新型V-Ti-Ni-Zr基双相贮氢电极合金研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在对国内外V-Ti-Ni基双相贮氢电极合金的研究进展进行全面综述的基础上,首先采用XRD、SEM、EDS以及电化学性能测试方法,比较系统地研究了V_(2.1)TiNi_(0.4)Zr_x(x=0~0.08)合金的相结构与电化学性能;然后利用XRD全谱拟合、SEM/EDS面分布、XPS及AES等分析测试方法,分析研究了此类合金的充放电循环容量衰退机制;在此基础上,通过分别添加Co、Cr、Cu、Ta、Nb元素对V_(2.1)TiNi_(0.4)Zr_(0.06)进行多元合金化改性,对比研究了上述合金元素对合金相结构及电化学性能的影响规律,力求进一步提高此类合金的综合电化学性能。
     通过对V_(2.1)TiNi_(0.4)Zr_x(x=0~0.08)合金相结构及电化学性能的研究表明:所有合金均由体心立方结构的V基固溶体主相和第二相组成,第二相沿主相晶界形成三维网状分布;其中,当Zr含量x≤0.02时合金的第二相为体心立方结构的TiNi基相,当Zr含量x>0.02时,第二相为六方结构的C14型Laves相,且主相和第二相的晶胞体积均随着x的增加而增大。与V_(2.1)TiNi_(0.4)相比,添加Zr元素可提高合金的活化性能和合金最大放电容量(除x=0.02时容量稍有下降外),明显改善合金的高倍率放电性能,但是会降低循环稳定性。在所研究的合金中,V_(2.1)TiNi_(0.4)Zr_(0.06)合金的综合电化学性能相对较佳,经过2次充放电循环活化达到最大放电容量468.5mAh/g,在300mA/g放电条件下的高倍率放电性能为70.13%,但经过30次充放电循环后的容量保持率S_(30)仅为22.34%,有待于进一步研究改善。
     在上述研究基础上,选择V_(2.1)TiNi_(0.4)Zr_(0.06)合金为研究对象,系统研究了此类合金电极的循环容量衰退机制。通过对不同充放电循环次数后合金电极的电化学性能和微结构研究表明:在最初的5次充放电循环中,合金表面形成了V_2O_5、TiO_2和Ni(OH)_2氧化产物,但表面的V以溶出为主而Ti主要被氧化;第二相中V元素的腐蚀溶出导致该相逐渐破坏。随后的充放电循环过程中,次表层的V溶出明显,且Ti在碱液中发生溶出,同时有少量NiO生成,致使合金表面生成厚度约2μm的氧化层;该氧化层减缓了内层V和Ti元素的溶出,使电极表面的电化学反应阻抗增加,因此合金的容量衰减速度减慢。经过30次充放电循环后,合金中的C14型Laves第二相已逐渐消失,并有四方结构和单斜结构的V_2H基相、立方结构的VH_2基相以及TiO_2新相生成。分析认为,充放电循环时合金元素(主要是V与Ti)的腐蚀溶出引起双相结构稳定性变差,尤其是C14型Laves催化相的逐渐消失,加上氧化层不断增厚,是导致合金循环放电容量衰减的主要原因。
     为提高V_(2.1)TiNi_(0.4)Zr_(0.06)合金的循环稳定性,分别添加Co,Cr,Cu,Ta,Nb五种元素对V_(2.1)TiNi_(0.4)Zr_(0.06)进行合金化改性。研究表明,所有V_(2.1)TiNi_(0.4)Zr_(0.06)M_(0.152)(M=Co,Cr,Cu)合金均由V基固溶体相和C14型Laves相组成,第二相沿主相晶界形成三维网状分布;且大部分Cr分布在主相中,而Co和Cu主要分布在第二相中。添加Co,Cr,和Cu会减小合金主相和第二相的晶胞体积,降低V_(2.1)TiNi_(0.4)Zr_(0.06)合金的活化性能和最大放电容量,但能有效抑制V与Ti元素的腐蚀溶出,提高合金电极的循环稳定性。同时,Cr还能改善合金的高倍率放电性能,但Co与Cu会使高倍率放电能力降低。相比之下,V_(2.1)TiNi_(0.4)Zr_(0.06)Cr_(0.152)合金具有相对较佳的综合电化学性能:第4次循环达到最大放电容量397.13mAh/g,30次充放电循环容量保持率为77.96%,在400mA/g电流放电条件下的高倍率放电性能为62.80%。对V_(2.1)TiNi_(0.4)Zr_(0.06)M_(0.037)(M=Ta、Nb)合金研究发现,所有合金的主相都是V基固溶体,第二相是C14型Laves相,第二相沿主相晶界形成三维网状分布,且Ta和Nb主要分布在主相中。添加Ta和Nb使合金的最大放电容量降低,但由于抑制了V、Ti元素的腐蚀溶出,使得合金的循环稳定性和高倍率放电性能得到改善。比较而言,V_(2.1)TiNi_(0.4)Zr_(0.06)Ta_(0.037)合金具有相对较好的综合电化学性能:合金在第2次循环达到最大放电容量411.74mAh/g,具有较高的循环稳定性(S_(30)=54.83%),在400mA/g电流放电条件下的高倍率放电能力为52.36%。
In the thesis, previous research and development of V-Ti-Ni based hydrogen storage electrode alloys with dual-phases have been reviewed. On this basis, the microstructure and electrochemical performance of V_(2.1)TiNi_(0.4)Zr_x (x=0~0.08) alloys were investigated systematically by means of XRD, SEM, EDS, ICP analyses and electrochemical measurements. Furthermore, The mechanism for cycling capacity degradation of such alloys was analyzed by means of XRD-Rietveld analysis, XPS and AES investigations. Whereafter, the influence of added elements (Co, Cr, Cu, Ta, Nb) on the phase structure and electrochemical properties were investigated for improving the overall electrochemical performance of V_(2.1)TiNi_(0.4)Zr_(0.06) alloy.
    The study on the microstructure and electrochemical properties of V_(2.1)TiNi_(0.4)Zr_x(x= 0~0.08) alloys shows that all alloys consist of a V-based solid solution main phase with a bcc structure and a secondary phase with a three-dimensional network structure, and the secondary phase precipitates along the grain boundaries of the main phase. For the alloy with x≤<0.02, the secondary phase is the TiNi-based phase. However, the secondary phase in the alloy changes into the C14-type Laves phase with an hcp structure as x>0.02. Moreover, both the unit cell of the main phase and secondary phase expand with the increase of Zr content. The electrochemical measurements reveal that the activation behavior and the maximum discharge capacities except for x=0.02 of the Zr-added alloys are better than those of the V_(2.1)TiNi_(0.4) alloy. As Zr content increases, the high-rate dischargeability is improved significantly, but the cycling stability is degraded gradually. Among the alloys studied, V_(2.1)TiNi_(0.4)Zr_(0.06) alloy has better overall electrochemical properties than others. This alloy is fully activated at the second cycle and reaches the highest discharge capacity of 468.5mAh/g. Its high-rate dischargeability at the discharge current of 300mA/g is 70.13%. However, its capacity retention after 30 charging/discharging cycles is only 22.24%.
    Based on the above work, the mechanism for cycling capacity degradation of V_(2.1)TiNi_(0.4)Zr_(0.06) alloy was investigated by analyzing the relation between its microstructure and electrochemical performance after a certain cycles. It is found that the corrosion and dissolution of vanadium, which leads to the destruction of the secondary phase and the oxidation on the surface of alloy, are induced during the initial five charge/discharge cycles. When the cycling goes on, a little amount of NiO is generated on
    the surface, and titanium element begins to dissolve into the KOH electrolyte. The corrosion and dissolution of large vanadium in the subsurface layer of alloy generates a thick oxide layer (about 2μm) which slower the dissolution of vanadium and titanium. The result brings the deterioration of the maximum discharge capacity with a slower reaction rate. Nevertheless, the thick oxide layer degrades electrochemical reaction rate of the electrode surface and namely heightening electrochemical reaction resistance. After 30 cycles, the C14 Laves phase disappears gradually, however, V_2H phase with tetragonal or monoclinic lattice, VH_2 phase with cubic lattice and a TiO_2 new phase appear. The oxide products on the surface of the alloy are composed of V_2O_5, TiO_2 and Ni (OH)_ 2. Therefore, the stability of the dual-phase structure becomes increasingly bad due to the corrosion and dissolution of vanadium and titanium, especially the C14 Laves secondary phase in possession of electrocatalytic activity gradually disappears, and the oxide layer becomes increasingly thick. Both two factors chiefly induce the deterioration of the discharge capacity.
    In order to improve the cycling stability of V_(2.1)TiNi_(0.4)Zr_(0.06) alloy, Co, Cr, Cu, Ta and Nb were adopted as an alloying element. The study on the V_(2.1)TiNi_(0.4)Zr_(0.06)M_(0.152)(M=Co, Cr, Cu) alloys shows that each alloy has a V-based solid solution main phase with a bcc structure and a secondary phase with a three-dimensional network structure, where Cr predominantly exists in the main phase, and Co or Cu is mainly distributed in the secondary phase. The addition of Co, Cr or Cu leads to a unit cell contraction of both main and secondary phase, a difficult activation and a lower maximum discharge capacities comparing with V2.1TiNio.4Zro.06 alloy. However, as a result of the effective restraint in the corrosion and dissolution of vanadium and titanium by adding Co, Cr or Cu into V_(2.1)TiNi_(0.4)Zr_(0.06) alloy, the cycling stability is improved. Moreover, Cr enlarges the reaction rate of surface and the high-rate dischargeability. The V_(2.1)TiNi_(0.4)Zr_(0.04)Cr_(0.152) alloy obtains better overall electrochemical properties, especially in the cycling stability, namely a maximum discharge capacity of 397.13mAh/g at the fourth cycle, a higher cycling stability S_(30) of 77.96%, and a high-rate dischargeability HRD_(400) of 62.80% at the discharge current of 400mA/g. The investigation on V_(2.1)TiNi_(0.4)Zr_(0.06)M_(0.037)(M=Ta、Nb) alloys shows that all alloys possess the similar three-dimensional network structure which is formed by a V-based solid solution main phase and a C14 type Laves secondary phase,
    and Ta and Nb are distributed predominantly into the main phase. After adding Ta and Nb, the unit cell of the main phase expands and that of secondary phase contract. The Ta-contained or Nb-contained alloy restricts the dissolution of vanadium and titanium into the KOH electrolyte, thus the cycling stability is improved, but the maximum discharge capacity decreases without change of activation behavior. Nb and Ta also enhance the high-rate dischargeability. Among the alloys studied above, V2.1TiNio.4Zro.06Tao.037 alloy shows a maximum discharge capacity of 411.74mAh/g at the second cycle, a higher capacity retention S_(30) of 54.83%, and a high-rate dischargeability HRD_(400) of 52.36% at the discharge current of 400mA/g.
引文
[1] Van Vucht J. H. N., Kuijpers F. A., Bruning H. A. C. M., Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds, Philips Res. Repts., (1970), 25: 133~140.
    [2] Reilly J. J., Wiswall R. H., The reaction of Hydrogen with alloys of magnesium and nickel and the Fortion ofMg2NiH4, Inorg. Chem., (1968), 7: 2254.
    [3] Reilly J. J., Wiswall R. H., Formation and properties of iron titanium hydride, Inorg. Chem., (1974), 13: 218~222.
    [4] 大角泰章,金属氢化物的性质与应用,第一版,北京:化学工业出版社,(1990).
    [5] 胡子龙,新材料与应用技术丛书:贮氢材料,第一版,北京:化工工业出版社,(2002).
    [6] Justi E. W., Ewe H. H., Kalberlan A. W., Saridakis N. M., Schaefer M. H., Electrocatalysis in the nickel-titanium system, Energy Conversion, (1970), 10:183~187.
    [7] Ewe H. H., Justi E. W., Stephan K., Electrochemicaschen Verbindung LaNi_5, Energy Conversion, (1973), 13:109~113
    [8] Earl M. W., Dunlop J. D., Proceedings of the 26th Power Sources Symposium, Atlantic City, N.J., (1974), 24.
    [9] Willems J. J. G., Metal hydride electrodes stability of LaNi_5-related compounds, Philips Journal of Research, (1984), 39(1): 1~94.
    [10] Conte M., Prosini P. P., Passerini S., Overview of energy/hydrogen storage: state-of-the-art of the technologies and prospects for nanomaterials, Materials Science and Engineering (2004), B108: 2~8.
    [11] Bertuol D. A., Bemardes A. M., Ten6rio J. A. S., Spent Ni/MH batteries: Characterization and metal recovery through mechanical processing, J. Power Sources, (2006), 160: 1465~1470.
    [12] Müller T., Friedrich B., Development of a recycling process for nickel-metal hydride batteries, J. Power Sources, (2006), 158: 1498~1509.
    [13] Shinyama K., Nakamura H., Nohma T., Yonezu I., Improvement of high-and low-temperature characteristics of nickel-metal hydride secondary batteries using rare-earth compounds, J. Alloys Comp., (2006), 408-412: 288~293.
    [14] Tsukahara M., Takahashi K., Mishima T., Sakai T., Miyamura H., Kuriyama N., Uehara I., Phase structure of V-based solid solutions containing Ti and Ni and their hydrogen absorption-desorption properties. J. Alloys Comp., (1995), 224:162~167.
    [15] Wang C. S., Wang X. H., Lei Y. Q., Chen C. P., Wang Q. D., The hydriding kinetics of MlNi_5-I. Development of the model, Int. J. Hydrogen Energy, (1996), 21: 471~478.
    [16] Wang X. H., Wang C. S., Lei Y Q., Chen C. P., Wang Q. D., The hydriding kinetics of MINi_5-Ⅱ.Experimental results, Int. J. Hydrogen Energy, (1996), 21: 479~484.
    [17] Wang C. S., Wang X. H., Lei Y. Q., Chen C. E, Wang Q. D., A new method of determining the thermodynamic parameters of metal hydride electrode materials, Int. J. Hydrogen Energy, (1997), 22:1117~1124.
    [18] 雷永泉主编,二十一世纪新材料丛书:新能源材料,第一版,天津:天津大学出版社,(2000)
    [19] Hong K., The development of hydrogen storage alloys and the progress of nickel hydride batteries, J. Alloys Comp., (2001), 321: 307~313.
    [20] 高学平,卢志威,张欢,吴锋,宋德瑛,储氢材料与金属氢化物—镍电池,物理与新能源材料专题,(2004),33:170~176.
    [21] Willems J. J. G., Buschow K. H. J., From permanent magnets to rechargeable hydride electrodes, J. Less-Common Met., (1987), 129: 13~30.
    [22] Reilly J. J., Adzic G. D., Johnson J. R., Vogt T., Mukerjee S., McBreen J., The correlation between composition and electrochemical properties of metal hydride electrodes, J. Alloys Comp., (1999), 293-295: 569~582.
    [23] 王启东,吴京,陈长聘,方添水,镧稀土金属-镍贮氢材料,稀土,(1984),3:8~13.
    [24] Pebler A., Gulbransen E.A., Thermochemical and structural aspects of the reaction of hydrogen with alloys and intermetallic compounds ofZirconiurn, Electrochem. Tech., (1966), 4:211~215.
    [25] 廖彬,La-Mg-Ni系AB_3型贮氢电极合金的相结构与电化学性能,博士学位论文,浙江大学,(2004).
    [26] Gutjahr M.A., PhD Thesis, Geneva Univ., (1974).
    [27] Jordy C., Latroche M., Percheron-GueganA., Achard J. C., Z. Phys. Chem., (1994), 185: 119.
    [28] Lei Y. Q., Wu Y. M., Yang Q. M., Wu J., Wang Q. D., Electrochemical behaviour of some mechanically alloyed Mg-Ni-based amorphous hydrogen storage alloys, Z. Phys. Chem., (1994), 183: 379~384.
    [29] Libowitz G. G., Mealand A. J., Use of vanadium-based solid solution alloys in metal hydride heat pumps, J. Less Common Metals, (1987), 131:275~282.
    [30] Tsukahara M., Takahashi K., Mishima T., Sakai T., Miyamura H., Kuriyama N., Uehara I., Metal hydride electrodes based on solid solution type alloy TiV_3Ni_x (0≤x≤0.75). J. Alloys Comp., (1995), 226: 203~207.
    [31] Kumar S., Balasubramaniam R., Theoretical analysis of hysteresis during hydrogen transformation in the vanadium-hydrogen system, Int. J. Hydrogen Energy, (1995), 20 (3): 211~220.
    [32] Esayed A. Y., Northwood D. O., Metal hydrides: A review of group V transition metals-niobium, vanadium and tantalum, Int. J. Hydrogen Energy, (1992), 17 (1): 41-52.
    [33] Tsukahara M., Takahashi K., Mishima T., Isomura A., Sakai T., Vanadium-based solid solution alloys with three-dimensional network structure for high capacity metal hydride electrodes, J. Alloys Comp., (1997), 253-254: 583~586.
    [34] Iwakura C., Choi W. K., Miyauchi R., Inoue H., Electrochemical and structural characterization of Ti-V-Ni hydrogen storage alloys with BCC structure, J. Electrochemical Society, (2000), 147: 2503~2506.
    [35] Tsukahara M., Takahashi K., Mishima T., Isomura A., Sakai T., V-based solid solution alloys with Laves phase network: hydrogen absorption properties and microstructure, J Alloys Comp., (1996), 236: 151~155.
    [36] Tsukahara M., Takahashi K., Mishima T., Isomura A., Sakai T., Influence of various additives in vanadium-based alloys V_3TiNi_(0.56) on secondary phase formation, hydrogen storage properties and electrode properties, J Alloys Comp., (1996), 245: 59~65.
    [37] Laves F., Witte H., Metallwirtschaft, (1936), 15:840.
    [38] Thoma D. J., Perepezko J. H., A geometric analysis of solubility ranges in Laves phases, J. Alloys Comp., (1995), 224:330~341.
    [39] Ronnebro E., Noréus D., Sakai T., Tsukahara M., Structural studies of a new Laves phase alloy (Hf, Ti)(Ni,V)_2 and its very stable hydride, J. Alloys Comp., (1995), 231:90~94.
    [40] Magee C. B., Liu J., Ltmdin C. E., Relationship between intermetallic compound structure and hydride formation, J. Less Common Metals, (1981), 78:119~138
    [41] Ivey D. G., Northwood D. O., Storing hydrogen in AB_2 Laves-type compounds, Z. Phys. Chem., (1986), 147: 191~209.
    [42] Shoemaker D. P., Shoemaker C. B., Concerning atomic sites and capacities for hydrogen absorption in the AB2 Friauf-Laves phases, J. Less Common Metals, (1979), 68: 43~58.
    [43] Tsukahara M., Takahashi K., Mishima T., Isomura A., Sakai T., The TiV_3Ni_(0.56) hydride electrode: its electrochemical and cycle life characterization, J. Alloys Comp., (1995), 231: 616~620.
    [44] Tsukahara M., Takahashi K., Isomura A., Sakai T., Improvement of cycle stsbility of vanadium-based alloy for nickel-metal hydride (Ni-MH) battery, J. Alloys Comp., (1999), 287: 215~220.
    [45] 代发帮,陈立新,刘剑,郑坊平,张志鸿,雷永泉,TiV_(2.1)Ni_x(x=0.2~0.6)贮氢合金的相结构及电化学性能,稀有金属材料科学与工程,(2005),34(9):1500~1504.
    [46] 代发帮,多元合金化和球磨改性处理对V基固溶体型 贮氢电极合金相结构及电化学性能的影响,硕士学位论文,浙江大学,(2005).
    [47] Zhang Q. A., Lei Y. Q., Yang X. G., Du Y. L., Wang Q. D., Influence of Mn on phase structures and electrochemical properties of V_3TiNi_(0.56)Hf_(0.24) alloy, Int. J. Hydrogen Energy. (2000), 25: 657~661.
    [48] Zhang Q. A., Lei Y. Q., Yang X. G., Du Y. L., Wang Q. D., Phase structures and electrochemical properties of V_3TiNi_(0.56)Hf_(0.24)Co_x alloys, J. Alloys Comp., (2000), 296: 87~91.
    [49] Zhang Q. A., Lei Y. Q., Yang X. G., Du Y. L., Wang Q. D., Phase structures and electrochemical properties of Cr-added V_3TiNi_(0.56)Hf_(0.24)Mn_(0.15) alloys, Int. J. Hydrogen Energy. (2000), 25: 977~981.
    [50] Guo R., Chen L. X., Lei Y. Q., Liao B., Zeng Y. W., Wang Q. D., The effect of Hfcontent on the phase structures and electrochemical properties of V_(2.1)TiNi_(0.5)Hf_x (x=0-0.25) hydrogen storage alloys, J. Alloys Comp., (2003), 352: 270~274.
    [51] Guo R., Chen L. X., Lei Y.Q., Liao B., Zeng Y. W., Wang Q. D., Phase structures and electrochemical properties of V_(2.1)TiNi_(0.5)Hf_(0.05)Cr_x (x=0-0.152) hydrogen storage alloys, J. Alloys Comp., (2003), 358: 223~227.
    [52] 郭蕊,Ti-V-Ni系钒基固溶体型贮氢电极合金的相结构与电化学性能,硕士学位论文,浙江大学,(2002).
    [53] Chen L. X., Guo R., Lei Y.Q., Li L., Wang Q. D., Structural and electrochemical characteristics of V_(2.1)TiNi_(0.5)Hf_(0.05)M_(0.125) (M=Co, Cr) hydrogen storage electrode alloys, Material Chemistry and Physics, (2005), 92: 554~558.
    [54] Han S. M., Zhang Z., Zhao M. S., Zheng Y. Z., Electrochemical characteristics and microstructure of Zr_(0.9)Ti_(0.1)Ni_(1.1)Mn_(0.6)V_(0.3)-LaNi_5 composite hydrogen storage alloys, Int. J. Hydrogen Energy. (2006), 31:563~567.
    [55] Liu B. Z., Wang J. L., Wu Y. M., Wang L. M., Crystallographic and electrochemical characteristics of Ti_(45)Zr_(35)Ni_(17)Cu_3 quasicrystalline alloy ball-milled with nickel powder, Electrochimica Acta. (2006), 51:3586~3591.
    [56] Choi W. K., Tanaka T., Miyauchi R., Electrochemical and structural characteristics of TiV_(2.1)Ni_(0.3) surface-modified by ball-milling with MgNi, J. Alloys Comp., (2000), 299: 141~147.
    [57] Choi W. K., Tanaka T., Morikawa T., Inoue H., Iwakura C., Effect of surface modification of TiV_(2.1)Ni_(0.3) by ball-milling with MgNi on charge-discharge cycle performance, J. Alloys Comp., (2000), 302: 82~86.
    [58] Inoue H., Miyauchi R., Tanaka T., Choi W. K., Shin-ya R., Murayama J., Iwakura C., Effect of ball-milling with Ni and Raney Ni on surface structural characteristics of TiV_(2.1)Ni_(0.3) alloy, J. Alloys Comp., (2001), 325: 299~303.
    [59] Inoue H., Miyauchi R., Shin-ya R., Charge-discharge characteristics of TiV_(2.1)Ni_(0.3) alloy surface-modified by ball-milling with Ni or Raney Ni, J. Alloys Comp., (2002), 330: 597~600.
    [60] Kim J. H., Lee H., Lee P. S., A study on the improvement of the cyclic durability by Cr substitution in V-Ti alloy and surface modification by the ball-milling process, J. Alloys Comp., (2003), 348: 293~300.
    [61] 刘永辉,电化学测试技术,北京:北京航空学院出版社,(1987).
    [62] X射线衍射手册,理学电机株式会社分析中心编,(1987).
    [63] Iwakura C., Ooura T., Inoue H., Matsuoka M., Effects of substitution with foreign metals on the crystallographic, thermodynamic and electrochemical properties of AB_5-type hydrogen storage alloys, Electrochimica Acta. (1996), 41(1): 117~121.
    [64] Kuriyama N., Sakai T., Miyamura H., Uehara I., Ishikawa H., Iwasaki T., Electrochemical impedance and deterioration behavior of metal hydride electrodes. J. Alloys Comp., (1993), 202: 183~197.
    [65] Pan H. G., Jin Q. W., Gao M. X., Liu Y; F., Li R., Lei Y. Q., Wang Q. D., An electrochemical study of La_(0.4)Ce_(0.3)Mg_(0.3)Ni_(2.975-x)Mn_xCo_(0.525) (x=0.1~0.4) hydrogen storage alloys, J. Alloys Comp., (2004), 376:196~204.
    [66] Wang M. H., Zhang L. Z., Zhang Y., Sun L. X., Tan Z. C., Xu F., Yuan H. T., Zhang T., Effects of partial substitution by Fe and Co for Ni in the Mg_(1.75)Al_(0.25)Ni electrode alloy on their electrochemical performances, Int. J. Hydrogen Energy, 2006, 31: 775~779.
    [67] Wang M. H., Zhang L. Z., Zhang Y., Sun L. X., Tan Z. C., Xu F., Yuan H. T., Zhang T., The effects of partial substitution of Cr for Ni on the electrochemical properties of Mg_(1.75)Al_(0.25)Ni_(1-x)Cr_x (0≤x≤0.3) electrode alloys, J. Power Sources, (2006), 159: 159-162.
    [68] Kim J. S., Paik C. H., Cho W. I., Cho B. W., Yun K. S., Kim S. J., Corrosion behaviour of Zr_(1-x)Ti_xV_(0.6)Ni_(1.2)M_(0.2) (M=Ni, Cr, Mn) AB_2-type metal hydride alloys in alkaline solution, J. Power Sources, (1998), 75: 1~8.
    [69] Santos A. R., Ambrosio R. C., Ticianelli E. A., Electrochemical and structural studies on nonstoichiometric AB_2-type metal hydride alloys, Int. J. Hydrogen Energy, (2004) 29: 1253~1261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700