锌镍电池及其正极材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文综述了国内外锌镍电池的研究和发展现状,指出了锌镍电池研究中目前存在的问题,采用化学分析、X-射线衍射分析(XRD)、扫描电镜(SEM)、充放电性能测试等多种化学与电化学研究手段,对锌镍电池及其正极材料氢氧化镍的制备、结构及性能进行了探讨。首次采用半连续的化学沉淀-晶种长大法制备锌镍电池正极材料Ni(OH)_2,重点考察了沉淀反应次数对Ni(OH)_2物理及化学性能的影响,通过组装Zn/Ni模拟电池,对其电化学性能进行测试。最后,试制了锌镍一次电池,并对电池的性能进行了检测。
     采用半连续的化学沉淀-晶种长大法制备出了堆积密度和结晶度较高、流动性较好的球形氢氧化镍,得到制备Ni(OH)_2的最佳工艺参数为:pH=11.0~12.0,反应温度为50~60℃,氨镍比=1.1,固液比在140~160g/L,反应时间为7~9h;此外,还分析了搅拌强度、加料方式、反应物浓度、陈化时间等因素对Ni(OH)_2性能的影响。通过XRD和SEM检测结果表明,所得Ni(OH)_2的晶型为β—Ni(OH)_2,颗粒呈球形和椭圆形状,晶胞结构完整,晶体结构有序,颗粒粒径粗大,粒径分布在5~15μm之间。
     通过组装锌镍模拟电池,研究了不同充放电倍率下镍电极的充放电性能,以及掺杂Co、Ni、Zn、MnO_2等物质对Ni(OH)_2电极电化学性能的影响。结果表明:充放电倍率对活性物质的利用率、放电倍率有较大的影响:镍电极中添加Co、Ni、Zn等可以较大程度上提高活性物质的利用率、提高放电半电位、缩短活化次数,而添加MnO_2反而会降低活性物质的利用率和放电半电位。Ni(OH)_2粉末微电极循环伏安研究结果表明:随着扫描速度的增加,电流的峰值不断的增加,峰电位差基本上不变;经测试,Ni(OH)_2样品的循环寿命可达600次。
     选用K_2S_2O_8为氧化剂,将Ni(OH)_2氧化成充电态电池正极材料NiOOH,采用碱锰电池的负极及生产工艺,制作成AAA型锌镍一次电池。电池开路电压1.75V左右,3.9Ω恒阻连续放电至1.2V,其放电时间是碱锰电池的3倍左右。
The current conditions and existing problems in the research and development of zinc-nickel batteries were analyzed in this thesis. The crystal and chemical structure characteristics and electrochemical properties of Ni(OH)_2 were investigated in the use of chemical analysis methods, SEM, XRD and so on. The preparation and application of positive electrode material Ni(OH)_2 was extensively studied. The hemicontinuous chemical deposition-crystal seed growth method was adopted for the first time to prepare the positive electrode material Ni(OH)_2. The influence of deposition reaction times was studied. The Zn/ Ni emulation batteries were assembled and their electrochemical capabilities were tested as well. The Zn/Ni primary batteries were produced at last, and their dischargeable performances were detected.In this thesis, the spherical Ni(OH)_2 with high tap density, crystallinity degree and good flowability was prepared with hemicontinuous chemical deposition - crystal seed growth method. The optimal technological parameters are: pH=11.0, reaction temperature is 50℃, NH_3/Ni= 1.1, the solid material content was controlled in the range of 140~160g/L, and the reaction time is 7 hours . In addition, the agitation strength, the concentration of the raw material, the aging time, the charging method of raw material and some other factors were also studied. The basic crystal structure of Ni(OH)_2 was found to be β-Ni(OH)_2 by using of advanced physical analysis of SEM and XRD. The particle crystal is in order, crystallinity degree is high, and the crystallite size is big. The size of particles distributes from 5 to 15 μm.The charge-discharge capabilities of the Electrodes doped with Co、 Ni、 Zn、 MnO_2 were studied by testing a Zn/Ni simulation battery. The results show that the effects of charge-discharge rate on the utilization of active material and average potential of electrode. Doping Co、 Ni、 Zn can increase the utilization of active material, enhance average potential and reduce the cycle times. But the utilization of active material and average
    potential are reduced after doping MJ1O2. Cycle Voltammetry (CV) of power microelectrodes of Ni(0H)2 showed that the higher the scanning rate in the range of 10~50mv/s, a higher current peak value, and cycle life of Ni(0H)2 power microelectrodes is 600 times.The Ni(OH)2 was oxidized to NiOOH when K2S2O8 was used as oxidizing agent. AAA type Zn/Ni primary batteries were made by using the alkaline manganese battery production line. The open circuit voltages of the batteries are about 1.75V. The permanent resistant (3.9Q) continuous discharge time of the Zn/Ni primary batteries is about 3 times of alkaline manganese batteries.
引文
[1] 张文保.密封锌镍电池发展评述.电源技术,2000,24(3):178-180.
    [2] 高自明,武彩霞.锌镍电池研究进展.电源技术,1997,23(2):83-85.
    [3] Takamura, Tsutomu, Shirogami, et al. Nickel-zinc cell. US Pat. 3961985, 1976-06-08.
    [4] Himy, Albert, et al. Stabilized nickel-zinc battery. US Pat. 4327157, 1982-04-27.
    [5] Jones, A. Richard. Nickel-zinc cell. US Pat. 4358517, 1982-11-09.
    [6] Gibbard, F. Henry, Jr. Murray, et al. Sealed nickel-zinc battery. US Pat. 4552821, 1985-11-12.
    [7] J. Jindra, Progress in sealed Ni-Zn cells, 1991-1995. J Power Resource, 1997, 66: 15-25.
    [8] A. Charkey, Eur. Pat. Appl. EP 697, 746 1996.
    [9] 陈衍珍.锌镍电池新进展.[J].电源技术 2000,2.120-122.
    [10] 费锡明,汪继红.锌镍电池的研究进展.[J]..电池.2002,32(6):361-363.
    [11] 刘建华,掺杂Ni(OH)_2电化学性能性质研究.中南工业大学博士学位论文,长沙:中南工业大学,1997,P6-7.
    [12] 郭炳锟,李新海,杨松青.化学电源—电池原理及制造技术[M],第一版.长沙:中南工业大学出版社.2000.
    [13] 曹晓燕,毛立彩,周作祥.氢氧化镍电极及其添加剂。电池,1994年05期.
    [14] 杨子运,郭炳琨,徐徽等.锌电极有机代汞缓蚀剂.电池,2000-6.
    [15] 梁宝臣,田建华,潘滔.锌-镍蓄电池电解液组成对锌电极性能影响.天津理工学院学报,2002年02期.
    [16] 石建珍,朱纪凌,高翠琴等.二次碱性锌电极.电池工业,1996年02期.
    [17] 王金国等.电动汽车用镍氢蓄电池的技术发展动向[J].汽车电器,2000,(4):4~7.
    [18] Jiri Jindra. Progress in sealed Ni-Zn cells, 1996-1998. J. Power Sources 2000.
    [19] 黄振谦,陈湘平.锌镍电池研究进展[J].电池,1998,28(1):29-40.
    [20] ZHAO yunping,国外电动车用锌镍电池的研究[J],电源技术,1995,19(1).
    [21] Yano Mulsumi etal. U. S. P6235428, 2001. 3. 22.
    [22] 高效岳,沈涛,唐沈明等.锌镍电池研究的进展.[J].电池工业,2002,7(3,4):220-224.
    [23] 朱元保.电化学数据手册.长沙:湖南科学技术出版社,1985.139-153.
    [24] 徐保伯,胡行仁,罗秋珍等.民用电池工业的发展,电池,1997,27(6):243-248.
    [25] 宋全生,MH-Ni电池正极活性材料氢氧化镍的制备、结构及性能研究;博士论文;天津大学;20000101.
    [26] SCHLON, MARTIN. Preparation from metal alkoxides of high purity metal powder[P].US:3730857, 1996—07—11.
    [27] 周震等.纳米Ni(OH)_2的质子扩散行为研究[J].电源技术,1999,23(6):319~321.
    [28] 徐保伯,胡行仁,罗秋珍等.民用电池工业的发展,电池,1997,27(6):243-248.
    [29] 杨长春,陈鹏磊.电池用Ni(OH)_2及其电化学行为研究现状[J].电源技术,1999,23(1):3-7.
    [30] 周辉等.制备工艺对球型氢氧化镍结构和性能的影响[J].电源技术,1999,23 Suppl:67~69,86.
    [31] 张秀英等.离子交换树脂法制备氢氧化镍和氧化镍超细微粒[J].功能材料,2000,31(1):109~110.
    [32] 张多默,曾学庆等.高密度高活性球形Ni(OH)_2的制备研究[J].电源技术,1997,21(2):65-69.
    [33] 夏熙,魏莹.纳米级β-Ni(OH)_2的制备和放电性能[J].无机材料学报,1998,13(5):674~678.
    [34] 刘敏等.氢氧化镍的制备及其电化学行为研究进展[J].电源技术,2002,26(3):172~175.
    [35] BODE H, etal. Zur kenntnis der nickel hydroxide lektrode(Ⅰ) Uber das nickel(Ⅱ) hydroxide hydrat[J].Electochemica Acta, 1966, 11:1079~1087.
    [36] 刘洪成,褚莹,刘莹莹.反胶束法制备纳米Ni(OH)_2.应用化学,2003,20(3):302~304.
    [37] 范祥清等.高活性Ni(OH)_2的制备及电极性能[J].电池,1995,25(2):55~58.
    [38] VAZQUEZMV, etal. Dehydration processon nickel hydroxide: Its influence on the electrochemical behaviour of Pt/Ni(OH)_2 electrodes[J]. Electrochemica Acta, 1995,40(7):907~912.
    [39] 周辉等.制备工艺对球型氢氧化镍结构和性能的影响[J].电源技术,1999,23 Suppl:67~69,86.
    [40] 杨桂琴,王雪松.纳米钴蓝颜料的微乳法制备及其表征[J].应用化学,2000,17(5):490~502.
    [41] 解晶莹等.镍氢氧化物研究进展.电源技术,1999,23(4):238~244.
    [42] Law H H, Sapjeta J. A novel substrate for nickel-cadmium batteries. JElectrochem Soc, 1 998;135(9):2418~2410.
    [43] Johoson B A, Ferror R E, Swain G M, etal. High surface area, lowweight, composite nickel fiber electrodes. Jpower Sources, 1994;47:251~259.
    [44] Lee W W, Ferrando W A, Sutula R A. Loading and utilization ofactive materials in nickel composite electrodes:Optimization. ADA160354,1984: 1~45.
    [45] S. Kulcsar, J. Agh, etal, Microstructure of plastic Bonded Nickel Electrodes[J].Power Sources, 1982,8:55-59.
    [46] 史鹏飞,郭清志等.新型粘结镍电极的研究,电源技术,1993,2:13-15.
    [47] Bode B, Dehmett k, Writte J. Electrochem Acta, 1996, (11):1079.
    [48] BERNARDMC, eral. Structural defects and electrochemical reactivity of β-Ni(OH)_2 [J]. J Power Sources, 1996, 63:247.
    [49] OLIVA P, etal. Extended X-ray absorption fine structuructure investigations of nickel hydroxides[J].J PHys them, 1990, 94:21.
    [50] GUAYD, etal. In situtime resolved EXAFS study of the structural modifications ccurring in nickel oxide electrode between their fully oxidized and reduced states[J].J Electroanaal chem, 1991, 303:83~95.
    [51] BERNARDMC, etal. Electrochemical behavior of quasi-spHerical β-Ni(OH)_2 particles studied by Raman Spectroscopy[J]. J Electroanaal chemSoc, 1996, 148(8):2447~2451.
    [52] DEL MAS C, BORTHOMIEU Y.Chimie douce reactions:A new route to obtain well rystallized layer double hydroxides[J].JSolid State Chem, 1993, 104:345~352.
    [53] 李清文,李娟,曹雅丽等.纳米β-Ni(OH)_2的制备于电化学行为研究.第十届全国电化学会议论文集,杭州,1999,B035.
    [54] 王超群等.制备条件对Ni(OH)_2微晶结构参数的影响[J].中国有色金属学报,1999,9(3):50 4~509.
    [55] Murata T, Yasuda H, Hori M. PHase transtition of nickel (cobalt) hydroxide electrode during charging process. DENKIKAGAKU, 1989, 57(6): 481~487.
    [56] Zimmerman A H. Technological implications in studies of nickel electrode performance and degradation. JPower Sources, 1984,12:233~245.
    [57] 余国华,张玉杰等.我国镉镍电池的电极制造技术急发展,电源技术,1998,22(2):79-85.
    [58] 倪佩,覃奇贤等,NiOOH/Ni(OH)_2电极的发展历程急前景,电池,1996,26(1):35-37.
    [59] Y.B. Pyun, H. Chang and B.H. Jung, Extr. Abstr., 46th ISE Meet., Xiamen, China, 1995, Vol. 2, Abstr. No. 5-36.
    [60] A. Kawakami, V. Ito and H. Yasuda, Jpn Patent JP No. 0613076(1994); Chem. Abstr., 120(1994) 222485.
    [61] K. Nishiyama and H. Wasuda, Jpn. Patent JPNo. 04337246(1992);Chem. Abstr., 118(1993) 172567.
    [62] W. Taucher, T.C. Adler, F.R. McLarnon and E.J. Cairns, Ext. Abstr., 188th Meet. The Electrochemical Society. 1995, Vol. 95-2, Abstr. No. 132.
    [63] I. Krejci and P. Vanysek, J. Power Sources, 47(1994) 79-88.
    [64] 任小华,蒋文全,李莉等.部分杂质对球形氢氧化镍结构及性能的影响[J].电源技术.1998,22(1):43.
    [65] 曾晓燕,毛立彩,周作祥.氢氧化镍电极及其添加剂[J].电池,1994,24(5):236-239.
    [66] 詹晋华,李国华.氢镍电池镍电极探讨[J].电池,1993,23(6):264-266.
    [67] 袁红,蔡克霞.添加剂对球形Ni(OH)_2影响的研究.宁夏工程技术.2002,1(2):168~173.
    [68] 陈腾飞,黄伯云,贺万年等.球形氢氧化镍同时添加Co,Zn的研究[J].湘谭矿业学院学报.2001,16(3):51.
    [69] 邹建梅,单晰等.添加剂对氢氧化镍电极的电化学性能的影响[J].电池,1998,22(40:144-147.
    [70] 王先友,阎杰等.球形氢氧化镍表面包覆钴的正交实验研究[J].电源技术,1998,72:221-225.
    [71] 张胜涛,陈际达等.库里之注入对镍电极性能的影响[J].电源技术,1995,19(6):8-10.
    [72] 刘寿长,王兰典,等,氢氧化镍活性、堆积密度、形貌与结构研究,电源技术, 1995,25(1):14—17.
    [73] 朱文华等,添加剂对氢氧化镍电极电化学性能影响的研究[J].Power Scources,1885,56:75-79.
    [74] 姜长印,张泉荣,万春荣等.高活性球形氢氧化镍的密度控制[J].电源技术.2000,24(4):207-208.
    [75] 汪存信,刘欲文,胡超珍等.新制氢氧化镍活度剂的测定与计算[J].大学化学,1999,14(4):39-43.
    [76] 冷拥军,张鉴清,成少安,等,高堆积密度球形氢氧化镍制备积极理论分析[J].化学通报,1998,56:557-563.
    [77] 沈钟,王果庭,胶体与表面化学,第二版,北京:化学工业出版社。1997,10—12,221—225,32—36.
    [78] 贺万宁,覃事彪,等.高密度球形Ni(OH)_2工艺开发研究[J].电源技术,1995,19(5):1-3.
    [79] 张克从.晶体生长,北京:科技出版社.1981.52.
    [80] 姚连增编.晶体生长基础,合肥:中国科学技术大学出版社,1995.
    [81] 张洪有,密度比孔容积和孔隙度测定方法综述,电源技术,1986,2:22-27.
    [82] Lkowa, Akutsu, Enokldo, etal, EP 0523284A2, 1991.
    [83] 沈钟,王果庭.胶体与表面化学,第二版,北京:化学工业出版社,1997,10-12,221-225,32-36.
    [84] 陈俊强,燕惠,等,氧化物电极研究(1)——粘结式氧化物电极,电池,1991,21(5):20-22.
    [85] 夏熙,魏莹.纳米级β-Ni(OH)_2作为电池正极材料的研究.第二十三届全国化学于物理电源技术会议论文集,河南老乡,1998,P91.
    [86] 船津英司,JP特开平 6-340427,1994.
    [87] 王再殿,高活性高密度氢氧化镍的生产技术,电池,1998,28(2):70—72.
    [88] 王敏蕾,郑宝家,孙英莉.活性氢氧化镍的研制实验[J],有色矿冶,1996(6):40-46.
    [89] 方晓,杨云霞.高密度高活性氢氧化镍德制备研究[J].无机盐工业.1995(4):6-7.
    [90] 葛华才,袁高清,范祥清,等.影响Ni(OH)_2性能因素的研究[J].电池.1999,29(4):150-153.
    [91] 刘寿长.影响Ni(OH)_2制备因素的研究[J].电源技术.1994,18(5):1-3.
    [92] 罗文承,郑景宣等.配位催化液相沉淀法生产氢氧化镍[J],江西冶金,2001, 21(6):16-17.
    [93] 北京大学数学力学系概率设计组编.正交设计法[M],石油工业化学出版社,1976.
    [94] 申勇峰.影响球形氢氧化镍质量的因素分析与控制[J].湿法冶金,2002,21(2):76-80.
    [95] S. Kulcsar, J. Agh, etal, Microstructure of Plastic Bonded Nickel Electrodes[J].Power Sources, 1982,8:55-59.
    [96] 任小华,蒋文全,李莉等.部分杂质对球形氢氧化镍结构及性能的影响[J].电源技术.1998,22(1):43.
    [97] 刘建华,掺杂Ni(OH)_2电化学性能性质研究.中南工业大学博士学位论文,长沙:中南工业大学,1997,P6-7.
    [98] 王志兴,等.96全国冶金物理化学学术会议论文集.昆明:1996,418.
    [99] 高效岳,沙永香,唐琛明.锌镍一次电池的研制与实效试验.电池,2003年05期.
    [100] 邓润荣,方春,刘勇标.锌镍电池的研制与开发.电池,2004年01期.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700