and Electrocatalytic Activity of Carbon-Supported Pt-Ni Alloy Nanoparticles Toward the Oxygen Reduction Reaction [J]. J. Phys. Chem. B., 2004, 108: 11024-11034.
    [37] Stamenkovic V. R., Fowler B., Mun B. S., Wang G. F., Ross P. N., Lucas C. A., Markovic N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability [J]. Science, 2007, 315: 493-497.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700