金属氧化物半导体表面态的调控设计及气敏性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在城市化进程不断加速、机动车保有量持续增加、能源消耗量快速增长的今天,传感器作为信息获取的器件或系统,已经成为现代科技的重要支柱之一。敏感材料是气体传感器的核心,大力发展和开发敏感材料是提高气体传感器性能的战略途径之一。近年来,纳米科技的发展为敏感材料的研究和材料微观结构的设计注入了新的元素,也提供了驱动力和创新的源泉。对敏感材料结构的物化性、电学性质进行分析,重点研究尺寸、相成分和结构对材料物化特性的影响,对获得新型的敏感材料并拓展其在化学传感领域的应用具有非常重要的意义。另外,纳米材料表面的调控与气体传感器宏观特性的内在关系的分析突破了常规的机理研究,为发展高性能敏感器件拓展了无限空间。本论文主要围绕金属氧化物半导体传感器在气体检测中存在的问题,从提高材料的识别功能、转换功能和利用效率入手,利用水热合成法制备种类丰富、形态各异的氧化物半导体敏感材料,通过调节反应条件对多种半导体氧化物敏感材料进行表面、界面和相成分的调控,来增强气体传感器的灵敏度、选择性、响应恢复速度和稳定性等。主要内容如下:
     (1)利用水热合成技术制备了实心SnO2和ZnO纳米球,解决了无规则纳米粒子由于范德华力作用团聚的问题,增大了比表面积,根据粒子的尺寸效应,初步分析了实心纳米材料的气体敏感特性,阐述了实心结构和无规则纳米粒子敏感特性机理。
     (2)将中空结构纳米材料应用在气体传感器上,深入研究疏松壳层和中空结构对待测气体分子传输的作用,增加了待测气体分子在敏感体表面的吸附量;提高了待测气体分子在敏感体内部的传输速率,使敏感元件的响应恢复时间大幅度的缩短。
     (3)通过添加表面活性剂和改变其种类来调控组成结构单元的维数,获得由不同维数的纳米结构单元所构成的分等级结构。然后通过高温煅烧的方法除去吸附在材料表面的表面活性剂,制得表面疏松及多孔的分等级结构。探索表面疏松程度对气敏特性的影响。
     (4)首次将具有核壳结构的纳米材料应用在气体传感器上,揭示了金属氧化物半导体材料表(界)面状态对化学敏感特性的调制作用,发现气体传感器性能高度依赖材料微观结构,并建立了金属氧化物半导体气体敏感机理的模型;
     (5)利用分等级材料、中空材料和核壳材料的表面修饰等新的手段调制材料与待测气体之间的相互作用,同时可对纳米材料的化学修饰或改性可实现其性能裁剪,改善其表面结构,增强其在纳米材料基体中的分散特性及其与基体之间的界面结合作用。从而提高气体传感器的检测精度、选择性和稳定性;此外结合化学和电子敏感机制,初步建立了理论模型。为纳米电子器件的深入研究提供了基础;
     (6)发展一种新型抗环境湿度由p型半导体和n型半导体组成的复合敏感材料,将这种复合异质材料应用在气体传感器上,利用p型半导体在一维纳米材料上的生长减小p型半导体纳米粒子的聚集,将这些纳米粒子集中修饰在纳米纤维的外围,增强其与水分子之间的相互作用,从而消除湿度对敏感性能的影响,提高传感器的检测精度和稳定性。
     本论文的开展不仅为气体传感器提供新型纳米材料、微纳加工方法和技术,而且还在基础研究层面,深入理解纳米尺度下敏感材料的结构、相成分与敏感功能的关系,明晰微纳结构的增强机制,为气体传感器的研究与开发提供新理念。丰富了金属氧化物半导体气体传感器的敏感机理,为气体传感器的研究提供新理论、新方法和新技术。
With the acceleration of urbanization, the increase of vehicle population and therapid growth of energy consumption, gas sensor technology as devices or systemsaccess to information has already become one of the important pillars of moderntechnology. In practice, chemical sensors have played important roles in militaryengineering, industrial, environmental protection, human life, medical and so on.Sensing material is a core part of the gas sensor, and the design and development ofnovel and efficient synthetic strategies for nanomaterials are playing an importantrole in the enhanced sensing performance of gas sensor. In recent years,development of nanotechnology not only injects new elements for research ofsensing materials and design of sensing materials microstructures but it alsoprovides the motivation and innovation. Metal oxide semiconductor nanomaterialsexhibit the wide application prospects in gas sensor field. For example, hollownanostructure-based sensor exhibits fast response and recovery time,heterostructures-based sensor could enhance the selectivity to target gases and so on.The analysis of the relationship between structure and performance of sensingmaterials and the effect research of the size, component and structure to sensingperformance of sensing materials are of great significance and practical engineeringvalue. Moreover, the analysis of the intrinsic relationship between the surfaceregulation of sensing materials and macroscopic properties of gas sensor break theconventional mechanism for the development of new sensitive devices and expandthe application space. In the project, we have comprehensively investigated the problem of the sensor based on metal oxide semiconductor nanomaterials. It is ofgreat importance to regulate and control the surface structure of semiconductingmetal oxides and explore the relationship between the component, morphology andsensing performances, which are also the research topic of the modification of thegas-sensing properties (such as response, response/recovery time, selectivity andstability) of sensing materials. The main research contents in this thesis aresummarized as follows:
     (1) Solid SnO2and ZnO nanospheres have been prepared by using a simplehydrothemal method. The gas sensing preformances of the as-prepared solid SnO2and ZnO nanospheres were researched according to the “size effect” discussed inchapter one.
     (2) For structure of sensing materials, we will propose that the hollow SnO2andZnO nanospheres as sensing material used in gas sensor, and indepth studiedconfinement effects of the loose structure to gas transmission. This structureimproves the speed of the gas go inner and outer surfaces of sensing material, sodecreased the response and recovery time of the sensor.
     (3) By adding the surfactant composition to regulate the dimension of thestructural unit obtained hierarchical SnO2and ZnO nanostructure with differentstructure unit. The hierarchical SnO2and ZnO nanostructure were obtained by asimple hydrolysis method with subsequent calcination process. It is of greatimportance to regulate and control the surface structure of semiconducting metaloxides and explore the relationship between the loose degree, size, morphology andgas-sensing properties,
     (4) The core-shell SnO2and ZnO nanostructures with hollow and multiple-shellarchitectures have been successfully synthesized and the first time used in gas sensor.The gas sensing results show the surface state of metal oxide semiconductornanomaterials have moderating effect on sensing performance. We find that thestructure dependence of the gas-sensing characteristics in metal oxidesemiconductor nanomaterials-based sensors, one of the greatest factors in gas-sensorapplications, is managed by various structures. Moreover, we established gas sensing mechanism model for of a metal oxide semiconductor.
     (5) The surface modification by hierarchical, hollow and core-shell (SnO2andZnO) nanostructure materials would concol the interfaceaction between sensingmaterials and target gases, and enhace the the dispersibility of nanomaterials and theinterfacial bonding with the nanostructure. The structure and content of thesurface-modified compounds would be regulated to balance the dispersingcharacteristic and conductivity of the composite membrane. The enhancement of thedetection precision, selectivity and stablity in gas sensor would be realized, Abovereseach results will provide a scientific basis for devoloping high-quality highhumidity sensing materials and gas sensors.
     (6) We will develop a new strategy to produce humidity-independent chemicalsensors by combining readily gas-accessible hierarchical sensing layers (n-typesemiconductor nanomaterials) and catalytic surface additives (p-type semiconductornanomaterials). The modified1D nanofibers would be used as the conductivefiller.The loading of p-type Co3O4into n-type1D TiO2nanofibers enhanced thesensing performance remarkably. Moreover, the humidity dependence of all of thesensing characteristics, including the detection precision, selectivity and stablity,was almost removed by the p-type Co3O4nanomaterials loading.
     In conclusion, in this paper, we have systemically studied the relationshipbetween the composite materials structure/size and the gas sensing properties of thesensors, and in-depth know the sensing mechanism of metal oxide semiconductornanomaterials-based sensor, which establishes the foundation for devolopinghigh-quality high performance sensing materials and gas sensors.
引文
[1] Zhu C L, Chen Y J, Wang R X, et al. Synthesis and enhanced ethanol sensingproperties of α-Fe2O3/ZnO heteronanostructures[J]. Sensors and Actuators B:Chemical,2009,140(1):185-189.
    [2] Kawabata A, Kubo R. Electronic properties of fine metallic particles. II. Plasmaresonance absorption[J]. Journal of the Physical Society of Japan,1966,21(9):1765-1772.
    [3] Yamazoe N. Toward innovations of gas sensor technology[J]. Sensors andActuators B: Chemical,2005,108:2-14.
    [4] Seiyama T, Kato A, Fujiishi K, et al. A New Detector for Gaseous ComponentsUsing Semiconductive Thin Films[J]. Analytical Chemistry,1962,34(11):1502-1503.
    [5] Williams D E. Semiconducting oxides as gas-sensitive resistors[J]. Sensors andActuators B: Chemical,1999,57(1):1-16.
    [6] Averback R S, H fler H J, Tao R. Processing of nano-grained materials[J].Materials Science and Engineering: A,1993,166(1):169-177.
    [7] Y. Saito, T. Maruyama, Y. Matsumoto, K. Kobayashi, Y. Yano, Ap-plicability ofsodium sulfate as a solid electrolyte for a sulfur oxides sensor[J]. Solid State Ionics,1984,14:273.
    [8] Provenzano V, Holtz R L. Nanocomposites for high temperature applications[J].Materials Science and Engineering: A,1995,204(1):125-134.
    [9] Liu C H, Zapien J A, Yao Y, et al. High‐Density, Ordered UltravioletLight-Emitting ZnO Nanowire Arrays[J]. Advanced materials,2003,15(10):838-841.
    [10] Xue X, Chen Z, Ma C, et al. One-step synthesis and gas-sensing characteristicsof uniformly loaded Pt@SnO2nanorods[J]. The Journal of Physical Chemistry C,2010,114(9):3968-3972.
    [11] Wang L, Lou Z, Fei T, et al. Zinc oxide core–shell hollow microspheres withmulti-shelled architecture for gas sensor applications[J]. Journal of MaterialsChemistry,2011,21(48):19331-19336.
    [12] Lai H Y, Chen C H. Highly sensitive room-temperature CO gas sensors: Pt andPd nanoparticle-decorated In2O3flower-like nanobundles[J]. Journal of MaterialsChemistry,2012,22(26):13204-13208.
    [13] Wang L L, Fei T, Lou Z, et al. Three-dimensional hierarchical flowerlikeα-Fe2O3nanostructures: synthesis and ethanol-sensing properties[J]. ACS appliedmaterials&interfaces,2011,3(12):4689-4694.
    [14] Park C O, Akbar S A. Ceramics for chemical sensing[J]. Journal of materialsscience,2003,38(23):4611-4637.
    [15] G pel W, Reinhardt G. Metal oxide sensors: New devices through tailoringinterfaces on the atomic scale[J]. Sensors update,1996,1(1):49-120.
    [16] Chen T, Zhou Z, Wang Y. Effects of calcining temperature on the phasestructure and the formaldehyde gas sensing properties of CdO-mixed In2O3[J].Sensors and Actuators B: Chemical,2008,135(1):219-223.
    [17] Wang L, Deng J, Fei T, et al. Template-free synthesized hollow NiO–SnO2nanospheres with high gas-sensing performance[J]. Sensors and Actuators B:Chemical,2012,164(1):90-95.
    [18] Yamazoe N, Sakai G, Shimanoe K. Oxide semiconductor gas sensors[J].Catalysis Surveys from Asia,2003,7(1):63-75.
    [19] Li L M, Li C C, Zhang J, et al. Bandgap narrowing and ethanol sensingproperties of In-doped ZnO nanowires[J]. Nanotechnology,2007,18(22):225504.
    [20] Zhao M, Wang X, Ning L, et al. Electrospun Cu-doped ZnO nanofibers for H2Ssensing[J]. Sensors and Actuators B: Chemical,2011,156(2):588-592.
    [21] Hsueh T J, Hsu C L, Chang S J, et al. Laterally grown ZnO nanowire ethanolgas sensors[J]. Sensors and Actuators B: Chemical,2007,126(2):473-477.
    [22] Ivanovskaya M, Kotsikau D, Faglia G, et al. Gas-sensitive properties of thinfilm heterojunction structures based on Fe2O3–In2O3nanocomposites[J]. Sensorsand Actuators B: Chemical,2003,93(1):422-430.
    [23] Kolmakov A, Klenov D O, Lilach Y, et al. Enhanced gas sensing by individualSnO2nanowires and nanobelts functionalized with Pd catalyst particles[J]. NanoLetters,2005,5(4):667-673.
    [24] Wang L, Lou Z, Fei T, et al. Enhanced acetone sensing performances ofhierarchical hollow Au-loaded NiO hybrid structures[J]. Sensors and Actuators B:Chemical,2012,161(1):178-183.
    [25] Cho N G, Woo H S, Lee J H, et al. Thin-walled NiO tubes functionalized withcatalytic Pt for highly selective C2H5OH sensors using electrospun fibers as asacrificial template[J]. Chemical Communications,2011,47(40):11300-11302.
    [26] Yoon J W, Choi J K, Lee J H. Design of a highly sensitive and selectiveC2H5OH sensor using p-type Co3O4nanofibers[J]. Sensors and Actuators B:Chemical,2012,161(1):570-577.
    [27] Zhang H, Zhu Q, Zhang Y, et al. One-Pot Synthesis and Hierarchical Assemblyof Hollow Cu2O Microspheres with Nanocrystals‐Composed Porous Multishelland Their Gas-Sensing Properties[J]. Advanced Functional Materials,2007,17(15):2766-2771.
    [28] Kim H J, Lee J H. Highly sensitive and selective gas sensors using p-type oxidesemiconductors: Overview[J]. Sensors and Actuators B: Chemical,2014,192:607-627.
    [29] Gas Sensors: Principles, Operation, and Development[M]. Kluwer AcademicPub,1992.
    [30] Vyshatko N P, Kharton V V, Shaula A L, et al. Powder X-ray diffraction studyof LaCo0.5Ni0.5O3δ and LaCo0.5Fe0.5O3δ[J]. Powder Diffraction,2003,18(02):159-161.
    [31] Eranna G, Joshi B C, Runthala D P, et al. Oxide materials for development ofintegrated gas sensors-a comprehensive review[J]. Critical Reviews in Solid Stateand Materials Sciences,2004,29(3-4):111-188.
    [32] Meixner H, Lampe U. Metal oxide sensors[J]. Sensors and Actuators B:Chemical,1996,33(1):198-202.
    [33] Karuppiah C, Palanisamy S, Chen S M, et al. A novel enzymatic glucosebiosensor and sensitive non-enzymatic hydrogen peroxide sensor based on grapheneand cobalt oxide nanoparticles composite modified glassy carbon electrode[J].Sensors and Actuators B: Chemical,2014,196:450-456.
    [34] Kolmakov A, Moskovits M. Chemical sensing and catalysis byone-dimensional metal-oxide nanostructures[J]. Annu. Rev. Mater. Res.,2004,34:151-180.
    [35] Cho N G, Yang D J, Jin M J, et al. Highly sensitive SnO2hollownanofiber-based NO2gas sensors[J]. Sensors and Actuators B: Chemical,2011,160(1):1468-1472.
    [36] Fang B, Zhang C, Wang G, et al. A glucose oxidase immobilization platform forglucose biosensor using ZnO hollow nanospheres[J]. Sensors and Actuators B:Chemical,2011,155(1):304-310.
    [37] Lou Z, Wang L, Wang R, et al. Synthesis and ethanol sensing properties ofSnO2nanosheets via a simple hydrothermal route[J]. Solid-State Electronics,2012,76:91-94.
    [38] Sun C, Su X, Xiao F, et al. Synthesis of nearly monodisperse Co3O4nanocubesvia a microwave-assisted solvothermal process and their gas sensing properties[J].Sensors and Actuators B: Chemical,2011,157(2):681-685.
    [39] Gao T, Wang T. Catalytic growth of In2O3nanobelts by vapor transport[J].Journal of crystal growth,2006,290(2):660-664.
    [40] Tian Z R, Voigt J A, Liu J, et al. Biomimetic arrays of oriented helical ZnOnanorods and columns[J]. Journal of the American Chemical Society,2002,124(44):12954-12955.
    [41] Liewhiran C, Tamaekong N, Wisitsoraat A, et al. H2Sensing Response ofFlame-spray-made Ru/SnO2Thick Films Fabricated from Spin-coatedNanoparticles[J]. Sensors,2009,9(11):8996–9010.
    [42] Wang W, Tian Y, Li X, et al. Enhanced ethanol sensing properties of Zn-dopedSnO2porous hollow microspheres[J]. Appl. Surface Sci.,2012,261:890-895.
    [43] Wang H, Liang Q, Wang W, et al. Preparation of flower-like SnO2nanostructures and their applications in gas-sensing and lithium storage[J]. CrystalGrowth&Design,2011,11(7):2942-2947.
    [44] Yanagimoto T, Yu Y T, Kaneko K. Microstructure and CO gas sensing propertyof Au/SnO2core–shell structure nanoparticles synthesized by precipitation methodand microwave-assisted hydrothermal synthesis method[J]. Sensors and Actuators B:Chemical,2012,166:31-35.
    [45] Wang L, Luo X, Zheng X, et al. Direct annealing of electrospun synthesizedhigh-performance porous SnO2hollow nanofibers for gas sensors[J]. RSC Advances,2013,3(25):9723-9728.
    [46] D’Arienzo M, Cristofori D, Scotti R, et al. New Insights into the SnO2SensingMechanism Based on the Properties of Shape Controlled Tin Oxide Nanoparticles[J].Chemistry of Materials,2013,25(18):3675-3686.
    [47] Zhao H, Li Y, Yang L, et al. Synthesis, characterization and gas-sensingproperty for C2H5OH of SnO2nanorods[J]. Materials Chemistry and Physics,2008,112(1):244-248.
    [48] Yang M, Kim D H, Kim W S, et al. H2sensing characteristics of SnO2coatedsingle wall carbon nanotube network sensors[J]. Nanotechnology,2010,21(21):215501.
    [49] Zeng Y, Zhang T, Wang L, et al. Synthesis and ethanol sensing properties ofself-assembled monocrystalline ZnO nanorod bundles by poly (ethyleneglycol)-assisted hydrothermal process[J]. The Journal of Physical Chemistry C,2009,113(9):3442-3448.
    [50] Lee I, Choi S J, Park K M, et al. The stability, sensitivity and responsetransients of ZnO, SnO2and WO3sensors under acetone, toluene and H2Senvironments[J]. Sensors and Actuators B: Chemical,2014,197:300-307..
    [51] Zeng Y, Lou Z, Wang L L, Zou B, Zhang T, Zheng W T, Zou G T. Enhancedammonia sensing performances of Pd-sensitized flowerlike ZnO nanostructure[J].Sens. Actuators B,2011,156:395-400.
    [52] Zeng Y, Zhang T, Fu W Y, Yu Q J, Wang G R, Zhang Y Y, Sui Y M, Wang L J,Shao C L, Liu Y C, Yang H B, Zou G T. Fabrication and Optical Properties ofLarge-Scale Nutlike ZnO Microcrystals via a Low-Temperature HydrothermalRoute[J]. J. Phys. Chem. C,2009,113:8016-8022.
    [53] Li J, Fan H Q, Jia X H. Multilayered ZnO Nanosheets with3D PorousArchitectures: Synthesis and Gas Sensing Application[J]. J. Phys. Chem. C,2010,114:14684-14691.
    [54] Zeng Y, Zhang T, Yuan M X, Kang M H, Lu G Y, Wang R, Fan H T, He Y, YangH B. Growth and selective acetone detection based on ZnO nanorod arrays[J]. Sens.Actuators B,2009,143:93-98.
    [55] Hu P, Han N, Zhang X, et al. Fabrication of ZnO nanorod-assembledmultishelled hollow spheres and enhanced performance in gas sensor[J]. Journal ofMaterials Chemistry,2011,21(37):14277-14284.
    [56] Radecka M, Zakrzawska K, Rkas M. SnO2-TiO2solid solutions for gas sensors[J]. Sens. Actuators B,1998,47:194-204.
    [57] Xu J Q, Han J J, Zhang Y, Sun Y A, Xie B. Studies on alcohol sensingmechanism of ZnO based gas sensors [J]. Sens. Actuators B,2008,132:334-339.
    [58] Bie L J, Yan X N, Yin J, Duan Y Q, Yuan Z H. Yuan, Nanopillar ZnO gas sensorfor hydrogen and ethanol [J]. Sens. Actuators B,2007,126:604-608.
    [59] Gong H, Hu J Q, Wang J H, Ong C H, Zhu F R. Nano-crystalline Cu-dopedZnO thin film gas sensor for CO [J]. Sens. Actuators B,2006,115:247-251.
    [60] Qi Q, Wang P P, Zhao J, Feng L L, Zhou L J, Xuan R F, Liu Y P,Li G D. SnO2nanoparticle-coated In2O3nanofibers with improved NH3sensing properties[J].Sensors and Actuators-B-Chemical Biochemical Sensors,2011,194:440-446.
    [61] Guo Z, Liu J, Jia Y, et al. Template synthesis, organic gas-sensing and opticalproperties of hollow and porous In2O3nanospheres[J]. Nanotechnology,2008,19(34):345704.
    [62] Kim S J, Hwang I S, Choi J K, et al. Enhanced C2H5OH sensing characteristicsof nano-porous In2O3hollow spheres prepared by sucrose-mediated hydrothermalreaction[J]. Sensors and Actuators-B-Chemical Biochemical Sensors,2011,155(2):512.
    [63] Geng B Y, Fang C H, Zhan F M, Yu N. Synthesis of Polyhedral ZnSnO3microcrystals with controlled exposed facets and their selective gas-sensingproperties [J]. Small,2008,4:1337-1343.
    [64]徐甲强,刘艳丽,牛新书,ZnSnO3纳米粉体的合成及其气敏特性研究[J].硅酸盐学报,2002,30:321-324.
    [65] Shen Y S, Zhang T S. Preparation, structure and gas-sensing properties ofultramicro ZnSnO3powder [J]. Sens. Actuators B,1993,12:5-9.
    [66] Liu H, Fan H T, Xu X J, et al. Synthesis and gas sensing characteristics ofLaxSr1xFeO3nanofibers via electrospinning[J]. Solid-State Electronics,2013,79:87-91.
    [67] Morrison S R. Selectivity in semiconductor gas sensors[J]. Sensors andActuators,1987,12(4):425-440.
    [68] Bielański A, Haber J. Oxygen in catalysis on transition metal oxides[J].Catalysis Reviews Science and Engineering,1979,19(1):1-41.
    [69] McAleer J F, Moseley P T, Norris J O W, et al. Tin dioxide gas sensors. Part1-Aspects of the surface chemistry revealed by electrical conductance variations[J].Journal of the Chemical Society, Faraday Transactions1: Physical Chemistry inCondensed Phases,1987,83(4):1323-1346.
    [70] Nanis L, Advani G. Effect of sorbed oxygen on tin oxide conductance[J].International Journal of Electronics Theoretical and Experimental,1982,52(4):345-349.
    [71] Morrison S R. Semiconductor gas sensors[J]. Sensors and Actuators,1982,2:329-341.
    [72] Sakai G, Matsunaga N, Shimanoe K, et al. Theory of gas-diffusion controlledsensitivity for thin film semiconductor gas sensor[J]. Sensors and Actuators B:Chemical,2001,80(2):125-131.
    [73] Sberveglieri G, Coccoli G, Benussi P, et al. Electrical studies on oxygenionosorption at ambient pressure on SnO2(In) thin films[J]. Applied surface science,1989,40(1):169-174.
    [74] Yi Y B, Wang C W, Sastry A M. Two-dimensional vs. three-dimensionalclustering and percolation in fields of overlapping ellipsoids[J]. Journal of theElectrochemical Society,2004,151(8): A1292-A1300.
    [75] Schierbaum K D, Kirner U K, Geiger J F, et al. Schottky barrier andconductivity gas sensors based upon Pd/SnO2and Pt/TiO2[J]. Sensors and ActuatorsB: Chemical,1991,4(1):87-94.
    [76] Meny A. in Surface Science: Recent Progress and Perspectives (Eds T SJayadev aiah, R Vanselow)(Cleveland: CRC Press,1974).
    [77] Franke M E, Koplin T J, Simon U. Metal and metal oxide nanoparticles inchemiresistors: does the nanoscale matter?[J]. Small,2006,2(1):36-50.
    [78] Zemel J N, Keramati B, Spivak C W, et al. Non-FET chemical sensors[J].Sensors and Actuators,1981,1:427-473.
    [79] Wang L, Lou Z, Wang R, et al. Ring-like PdO–NiO with lamellar structure forgas sensor application[J]. Journal of Materials Chemistry,2012,22(25):12453-12456.
    [80] Gergintschew Z, F rster H, Kostiza J, et al. Two-dimensional numericalsimulation of semiconductor gas sensors[J]. Sensors and Actuators B: Chemical,1995,26(1):170-173.
    [81] Yamazoe N. New approaches for improving semiconductor gas sensors[J].Sensors and Actuators B: Chemical,1991,5(1):7-19.
    [82] Zemel J N. Theoretical description of gas-film interaction on SnOx[J]. ThinSolid Films,1988,163:189-202.
    [83] Lee J H. Gas sensors using hierarchical and hollow oxide nanostructures:overview[J]. Sensors and Actuators B: Chemical,2009,140(1):319-336.
    [84] Chowdhuri A, Sharma P, Gupta V, et al. H2S gas sensing mechanism of SnO2films with ultrathin CuO dotted islands[J]. Journal of applied physics,2002,92(4):2172-2180.
    [85] Gao X, Li X, Yu W. Flowerlike ZnO nanostructures viahexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex[J].The Journal of Physical Chemistry B,2005,109(3):1155-1161.
    [86] Zeng Z, Wang K, Zhang Z, et al. The detection of H2S at room temperature byusing individual indium oxide nanowire transistors[J]. Nanotechnology,2009,20(4):045503.
    [87] Zhao Y M, Zhu Y Q. Room temperature ammonia sensing properties of W18O49nanowires[J]. Sensors and Actuators B: Chemical,2009,137(1):27-31.
    [88] Zhang L, Yin Y. Hierarchically mesoporous SnO2nanosheets: Hydrothermalsynthesis and highly ethanol-sensitive properties operated at low temperature[J].Sensors and Actuators B: Chemical,2013,185:594-601.
    [89] Ren M, Yuan S, Su L, et al. Chrysanthemum-like Co3O4architectures:Hydrothermal synthesis and lithium storage performances[J]. Solid State Sciences,2012,14(4):451-455.
    [90] Zeng Y, Zhang T, Fan H, et al. One-pot synthesis and gas-sensing properties ofhierarchical ZnSnO3nanocages[J]. The Journal of Physical Chemistry C,2009,113(44):19000-19004.
    [91] Fan H, Zhang T, Xu X, et al. Fabrication of N-type Fe2O3and P-type LaFeO3nanobelts by electrospinning and determination of gas-sensing properties[J]. Sensorsand Actuators B: Chemical,2011,153(1):83-88.
    [92] Lim S K, Hwang S H, Chang D, et al. Preparation of mesoporous In2O3nanofibers by electrospinning and their application as a CO gas sensor[J]. Sensorsand Actuators B: Chemical,2010,149(1):28-33.
    [93] Choi J D, Choi G M. Electrical and CO gas sensing properties of layeredZnO–CuO sensor[J]. Sensors and Actuators B: Chemical,2000,69(1):120-126.
    [94] Nakamura Y, Yoshioka H, Miyayama M, et al. Selective CO gas sensingmechanism with CuO/ZnO heterocontact[J]. Journal of the Electrochemical Society,1990,137(3):940-943.
    [95] Patil D R, Patil L A. Room temperature chlorine gas sensing using surfacemodified ZnO thick film resistors[J]. Sensors and Actuators B: Chemical,2007,123(1):546-553.
    [96] Kim H R, Haensch A, Kim I D, et al. The Role of NiO Doping in Reducing theImpact of Humidity on the Performance of SnO2-Based Gas Sensors: SynthesisStrategies, and Phenomenological and Spectroscopic Studies[J]. AdvancedFunctional Materials,2011,21(23):4456-4463.
    [97] Lou Z, Deng J, Wang L, et al. A class of hierarchical nanostructures: ZnOsurface-functionalized TiO2with enhanced sensing properties[J]. RSC Advances,2013,3(9):3131-3136.
    [98] Greene L E, Law M, Yuhas B D, et al. ZnO-TiO2core-shell nanorod/P3HTsolar cells[J]. The Journal of Physical Chemistry C,2007,111(50):18451-18456.
    [99] Law M, Greene L E, Radenovic A, et al. ZnO-Al2O3and ZnO-TiO2core-shellnanowire dye-sensitized solar cells[J]. The Journal of Physical Chemistry B,2006,110(45):22652-22663.
    [100] Kuang Q, Jiang Z Y, Xie Z X, et al. Tailoring the optical property by athree-dimensional epitaxial heterostructure: a case of ZnO/SnO2[J]. Journal of theAmerican Chemical Society,2005,127(33):11777-11784.
    [101] Hu Y, Qian H, Guo C, et al. Decoration of ZnO nanocrystals on the surface ofshuttle-shaped Mn2O3and its magnetic-optical properties[J]. CrystEngComm,2010,12(10):2687-2690.
    [102] Shi L, Xu Y, Hark S, et al. Optical and electrical performance of SnO2cappedZnO nanowire arrays[J]. Nano letters,2007,7(12):3559-3563.
    [103] Kuang Q, Lao C S, Li Z, et al. Enhancing the photon-and gas-sensingproperties of a single SnO2nanowire based nanodevice by nanoparticle surfacefunctionalization[J]. The Journal of Physical Chemistry C,2008,112(30):11539-11544.
    [104] Chen Y J, Gao P, Wang R X, et al. Porous Fe3O4/SnO2core/shell nanorods:Synthesis and electromagnetic properties[J]. The Journal of Physical Chemistry C,2009,113(23):10061-10064.
    [105] Chiu W, Khiew P, Cloke M, et al. Heterogeneous seeded growth: synthesis andcharacterization of bifunctional Fe3O4/ZnO core/shell nanocrystals[J]. The Journalof Physical Chemistry C,2010,114(18):8212-8218.
    [106] Chen Y J, Zhang F, Zhao G, et al. Synthesis, multi-nonlinear dielectricresonance, and excellent electromagnetic absorption characteristics of Fe3O4/ZnOcore/shell nanorods[J]. The Journal of Physical Chemistry C,2010,114(20):9239-9244.
    [107] Hu L, Zhang P, Sun Y, et al. ZnO/Co3O4Porous Nanocomposites Derivedfrom MOFs: Room-Temperature Ferromagnetism and High Catalytic Oxidation ofCO[J]. ChemPhysChem,2013,14(17):3953-3959.
    [108] Chen J S, Luan D, Li C M, et al. TiO2and SnO2@TiO2hollow spheresassembled from anatase TiO2nanosheets with enhanced lithium storage properties[J].Chemical Communications,2010,46(43):8252-8254.
    [109] Chen J S, Li C M, Zhou W W, et al. One-pot formation of SnO2hollownanospheres and α-Fe2O3@SnO2nanorattles with large void space and their lithiumstorage properties[J]. Nanoscale,2009,1(2):280-285.
    [110] Govender K, Boyle D S, Kenway P B, et al. Understanding the factors thatgovern the deposition and morphology of thin films of ZnO from aqueoussolution[J]. Journal of Materials Chemistry,2004,14(16):2575-2591.
    [111] Zhang Z, Sun H, Shao X, et al. Three‐Dimensionally Oriented Aggregationof a Few Hundred Nanoparticles into Monocrystalline Architectures[J]. AdvancedMaterials,2005,17(1):42-47.
    [112] Wang L, Dou H, Lou Z, et al. Encapsuled nanoreactors (Au@SnO2): a newsensing material for chemical sensors[J]. Nanoscale,2013,5(7):2686-2691.
    [113] Yamazoe N, Fuchigami J, Kishikawa M, et al. Interaction of tin oxide surfacewith O2, H2O and H2[J]. Surface Science,1979,86:335-344.
    [114] Wang L, Lou Z, Zhang T, et al. Facile synthesis of hierarchical SnO2semiconductor microspheres for gas sensor application[J]. Sensors and Actuators B:Chemical,2011,155(1):285-289.
    [115] Wang L, Lou Z, Fei T, et al. Templating synthesis of ZnO hollow nanospheresloaded with Au nanoparticles and their enhanced gas sensing properties[J]. Journalof Materials Chemistry,2012,22(11):4767-4771.
    [116] Chen J, Xu L, Li W, et al. α-Fe2O3nanotubes in gas sensor and lithium-ionbattery applications[J]. Advanced Materials,2005,17(5):582-586.
    [117] Gong H, Hu J Q, Wang J H, et al. Nano-crystalline Cu-doped ZnO thin filmgas sensor for CO[J]. Sensors and Actuators B: Chemical,2006,115(1):247-251.
    [118] Wang L, Dou H, Li F, Deng J N, Lou Z, Zhang T. Controllable and enhancedHCHO sensing performances of different-shelled ZnO hollow microspheres[J].Sensors and Actuators B: Chemical,2013,183:467-473.
    [119] Zhang H, Yang D, Ji Y, et al. Low temperature synthesis of flowerlike ZnOnanostructures by cetyltrimethylammonium bromide-assisted hydrothermalprocess[J]. The Journal of Physical Chemistry B,2004,108(13):3955-3958.
    [120] Zhang H, Yang D, Li D, et al. Controllable growth of ZnO microcrystals by acapping-molecule-assisted hydrothermal process[J]. Crystal growth&design,2005,5(2):547-550.
    [121] Zhang Y, Xiang Q, Xu J, et al. Self-assemblies of Pd nanoparticles on thesurfaces of single crystal ZnO nanowires for chemical sensors with enhancedperformances[J]. Journal of Materials Chemistry,2009,19(27):4701-4706.
    [122] Shinde V R, Gujar T P, Lokhande C D. LPG sensing properties of ZnO filmsprepared by spray pyrolysis method: effect of molarity of precursor solution[J].Sensors and Actuators B: Chemical,2007,120(2):551-559.
    [123] Jung S, Cho W, Lee H J, et al. Self‐Template‐Directed Formation ofCoordination‐Polymer Hexagonal Tubes and Rings, and their Calcination to ZnORings[J]. Angewandte Chemie,2009,121(8):1487-1490.
    [124] Yao K X, Sinclair R, Zeng H C. Symmetric linear assembly of hourglass-likeZnO nanostructures[J]. The Journal of Physical Chemistry C,2007,111(5):2032-2039.
    [125] Liu B, Zeng H C. Fabrication of ZnO “dandelions” via a modified Kirkendallprocess[J]. Journal of the American Chemical Society,2004,126(51):16744-16746.
    [126] Gao P X, Wang Z L. Mesoporous polyhedral cages and shells formed bytextured self-assembly of ZnO nanocrystals[J]. Journal of the american chemicalsociety,2003,125(37):11299-11305.
    [127] Peng W, Qu S, Cong G, et al. Synthesis and structures ofmorphology-controlled ZnO nano-and microcrystals[J]. Crystal growth&design,2006,6(6):1518-1522.
    [128] Sounart T L, Liu J, Voigt J A, et al. Secondary nucleation and growth ofZnO[J]. Journal of the American Chemical Society,2007,129(51):15786-15793.
    [129] Jiang P, Zhou J J, Fang H F, et al. Hierarchical shelled ZnO structures made ofbunched nanowire arrays[J]. Advanced Functional Materials,2007,17(8):1303-1310.
    [130] Yu Q, Fu W, Yu C, et al. Fabrication and optical properties of large-scale ZnOnanotube bundles via a simple solution route[J]. The Journal of Physical ChemistryC,2007,111(47):17521-17526.
    [131] Iijima S. Helical microtubules of graphitic carbon[J]. nature,1991,354(6348):56-58.
    [132] Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowirenanolasers[J]. science,2001,292(5523):1897-1899.
    [133] Li J Y, Chen X L, Li H, et al. Fabrication of zinc oxide nanorods[J]. Journal ofcrystal growth,2001,233(1):5-7.
    [134] Vayssieres L, Keis K, Hagfeldt A, et al. Three-dimensional array of highlyoriented crystalline ZnO microtubes[J]. Chemistry of Materials,2001,13(12):4395-4398.
    [135] Wu J J, Liu S C, Wu C T, et al. Heterostructures of ZnO–Zn coaxialnanocables and ZnO nanotubes[J]. Applied physics letters,2002,81(7):1312-1314.
    [136] Yao B D, Chan Y F, Wang N. Formation of ZnO nanostructures by a simpleway of thermal evaporation[J]. Applied Physics Letters,2002,81(4):757-759.
    [137] Nguyen T A, Park S, Kim J B, et al. Polycrystalline tungsten oxide nanofibersfor gas-sensing applications[J]. Sensors and Actuators B: Chemical,2011,160(1):549-554.
    [138] Barsan N, Koziej D, Weimar U. Metal oxide-based gas sensor research: Howto?[J]. Sensors and Actuators B: Chemical,2007,121(1):18-35.
    [139] Barsan N, Weimar U. Conduction model of metal oxide gas sensors[J]. Journalof Electroceramics,2001,7(3):143-167.
    [140] Chwieroth B, Patton B R, Wang Y. Conduction and Gas–Surface ReactionModeling in Metal Oxide Gas Sensors[J]. Journal of electroceramics,2001,6(1):27-41.
    [141] Nayral C, Viala E, Fau P, et al. Synthesis of tin and tin oxide nanoparticles oflow size dispersity for application in gas sensing[J]. Chemistry-a European Journal,2000,6(22):4082-4090.
    [142] Watson J. The tin oxide gas sensor and its applications[J]. Sensors andActuators,1984,5(1):29-42.
    [143] Sun Y, Mayers B T, Xia Y. Template-engaged replacement reaction: a one-stepapproach to the large-scale synthesis of metal nanostructures with hollow interiors[J].Nano Letters,2002,2(5):481-485.
    [144] Morrison S R. Mechanism of semiconductor gas sensor operation[J]. Sensorsand Actuators,1987,11(3):283-287.
    [145] Kim D, Park J, An K, et al. Synthesis of hollow iron nanoframes[J]. Journal ofthe American Chemical Society,2007,129(18):5812-5813.
    [146] Yuan L, Hyodo T, Shimizu Y, et al. Preparation of mesoporous and/ormacroporous SnO2-based powders and their gas-sensing properties as thick filmsensors[J]. Sensors,2011,11(2):1261-1276.
    [147] Kim H R, Choi K I, Kim K M, et al. Ultra-fast responding and recoveringC2H5OH sensors using SnO2hollow spheres prepared and activated by Nitemplates[J]. Chemical Communications,2010,46(28):5061-5063.
    [148] Waitz T, Wagner T, Sauerwald T, et al. Ordered mesoporous In2O3: synthesisby structure replication and application as a methane gas sensor[J]. AdvancedFunctional Materials,2009,19(4):653-661.
    [149] Ren Y, Bruce P G, Ma Z. Solid-solid conversion of ordered crystallinemesoporous metal oxides under reducing atmosphere[J]. Journal of MaterialsChemistry,2011,21(25):9312-9318.
    [150] Ren Y, Kraut R, Kiesler S. Applying common identity and bond theory todesign of online communities[J]. Organization studies,2007,28(3):377-408.
    [151] Ren Y, Ma Z, Qian L, et al. Ordered crystalline mesoporous oxides as catalystsfor CO oxidation[J]. Catalysis letters,2009,131(1-2):146-154.
    [152] Ren Y, Jiao F, Bruce P G. Tailoring the pore size/wall thickness of mesoporoustransition metal oxides[J]. Microporous and Mesoporous Materials,2009,121(1):90-94.
    [153] Ren Y, Armstrong A R, Jiao F, et al. Influence of size on the rate ofmesoporous electrodes for lithium batteries[J]. Journal of the American ChemicalSociety,2009,132(3):996-1004.
    [154] Lou X W, Yuan C, Archer L A. Double-Walled SnO2Nano-Cocoons withMovable Magnetic Cores[J]. Advanced Materials,2007,19(20):3328-3332.
    [155] Liu Y, Yu L, Hu Y, et al. A magnetically separable photocatalyst based onnest-like γ-Fe2O3/ZnO double-shelled hollow structures with enhancedphotocatalytic activity[J]. Nanoscale,2012,4(1):183-187.
    [156] Martinez C J, Hockey B, Montgomery C B, et al. Porous tin oxidenanostructured microspheres for sensor applications[J]. Langmuir,2005,21(17):7937-7944.
    [157] Zhao Q, Gao Y, Bai X, et al. Facile synthesis of SnO2hollow nanospheres andapplications in gas sensors and electrocatalysts[J]. European journal of inorganicchemistry,2006,2006(8):1643-1648.
    [158] Wang H, Liang J, Fan H, et al. Synthesis and gas sensitivities of SnO2nanorods and hollow microspheres[J]. Journal of Solid State Chemistry,2008,181(1):122-129.
    [159] Wang D, Xu J, Pan Q. Fabrication and gas-sensing properties of hollow SnO2microspheres[J]. Chemistry Letters,2008,37(10):1086-1087.
    [160] Liu B, Zeng H C. Mesoscale organization of CuO nanoribbons: formation of“dandelions”[J]. Journal of the American Chemical Society,2004,126(26):8124-8125.
    [161] Kim S W, Kim M, Lee W Y, et al. Fabrication of hollow palladium spheresand their successful application to the recyclable heterogeneous catalyst for Suzukicoupling reactions[J]. Journal of the American Chemical Society,2002,124(26):7642-7643.
    [162] Cantalini C, Atashbar M Z, Li Y, et al. Characterization of sol-gel preparedWO3thin films as a gas sensor[J]. Journal of Vacuum Science&Technology A,1999,17(4):1873-1879.
    [163] Yin Y, Erdonmez C, Aloni S, et al. Faceting of nanocrystals during chemicaltransformation: from solid silver spheres to hollow gold octahedra[J]. Journal of theAmerican Chemical Society,2006,128(39):12671-12673.
    [164] Vallejos S, Stoycheva T, Umek P, et al. Au nanoparticle-functionalised WO3nanoneedles and their application in high sensitivity gas sensor devices[J]. ChemicalCommunications,2011,47(1):565-567.
    [165] Penn R L, Banfield J F. Morphology development and crystal growth innanocrystalline aggregates under hydrothermal conditions: Insights from titania[J].Geochimica et cosmochimica acta,1999,63(10):1549-1557.
    [166] Banfield J F, Welch S A, Zhang H, et al. Aggregation-based crystal growth andmicrostructure development in natural iron oxyhydroxide biomineralizationproducts[J]. Science,2000,289(5480):751-754.
    [167] Huang F, Zhang H, Banfield J F. Two-stage crystal-growth kinetics observedduring hydrothermal coarsening of nanocrystalline ZnS[J]. Nano Letters,2003,3(3):373-378.
    [168] Kim Y S, Ha S C, Kim K, et al. Room-temperature semiconductor gas sensorbased on nonstoichiometric tungsten oxide nanorod film[J]. Applied Physics Letters,2005,86(21):213105.
    [169] Fowler C E, Khushalani D, Mann S. Interfacial synthesis of hollowmicrospheres of mesostructured silica[J]. Chemical Communications,2001(19):2028-2029.
    [170] Barsan N, Schweizer-Berberich M, G pel W. Fundamental and practicalaspects in the design of nanoscaled SnO2gas sensors: a status report[J]. Fresenius'journal of analytical chemistry,1999,365(4):287-304.
    [171] Xu J, Pan Q, Shun Y, et al. Grain size control and gas sensing properties ofZnO gas sensor[J]. Sensors and Actuators B: Chemical,2000,66(1):277-279.
    [172] Wang J X, Sun X W, Yang Y, et al. Hydrothermally grown oriented ZnOnanorod arrays for gas sensing applications[J]. Nanotechnology,2006,17(19):4995.
    [173] Sadek A Z, Wlodarski W, Shin K, et al. A layered surface acoustic wave gassensor based on a polyaniline/In2O3nanofibre composite[J]. Nanotechnology,2006,17(17):4488.
    [174] Teoh L G, Hon Y M, Shieh J, et al. Sensitivity properties of a novel NO2gassensor based on mesoporous WO3thin film[J]. Sensors and Actuators B: Chemical,2003,96(1):219-225.
    [175] Yamaura H, Jinkawa T, Tamaki J, et al. Indium oxide-based gas sensor forselective detection of CO[J]. Sensors and Actuators B: Chemical,1996,36(1):325-332.
    [176] Wei S, Zhou M, Du W. Improved acetone sensing properties of ZnO hollownanofibers by single capillary electrospinning[J]. Sensors and Actuators B: Chemical,2011,160(1):753-759.
    [177] Wei S, Zhou M, Du W. Improved acetone sensing properties of ZnO hollownanofibers by single capillary electrospinning[J]. Sensors and Actuators B: Chemical,2011,160(1):753-759.
    [178] Nath S S, Choudhury M, Chakdar D, et al. Acetone sensing property of ZnOquantum dots embedded on PVP[J]. Sensors and Actuators B: Chemical,2010,148(2):353-357.
    [179] Zhang H, Xu C, Sheng P, et al. Synthesis of ZnO hollow spheres through abacterial template method and their gas sensing properties[J]. Sensors and ActuatorsB: Chemical,2013,181:99-103.
    [180] Liu L, Li S, Zhuang J, et al. Improved selective acetone sensing properties ofCo-doped ZnO nanofibers by electrospinning[J]. Sensors and Actuators B: Chemical,2011,155(2):782-788.
    [181] Zhao Y, Jiang L. Hollow micro/nanomaterials with multilevel interiorstructures[J]. Advanced Materials,2009,21(36):3621-3638.
    [182] Van Gough D, Wolosiuk A, Braun P V. Mesoporous ZnS nanorattles:programmed size selected access to encapsulated enzymes[J]. Nano letters,2009,9(5):1994-1998.
    [183] Liu J, Qiao S Z, Budi Hartono S, et al. Monodisperse yolk–shell nanoparticleswith a hierarchical porous structure for delivery vehicles and nanoreactors[J].Angewandte Chemie,2010,122(29):5101-5105.
    [184] Yin Y, Rioux R M, Erdonmez C K, et al. Formation of hollow nanocrystalsthrough the nanoscale Kirkendall effect[J]. Science,2004,304(5671):711-714.
    [185] Gao J, Liang G, Cheung J S, et al. Multifunctional yolk-shell nanoparticles: Apotential MRI contrast and anticancer agent[J]. Journal of the American ChemicalSociety,2008,130(35):11828-11833.
    [186] Zhu T, Wu H B, Wang Y, et al. Formation of1D hierarchical structurescomposed of Ni3S2nanosheets on CNTs backbone for supercapacitors andphotocatalytic H2production[J]. Advanced Energy Materials,2012,2(12):1497-1502.
    [187] Chen J S, Chen C, Liu J, et al. Ellipsoidal hollow nanostructures assembledfrom anatase TiO2nanosheets as a magnetically separable photocatalyst[J].Chemical Communications,2011,47(9):2631-2633.
    [188] Li W, Deng Y, Wu Z, et al. Hydrothermal etching assisted crystallization: Afacile route to functional yolk-shell titanate microspheres with ultrathinnanosheets-assembled double shells[J]. Journal of the American Chemical Society,2011,133(40):15830-15833.
    [189] Yan C, Singh N, Lee P S. Wide-bandgap Zn2GeO4nanowire networks asefficient ultraviolet photodetectors with fast response and recovery time[J]. AppliedPhysics Letters,2010,96(5):053108.
    [190] Liu K, Sakurai M, Liao M, et al. Giant improvement of the performance ofZnO nanowire photodetectors by Au nanoparticles[J]. The Journal of PhysicalChemistry C,2010,114(46):19835-19839.
    [191] Wang X, Liao M, Zhong Y, et al. ZnO Hollow Spheres with Double-Yolk EggStructure for High-Performance Photocatalysts and Photodetectors[J]. AdvancedMaterials,2012,24(25):3421-3425.
    [192] Yan C, Singh N, Cai H, et al. Network-enhanced photoresponse time of Genanowire photodetectors[J]. ACS applied materials&interfaces,2010,2(7):1794-1797.
    [193] Chen M, Hu L, Xu J, et al. ZnO Hollow-Sphere Nanofilm-BasedHigh-Performance and Low-Cost Photodetector[J]. Small,2011,7(17):2449-2453.
    [194] Lai X, Li J, Korgel B A, et al. General Synthesis and Gas‐Sensing Propertiesof Multiple-Shell Metal Oxide Hollow Microspheres[J]. Angewandte Chemie,2011,123(12):2790-2793.
    [195] Schweizer-Berberich M, Zheng J G, Weimar U, et al. The effect of Pt and Pdsurface doping on the response of nanocrystalline tin dioxide gas sensors to CO[J].Sensors and Actuators B: Chemical,1996,31(1):71-75.
    [196] Xue X, Chen Z, Ma C, et al. One-step synthesis and gas-sensingcharacteristics of uniformly loaded Pt@SnO2nanorods[J]. The Journal of PhysicalChemistry C,2010,114(9):3968-3972.
    [197] Zhang J, Liu X, Wu S, et al. Au nanoparticle-decorated porous SnO2hollowspheres: a new model for a chemical sensor[J]. Journal of Materials Chemistry,2010,20(31):6453-6459.
    [198] Daniel M C, Astruc D. Gold nanoparticles: assembly, supramolecularchemistry, quantum-size-related properties, and applications toward biology,catalysis, and nanotechnology[J]. Chemical reviews,2004,104(1):293-346.
    [199] Choi Y J, Hwang I S, Park J G, et al. Novel fabrication of an SnO2nanowiregas sensor with high sensitivity[J]. Nanotechnology,2008,19(9):095508..
    [200] Xue X Y, Chen Z H, Chen Y J, et al. Abnormal gas sensing characteristicsarising from catalyzed morphological changes of ionsorbed oxygen[J].Nanotechnology,2010,21(6):065501.
    [201] Hübner M, Simion C E, Tomescu-St noiu A, et al. Influence of humidity onCO sensing with p-type CuO thick film gas sensors[J]. Sensors and Actuators B:Chemical,2011,153(2):347-353.
    [202] Pirkanniemi K, Sillanp M. Heterogeneous water phase catalysis as anenvironmental application: a review[J]. Chemosphere,2002,48(10):1047-1060.
    [203] Bisri S Z, Takenobu T, Sawabe K, et al. p-i-n Homojunction in OrganicLight-Emitting Transistors[J]. Advanced Materials,2011,23(24):2753-2758.
    [204] Liang Y, Li Y, Wang H, et al. Co3O4nanocrystals on graphene as a synergisticcatalyst for oxygen reduction reaction[J]. Nature materials,2011,10(10):780-786.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700