Ⅰ钳式镍配合物的合成及性质反应研究 Ⅱ有机氟化物的合成新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文共分为两部分:
     第一部分是关于钳式配合物的合成及其性质研究的工作。自从钳式配合物在上世纪70年代被Shaw和van Koten报道后,由于其高稳定性.活性以及可调节性,已经得到了深入的发展,并且在有机合成、催化、传感器以及超分子化学等领域得到了广泛的应用。钳式配体可以被简写为[EYE]型,其中Y代表了中心电子供体(Y=C,N等),E代表了像胺(-NR2)、膦(-PR2)、亚磷酸(-P(OR)2).醚(-OR)、硫醚(-SR)、硒醚(-SeR)和N-杂环卡宾(的NHCs))等电子供体。
     根据边臂上两个电子供体原子的种类可以将钳式配合物分为由两个相同的给体原子[EYE]对称性的钳式配合物以及由两个不同的给体原子构成的[EYE']非对称性的钳式配体,他们各具特色。对于[EYE]对称性的钳式配合物,它的最大优点是合成简单并且结构容易调节等特性,因此得到了非常广泛的研究。相比来说,研究发现,对于由两个不同的给体原子构成的[EYE’]非对称性的钳式配体,在两个不同给体原子的协同作用下,不对称的钳式配合物可能具有非常独特的特性并因此具有更高的活性,因此[EYE’]非对称性的钳式配合物也吸引了越来越多科研人员的兴趣。然而由于相对较复杂的合成过程,对[EYE’]非对称性的钳式配合物的报道远远少于[EYE]对称性的钳式配合物。
     另外,在钳式配合物的研究中,钯、钌、铑和铱等4d和5d的贵金属催化剂最引人关注,但是他们的缺点很明显,价格昂贵并且对环境污染严重。3d的镍金属催化剂与它们相比,优势在于价格更便宜、毒性更低、更加环境友好。
     在本论文中,我们分别依据文献已知的方法合成了[PCP]对称性钳式镍配合物,并且合成了另一种新型的以NHC-Amine作为锚定基团的[CNN]非对称性钳式镍配合物。以氯代芳烃与格氏试剂的Kumada偶联反应中考察了他们的活性,发现两种配合物在温和的反应条件下,对催化氯代芳烃与格氏试剂的Kumada偶联反应中显示了很好了活性,并且底物的普适性也很好,在用不同的氯代芳烃和不同的格氏试剂进行反应时,均取得了不错的分离产率。该催化剂不但对单氯取代的芳烃与格氏试剂进行Kumada反应时有较好的效果,而且对于二氯取代的芳烃与格氏试剂进行的双偶联反应,同样显示了很好的催化效果。
     第二部分是关于在无催化剂条件下通过全氟芳烃与格氏试剂反应合成多氟芳香化合物的工作。有机氟化物在农药、医药等生理活性化合物的中间体中具有很广泛的应用,但是含氟有机化合物在自然界中非常少见。到目前为止,天然产物中只发现了几十种含有C-F键的化合物。因此向有机分子中选择性的引入氟原子或含氟基团以合成含氟有机物一直是有机化学家非常感兴趣的研究领域。
     在这部分工作中我们发现了一种制备多氟芳香化合物的简单方法。在无过渡金属催化剂存在的条件下,室温下实现了全氟芳香化合物与格氏试剂的交叉偶联反应。虽然在上世纪五六十年代曾经有人报道过类似的反应,但是由于产率以及选择性较低的原因,没能引起足够的重视。在本文中,我们发现全氟芳香化合物与格氏试剂反应,在比较温和的条件下,能以较高的产率得到多氟芳香化合物。
     我们对这个反应的机理进行了研究,提出了一种通过四元环过渡态的反应机理,并且通过理论计算进行了验证。需要特别指出的是,全氟芳烃不仅可以与芳基格氏试剂反应,而且还能与烷基格氏试剂反应,得到中等至良好的产率。
The thesis is divided into two parts::
     The first part is concering about the synthesis of pincer complexes and their application. Since reported by Shaw and van Koten in the1970s, due to their high stability, activity and adjustability, pincer complexes have been well developed, and been widely used in organic synthesis, catalysis, sensors, and supramolecular chemistry fields. Pincer ligand may be abbreviated as [EYE], wherein Y represents a donor center (Y=C, N, etc.), E represents the image amine (-NR2), phosphine (-PR2), phosphorous acid (-P(OR)2), ether (-OR), thioether (-SR), selenides (-SeR), N-heterocyclic arbine (the NHCs)) and so on.
     According to the kinds of arm donor atoms, pincer complexes can be divided into two types, symmetric pincer complexes have two identical donor atoms abbreviated as [EYE] and unsymmetric pincer complexes have two different donor atoms abbreviated as [EYE']. For symmetric pincer [EYE] complexes, their biggest advantage was their very simple synthesis and easy modification to the structure, so they have been very extensively studied. In contrast, the study found that for the unsymmetric pincer [EYE'] complexes, the cooperation effect of two different donor atoms may have very unique characteristics and therefore has higher activity, and therefore [EYE'] unsymmetric type of pincer complexes have attracted the interest of more and more researchers. However, due to the relatively complex synthesis, reports of [EYE'] unsymmetric type of pincer complexes were far less than [EYE] symmetrical type of pincer complexes.
     In the study of the pincer complexes, palladium, ruthenium, rhodium, ruthenium and other noble metal catalyst were most studied, but their shortcomings are obvious because of expensive and serious environmental pollution. Compared to them, nickel is cheaper, less toxic and more environmentally friendly.
     In this paper, we synthesized the [PCP] symmetric pincer nickel complexes based on known methods in the literature and another new [CNN] unsymmetric type pincer nickel complexes. Kumada coupling of chlorinated aromatics with Grignard reagents was chosen to investigated their activities, it was found that under mild reaction conditions the two types of complexes both showed good reactivity, and the universality of the substrate is also very good. It is worth mentioning that for the double couplings of aryl dichlorides, pincer nickel complexes also showed excellent catalytic activities.
     The second part was about transition-metal-free synthesis of Fluorinated Arenes from perfluorinated arenes coupled with Grignard Reagents. Fluorinated compounds have great application in pesticide intermediates, medicine and other physiologically active compounds, however, fluorinated organic compounds in nature are very rare, so far only dozens of compounds found in natural contain C-F bond. Therefore, selectively introducing fluorine atom or fluorine-containing group into the organic molecules has attracted many organic chemist's interest.
     In this part of the work we have found a simple way to get fluoride aromatic compounds, without the presence of transition metal catalyst, Synthesis of Fluorinated arenes from perfluorinated arenes coupled with Grignard Reagents. Though in the1950s and1960s there was once reported the similar reactions, but because low yields and low selectivity, few attention has concering about this discovery. In this article, we found that perfluorinated aromatic compounds react with Grignard reagents under relatively mild conditions, and higher yields can be obtained for polyfluorinated aromatic compounds.
     We studied the mechanism of this reaction and proposed a four-membered ring transition state, and supported by theoretical calculations. Special noted that perfluorinated aromatic compounds not only react with aryl Grignard reagent, but also the reaction with alkyl Grignard reagent give moderate to good yields.
引文
[1](a). Moulton, C. J., Shaw, B. L. Transition Metal-Carbon Bonds. Part XLII. Complexes of Nickel, Palladium, Platinum, Rhodium and Iridium with the Tridentate Ligand 2,6-Bis[(di-t-butylphosphino)methyl]phenyl. J. Chem. Soc., Dalton Trans.1976,1020-1024. (b). Empsall, H. D., Hyde, E. M., Markham, R., McDonald, W. S., Norton, M., Shaw, B. L., Weeks, B. Synthesis and X-Ray Structure of an Unusual Iridium Ylide or Carbene Complex. J. Chem, Soc., Chem. Commun.1977,589-590. (c). Crocker, C., Errington, R. J., McDonald, W. S., Odell, K. J., Shaw, B. L. Rapid Reversible Fission of a C-H Bond in a Metal Complex:X-Ray Crystal Structure of [RhHCl(But2PCH2CH2CHCH2CH2PBut2)]. J. Chem. Soc., Chem. Commun.1979,498-499. (d). Salem, N. A., McDonald, W. S., Markham, R., Norton, M. C., Shaw, B. L. Formation of Large Chelate Rings and Cyclometallated Complexes from But2PCH2H2CHMeCH2CH2PBut2 and Platinum and Palladium Chlorides. Crystal Structure of [Pd2Cl4{ But2PCH2CH2CHMeCH2CH2PBut2}2]. J. Chem. Soc, Dalton Trans. 1980,59-63. (e). Crocker, C., Errington, R. J., Markham, R., Moulton, C. J., Shaw, B. L. Further Studies on the Interconversion of Large Ring Cyclometallated Complexes of Rhodium, with the Diphosphines But2P(CH2)5PBut2 and But2PCH2CH=CHCH2PBut2. J. Chem. Soc., Dalton Trans. 1982,387-395. (f). Crocker, C., Empsall, H.D., Errington, R. J., Hyde, E. M., McDonald, W. S., Markham, R., Norton, M. C., Shaw, B. L., Weeks, B. Transition Metal-Carbon Bonds. Part 52. Large Ring and Cyclometallated Complexes formed from But2PCH2CH2HRCH2CH2PBut2 (R=H or Me) and IrCl3 or [Ir2Cl4(cyclo-octene)4]:Crystal structures of the Cyclometallated Hydride and Carbene Complex. J. Chem. Soc., Dalton Trans.1982,1217-1224. (g). Errington, R. J., Shaw, B. L. The Preparation of Fluxional Tetrahydrides [IrH4{ But2PCH2CH2CHRCH2CH2PBut2}](R=H or Me) and Their Reactions with CO, ButNC or HBr. J. Organomet. Chem.1982,238,319-325. [h]. Crocker, C.; Errington, R. J.; Markham, R.; Moulton, C. J.; Odell, K. J.; Shaw, B. L. Large-Ring and Cyclometalated Rhodium Complexes from Some Medium-Chain a,o-Diphosphines. J. Am. Chem. Soc.1980,102,4373-4379.
    [2](a) van der Boom, M. E.; Milstein, D. Cyclometalated Phosphine-Based Pincer Complexes:Mechanistic Insight in Catalysis, Coordination, and Bond Activation Chem. Rev.,2003,103,1759. (b) Benito-Garagorri, D.; Kirchner, K. Modularly Designed Transition Metal PNP and PCP Pincer Complexes based on Aminophosphines:Synthesis and Catalytic Applications, Accounts of Chemical Research.,2008,41,201. (c) Albrecht, M.; van Koten, G. Platinum group organometallics based on "pincer" complexes:sensors, switches, and catalysts., Angew. Chem. Int. Ed.,2001,40,3750-3781.
    [3](a) van Koten, G.; Milstein, D. Organometallic Pincer Chemistry, wiely,2013. (b) Choi, J.; MacArthur, A. H.; Brookhart, R. M.; Goldman, A. S. Dehydrogenation and Related Reactions Catalyzed by Indium Pincer Complexes, Chem. Rev., 2011,111,1761-1779.
    [4]Langer, R.; Diskin-Posner, Y.; Leitus, G; Shimon, L. J.; Ben-David, Y.; Milstein, D. Low-Pressure Hydrogenation of Carbon Dioxide Catalyzed by an Iron Pincer Complex Exhibiting Noble Metal Activity. Angewandte Chemie International Edition,2011,50,9948-9952.
    [5]Benito-Garagorri, D.; Bocokic, V.; Mereiter, K.; Kirchner, K.O. A modular approach to achiral and chiral nickel (Ⅱ), palladium (Ⅱ), and platinum (Ⅱ) PCP pincer complexes based on diaminobenzenes. Organometallics,2006,25, 3817-3823.
    [6]Hillier, A. C.; Sommer, W.J.; Yong, B. S.; Petersen, J. L.; Cavallo, L.; Nolan, S. P. A Combined Experimental and Theoretical Study Examining the Binding of N-Heterocyclic Carbenes (NHC) to the Cp*RuCl (Cp*=η5-C5Me5) Moiety: Insight into Stereoelectronic Differences between Unsaturated and Saturated NHC Ligands Organometallics,2003,22,4322-4326.
    [7]Zuo, W.; Braunstein, P. N-Heterocyclic Dicarbene Iridium (Ⅲ) Pincer Complexes Featuring Mixed NHC/Abnormal NHC Ligands and Their Applications in the Transfer Dehydrogenation of Cyclooctane. Organometallics,2011,31, 2606-2615.
    [8]Inamoto, K.; Kuroda, J. I.; Sakamoto, T.; Hiroya, K. Catalytic Activities of a Bis (carbene)-Derived Nickel (Ⅱ)-Pincer Complex in Kumada-Tamao-Corriu and Suzuki-Miyaura Coupling Reactions for the Synthesis of Biaryl Compounds. Synthesis,2007,18,2853-2861.
    [9]Xu, M.; Li, X.; Sun, Z.; Tu, T. Suzuki-Miyaura cross-coupling of bulky anthracenyl carboxylates by using pincer nickel N-heterocyclic carbene complexes:an efficient protocol to access fluorescent anthracene derivatives Chem. Commun.,2013,49,11539-11541
    [10]Steenwinkel, P.; Gossage, R. A.; van Koten, G. Recent Findings in Cyclometallation of meta-Substituted Aryl Ligands by Platinum Group Metal Complexes by Caryl ±R Bond Activation (R.H, CR3, SiR3) Chem. Eur. J.1998, 4,759-762
    [11]. (a) Csok, Z.; Vechorkin, O.; Harkins, S. B.; Scopelliti, R.; Hu, X. Nickel Complexes of a Pincer NN2 Ligand:Multiple Carbon-Chloride Activation of CH2Cl2 and CHCl3 Leads to Selective Carbon-Carbon Bond Formation. J. Am. Chem. Soc.2008,130,8156-8157.(b) Vechorkin, O.; Csok, Z.; Scopelliti, R.; Hu, X. Nickel Complexes of a Pincer Amido bis (amine) Ligand:Synthesis, Structure, and Activity in Stoichiometric and Catalytic C-C Bond-Forming Reactions of Alkyl Halides. Chem. Eur. J.2009,15,3889-3899. (c) Vechorkin, O.; Hu, X. Nickel-Catalyzed Cross-Coupling of Non-activated and Functionalized Alkyl Halides with Alkyl Grignard Reagents. Angew. Chem. Int. Ed.2009,48,2937-2940. (d) Vechorkin, O.; Proust, V.; Hu, X. Functional Group Tolerant Kumada-Corriu-Tamao Coupling of Nonactivated Alkyl Halides with Aryl and Heteroaryl Nucleophiles:Catalysis by a Nickel Pincer Complex Permits the Coupling of Functionalized Grignard Reagents. J. Am. Chem. Soc.2009,131, 9756-9766. (e) Vechorkin, O.; Barmaz, D.; Proust, V.; Hu, X. Ni-Catalyzed Sonogashira Coupling of Nonactivated Alkyl Halides:Orthogonal Functionalization of Alkyl Iodides, Bromides, and Chlorides. J. Am. Chem. Soc. 2009,131,12078-12079.
    [12]Krebs, B.; Henkel, G Transition-Metal Thiolates:From Molecular Fragments of Sulfidic Solids to Models for Active Centers in Biomolecules. Angew.Chem. Int. Ed.1991,30,769-788.
    [13]da Costa, R. C; Jurisch, M.; Gladysz, J. A. Synthesis of fluorous sulfur/carbon /sulfur pincer ligands and palladium complexes:New catalyst precursors for the Heck reaction. Inorganica Chimica Acta,2008,361,11,3205-3214.
    [14]Piechaczyk, O.; Cantat, T.; Mezailles, N.; Le Floch, P. A Joint Experimental and Theoretical Study of the Palladium-Catalyzed Electrophilic Allylation of Aldehydes, J. Org. Chem.2007,72,4228-4237.
    [15](a) Yao, Q.; Kinney, E. P.; Zheng, C.; Selenium-Ligated Palladium(Ⅱ) Complexes as Highly Active Catalysts for Carbon-Carbon Coupling Reactions:The Heck Reaction Org. Lett.,2004,6,2997-2999 (b) Yao, Q.; Sheets, M. A SeCSe-Pd(Ⅱ) Pincer Complex as a Highly Efficient Catalyst for Allylation of Aldehydes with Allyltributyltin. J. Org. Chem.2006,71,5384-5387.
    [16]Zhang, Y.; Song, G.; Ma, G.; Zhao, J.; Pan, C.; Li, X.1,3-Dinitrone Pincer Complexes of Palladium and Nickel:Synthesis, Structural Characterizations, and Catalysis. Organometallics 2009,28,3233-3238.
    [17]Niu, J.; Hao, X.; Gong J.; Song, M. Symmetrical and unsymmetrical pincer complexes with group 10 metals:synthesis via aryl C-H activation and some catalytic applications. Dalton Trans.,2011,40,5135-5150.
    [18]Baratta, W.; Ballico, M.; Chelucci, G.; Siega, K.; Rigo, P. Osmium(Ⅱ) CNN Pincer Complexes as Efficient Catalysts for Both Asymmetric Transfer and H2 Hydrogenation of Ketones. Angew. Chem. Int. Ed.2008,47,4362-4365.
    [19]Baratta, W.; Chelucci, G.; Magnolia, S.; Siega, K.; Rigo, P. Highly Productive CNN Pincer Ruthenium Catalysts for the Asymmetric Reduction of Alkyl Aryl Ketones. Chem. Eur. J.2009,15,726-732.
    [20]Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L. J. W.; Milstein, D. Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO. Nature Chemistry,2011,3, 609-614.
    [21]Sun, Y.; Koehler, C.; Tan, R.; Annibale, V. T., Song, D. Ester hydrogenation catalyzed by Ru-CNN pincer complexes. Chem. Commun.,2011,47,8349-8351
    [22](a) Boronat, M.; Corma, A.; Gonzalez-Arellano, C.; Iglesias, M.; Sanchez, F. Synthesis of Electron-Rich CNN-Pincer Complexes, with N-Heterocyclic Carbene and (S)-Proline Moieties and Application to Asymmetric Hydrogenation Organometallics 2010,29,134-141 (b) del Pozo, C.; Corma, A.; Iglesias, M.; Sanchez, F. Immobilization of (NHC)NN-Pincer Complexes on Mesoporous MCM-41 Support. Organometallics.2010,29,4491-4498.
    [23]Spasyuk, D. M.; Zargarian, D. Monomeric and Dimeric Nickel Complexes Derived from a Pincer Ligand Featuring a Secondary Amine Donor Moiety Inorg. Chem.2010,49,6203-6213.
    [24](a) Ines, B.; Moreno, I.; SanMartin, R.; Dominguez, E. A Nonsymmetric Pincer-Catalyzed Suzuki-Miyaura Arylation of Benzyl Halides and Other Nonactivated Unusual Coupling Partners. J. Org. Chem.2008,73,8448-8451. (b) Ines, B.; SanMartin, R.; Churruca, F.; Dominguez, E.; Urtiaga, M. K.; Isabel, M. Arriortua A Nonsymmetric Pincer-Type Palladium Catalyst In Suzuki, Sonogashira, and Hiyama Couplings in Neat Water Organometallics 2008,27, 2833-2839.
    [25]Zhang, B.; Wang, W.; Shao, D.; Hao, X.; Gong, J.; Song, M. Unsymmetrical Chiral PCN Pincer Palladium(II) and Nickel(II) Complexes of (Imidazolinyl)aryl Phosphinite Ligands:Synthesis via Ligand C-H Activation, Crystal Structures, and Catalytic Studies. Organometallics 2010,29,2579-2587.
    [26](a) Wang, Z.; Wang, Li. Amido pincer complex of nickel-catalysed Kumada cross-coupling Reactions. Chem. Commun.,2007,43,2423-2425. (b) Liu, N.; Wang, L.; Wang, Z. Room-temperature nickel-catalysed cross-couplings of aryl chlorides with arylzincs Chem. Commun.,2011,47,1598-1600. (c) Liu, N. Wang, Z. Kumada Coupling of Aryl, Heteroaryl, and Vinyl Chlorides Catalyzed by Amido Pincer Nickel Complexes J. Org. Chem.2011,76,10031-10038. (d) Wang L.; Wang, Z. Efficient Cross-Coupling of Aryl Chlorides with Arylzinc Reagents Catalyzed by Amido Pincer Complexes of Nickel. Org. Lett.,2007,9, 4335-4338.
    [27]Ebeling, G; Meneghetti, M. R.; Rominger, F.; Dupont, J.The trans-Chlorometalation of Hetero-Substituted Alkynes:A Facile Entry to Unsymmetrical Palladium YCY'(Y, Y'= NR2, PPh2, OPPh2, and SR) "Pincer" Complexes. Organometallics 2002,21,3221-3227
    [28]Acc.Chem.Res.2008.41. Cross Coupling Special Issue.
    [29]Karasch, M. H.; Reinmuth, O. Grignard Reagents of Nonmetallic Substances, Prentice-Hall Inc. New York,1954.
    [30]Tmaao, K.; Sumitani, K.; Kumada, M. Selective Carbon-Carbon Bond Formation by Cross-Coupling of Grignard Reagents with Organic Halides, Catalysis by Nickel-Phosphine Complexes J. Am. Chem. Soc.1972,94,4374-4376.
    [31]胡跃飞,林国强.现代有机反应化学工业出版社2008.
    [32]Kuroda, J.; Inamoto, K.; Hiroya, K.; Doi, T. N-Heterocyclic Carbene Derived Nickel-Pincer Complexes:Efficient and Applicable Catalysts for Suzuki-Miyaura Coupling Reactions of Aryl/Alkenyl Tosylates and Mesylates. Eur. J. Org. Chem.2009,2251-2261
    [33]Caeiro, J.; Sestelo, J. P.; Sarandeses, L. A. Enantioselective Nickel-Catalyzed Cross-Cou pling Reactions of Trialkynylindium Reagents with Racemic Secondary Benzyl Bromides. Chem. Eur J.2008,14,741-746
    [34]Sanforda, J.; Denta, C.; Masudab, J. D.; Xia, A. Synthesis, characterization and application of pincer-type nickel iminophosphinite complexes. Polyhedron 2011, 30,1091-1094.
    [35]Inamoto, K.; Kuroda, J.; Kwonb, E.; Hiroya, K.; Doi, T. Pincer-type bis(carbene)-derived complexes of nickel(II):Synthesis, structure, and catalytic activity. J. Organomet. Chem.2009,694,389-396.
    [36]Wang, L.; Wang, Z. X. Efficient Cross-Coupling of Aryl Chlorides with Arylzinc Reagents Catalyzed by Amido Pincer Complexes of Nickel. Organic Letters 2007,9,4335-4338.
    [37]Mitsudo, K.; Imura, T.; Yamaguchi, T.; Tanaka, H. Preparation of a cationic bisoxazolinic nickel pincer catalyst and its applications to Michael addition and Mizoroki-Heck reaction. Tetrahedron Letters,2008,49,7287-7289.
    [38]Zhang, J.; Medley, C. M.; Krause, J. A. Mechanistic Insights into C-S Cross-Coupling Reactions Catalyzed by Nickel Bis (phosphinite) Pincer Complexes. Organometallics,2010,29,6393-6401.
    [39]Chakraborty, S.; Krause, J. A.; Guan, H. Hydrosilylation of Aldehydes and Ketones Catalyzed by Nickel PCP-Pincer Hydride Complexes. Organometallics, 2008,28,582-586.
    [40]Vasudevan, K. V.; Scott, B. L.; Hanson, S. K. Alkene Hydrogenation Catalyzed by Nickel Hydride Complexes of an Aliphatic PNP Pincer Ligand. European Journal of Inorganic Chemistry,2012,30,4898-4906.
    [41](a) Castonguay, A.; Spasyuk, D. M.; Madern, N.; Beauchamp, A. L.; Zargarian, D. Regioselective Hydroamination of Acrylonitrile Catalyzed by Cationic Pincer Complexes of Nickel (Ⅱ). Organometallics,2009,28,2134-2141. (b) Salah, A. B.; Offenstein, C.; Zargarian, D. Hydroamination and Alcoholysis of Acrylonitrile Promoted by the Pincer Complex{κ P, κ C, κ P-2,6-(Ph2PO) 2C6H3} Ni(OSO2CF3). Organometallics,2011,30,5352-5364.
    [42]Breitenfeld, J.; Scopelliti, R.; Hu, X. Synthesis, Reactivity, and Catalytic Application of a Nickel Pincer Hydride Complex. Organometallics,2012,31, 2128-2136.
    [43]Shao, D.; Niu, J.; Hao, X.; Gong, J.; Song, M. Neutral and cationic chiral NCN pincer nickel (Ⅱ) complexes with 1,3-bis (2'-imidazolinyl) benzenes:synthesis and characterization. Dalton Transactions,2011,40,9012-9019.
    [44]Fang, G.; Yan, Z.; Yang, J.; Deng, M. The first preparation of 4-substituted 1, 2-oxaborol-2 (5H)-ols and their palladium-catalyzed cross-coupling with aryl halides to prepare stereodefined 2,3-disubstituted allyl alcohols. Synthesis,2006, 07,1148-1154.
    [45]Tamao, K.; Sumitani, K.; Kumada, M. Selective carbon-carbon bond formation by cross-coupling of Grignard reagents with organic halides. Catalysis by nickel-phosphine complexes. J. Am. Chem. Soc.1972,94,4374-4376.
    [46]Boom, M. E.; Milstein, D. Cyclometalated Phosphine-Based Pincer Complexes: Mechanistic Insight in Catalysis, Coordination, and Bond Activation, Chem. Rev. 2003,103,1759.
    [47](a) Xu, G.; Li, X.; Sun, H. Nickel-catalyzed cross-coupling of primary alkyl halides with phenylethynyl-and trimethylsilyethynyllithium reagents. Journal of Organometallic Chemistry.2011,696,3011-3014. (b) Hughes, R. P.; Williamson, A.; Incarvito, C. D.; Rheingold, A. L. Synthesis and Molecular Structure of a Perfluoroalkyl Complex of Platinum Containing a PCP Pincer Ligand Organometallics 2001,20,4741-4744. (c) Pandarus, V.; Zargarian, D.; New Pincer-Type Diphosphinito (POCOP) Complexes of Nickel, Organometallics 2007,26,4321-4334. (d) Benito-Garagorri, D.; Bocokic, V.; Mereiter, K.; Kirchner, K. A Modular Approach to Achiral and Chiral Nickel(Ⅱ),Palladium(Ⅱ), and Platinum(Ⅱ) PCP Pincer Complexes Based on Diaminobenzenes. Organometallics 2006,25,3817-3823.
    [48](a) Joshi-Pangu, A.; Wang, C.; Biscoe, M. R. Nickel-catalyzed Kumada cross-coupling reactions of tertiary alkylmagnesium halides and aryl bromides/triflates. J. Am. Chem. Soc.2011,133,8478-8481. (b) Ren, P.; Vechorkin, O.; Allmen, K. V.; Scopelliti, R.; Hu, X. A Structure_Activity Study of Ni-Catalyzed Alkyl_Alkyl Kumada Coupling. Improved Oatalysts for Coupling of Secondary Alkyl Halides.J. Am. Chem. Soc.2011,133,7084-7095. (c) Liang, L.; Chien, P.; Lin, J.; Huang, M.; Huang, Y.; Liao, J. Amido pincer complexes of nickel (Ⅱ):Synthesis, structure, and reactivity. Organometallics 2006,25,1399-1411.
    [49]Organ, M.; Abdel-Hadi, G. M.; Avola, S.; Hadei, N.; Nasielski, J.; O'Brien, C. J.; Valente, C. Biaryls Made Easy:PEPPSI and the Kumada-Tamao-Corriu Reaction, Chem. Eur. J.2007,13,150-157.
    [50]Xi, Z.; Liu, B.; Chen, W. Room-temperature Kumada cross-coupling of unactivated aryl chlorides catalyzed by N-heterocylic carbene-based nickel (II) complexes, J.Org. Chem.2008,73,3954-3957.
    [51](a) Huckaba,A. J.; Cao, B.; Hollis, T. K.; Valle, H. U.; Kelly, J. T.; N. Hammer, I.; Oliver, A. G.; Webster, C. E. Platinum CCC-NHC benzimidazolyl pincer complexes:synthesis, characterization, photostability, and theoretical investigation of a blue-green emitter. Dalton Trans.,2013,42,8820-8826. (b) Chianese, A. R.; Shaner, S. E.; Tendler, J. A.; Pudalov, D. M.; Shopov, D. Y.; Kim, D.; Rogers, S. L.; Mo, A. Iridium Complexes of Bulky CCC-Pincer N-Heterocyclic Carbene Ligands:Steric Control of Coordination Number and Catalytic Alkene Isomerization. Organometallics,2012,31,7359-7367.
    [52](a) Steenwinkel, P.; Gossage, R. A.; van Koten, G. Recent Findings in Cyclometallation of meta-Substituted Aryl Ligands by Platinum Group Metal Complexes by Caryl-R Bond Activation (R= H, CR3, SiR3). Chem. Eur. J.,1998, 4,759-762. (b) Albrecht, M.; van Koten, G. Platinum group organometallics based on "pincer" complexes:sensors, switches, and catalysts. Angewandte Chemie, Angew. Chem. Int. Ed.,2001,40,3750-3781.
    [53]Ren, P.; Vechorkin, O.; Csok, Z.; Salihu, I.; Scopelliti, R.; Hu, X. Pd, Pt, and Ru complexes of a pincer bis (amino) amide ligand, Dalton Trans.,2011,40, 8906-8911.
    [54]Cross, W. B.; Daly, C. G.; Boutadla, Y.; Singh, K. Variable coordination of amine functionalised N-heterocyclic carbene ligands to Ru, Rh and Ir:C-H and N-H activation and catalytic transfer hydrogenation, Dalton Trans.,2011,40, 9722-9730.
    [55]Kermagoret, A.; Braunstein, P. Mono-and dinuclear nickel complexes with phosphino-, phosphinito-, and phosphonitopyridine ligands:synthesis, structures, and catalytic oligomerization of ethylene, Organometallics,2008,27,88-99.
    [56]Liu, L.; Zhang, Y.; Xin, B. Synthesis of biaryls and polyaryls by ligand-free Suzuki reaction in aqueous phase,J. Org. Chem.,2006,71,3994-3997.
    [57]Wang, L.; Wang, Z. Efficient cross-coupling of aryl chlorides with arylzinc reagents catalyzed by amido pincer complexes of nickel, Org. Lett.,2007,9, 4335-4338.
    [58]Ackermann, L.; Althammer, A. Air-stable PinP (O) H as preligand for palladium-catalyzed Kumada couplings of unactivated tosylates, Org. Lett.,2006, 8,3457-3460.
    [59]Banks, B. E.; Sharp, D. A.; Tatlow, J. C. Fluorine:The First Hundred Years (1886-1986); Elsevier:New York,1986.
    [60]Goldman, P. The carbon-fluorine bond in compounds of biological interest, Science,1969,164,1123-1130.
    [61]lseki, K. Catalytic asymmetric synthesis of chiral fluoroorganic compounds [J]. Tetrahedron, Tetrahedron,1998,54,13887-13914.
    [62]Yoder, N. C.; Kumar, K. Fluorinated amino acids in protein design and engineering, Chem. Soc. Rev.2002,31,335-341.
    [63]黄维垣.中国有机氟化学研究,上海科学技术出版社,上海,1996,305-310.
    [64]Singh, R. P.; Shreeve, J. M. Recent advances in nucleophilic fluorination reactions of organic compounds using deoxofluor and DAST. Synthesis,2002, 7,2561-2578.
    [65]Ma, J.; Cahard, D. Asymmetric fluorination, trifluoromethylation, and pernuoroallylation reactions. Chem. Rev.2004,104,6119-6146.
    [66]Wilkinson, J. A. Recent advances in the selective formation of the Carbon-fluorine bond. Chem. Rev.1992,92,505-519.
    [67]Singh, R. P.; Shreeve, J. M. Recent highlights in electrophilic fluorination withl-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octanebis(tefrafluorobora te). Acc.Chem.Res.2004,37.31-44.
    [68]Chen, Q.; Wu, S. Methyl fluorosulphonyldifluoroacetate; a new trifluoro methylating agent. Journal of the Chemical Society, Chemical Communications, 198911,705-706.
    [69]黄维垣。黄炳南,王魏.化学学报.1983.41,1193.
    [70]Masaki, S.; TameJiro, H. Modem synthetic methods for fluorine-substituted target molecules. Angew. Chem. Int. Ed,2005,44,214-231.
    [71]Begue, J. P.; Bonnet-Delpon, D.; Crousse, B.; Legros, J. The chemistry of trifluoromethyl imines and related acetals derived from fluoral. Chem. Soc. Rev.2005,34,562-572.
    [72]Kalkhambkar, R. G.; Laali, K. K. Pd (OAc)2-catalyzed cross-coupling of polyfluoroarenes with simple aromatics in imidazolium ionic liquids (ILs) without oxidant and additive and with recycling/reuse of the IL, Tetrahedron Letters 2011,52,5525-5529.
    [73]Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. Catalytic Intermolecular Direct Arylation of Perfluorobenzenes, J. Am. Chem. Soc.2006,128,8754-8756.
    [74]Do, H.; Daugulis, O. Copper-catalyzed arylation and alkenylation of polyfluoroarene CH bonds. J. Am. Chem. Soc.2008,130,1128-1129.
    [75]He, C.; Fan, S.; Zhang, X. Pd-Catalyzed Oxidative Cross-Coupling of Perfluoroarenes with Aromatic Heterocycles, J. Am. Chem. Soc,2010,132, 12850-12852.
    [76]Wei, Y.; Su, W. Pd(OAc)2-Catalyzed Oxidative C-H/C-H Cross-Coupling of Electron-Deficient Polyfluoroarenes with Simple Arenes, J. Am. Chem. Soc. 2010,132,16377-16379.
    [77]Lafrance, M.; Shore, D.; Fagnou, K. Mild and General Conditions for the Cross-Coupling of Aryl Halides with Pentafluorobenzene and Other Perfluoroaromatics, Org. Lett.2006,8,5097-5100.
    [78]Wei, Y.; Kan, J.; Wang, M.; Su, W.; Hong, M. Palladium-Catalyzed Direct Arylation of Electron-Deficient Polyfluoroarenes with Arylboronic Acids, Org. Lett.2009,11,3346-3349.
    [79]Korenaga, T.; Kosaki, T.; Fukumura, R.; Ema, T.; Sakai, T. Suzuki-Miyaura Coupling Reaction Using Pentafluorophenylboronic Acid, Org. Lett.2005,7, 4915-4917.
    [80]Shang, R.; Fu, Y.; Wang, Y.; Xu, Q.; Yu, H.; Liu, L. Copper-Catalyzed Decarboxylative Cross-Coupling of Potassium Polyfluorobenzoates with Aryl Iodides and Bromides, Angew. Chem. Int. Ed.2009,48,9350-9354.
    [81]Shang, R.; Xu, Q.; Jiang, Y.; Wang, Y.; Liu, L. Pd-Catalyzed Decarboxylative Cross Coupling of Potassium Polyfluorobenzoates with Aryl Bromides, Chlorides, and Triflates, Org. Lett.2010,12,1000-1003.
    [82]Steffen, A.; Sladek, M. I.; Braun, T.; Neumann, B.; Stammler, H. Catalytic C-C Coupling Reactions at Nickel by C-F Activation of a Pyrimidine in the Presence of a C-Cl Bond:The Crucial Role of Highly Reactive Fluoro Complexes, Organometallics 2005,24,4057-4064.
    [83]Zhang, J.; Wu, J.; Xiong, Y.; Cao, S. Synthesis of unsymmetrical biaryl ethers through nickel-promoted coupling of polyfluoroarenes with arylboronic acids and oxygen, Chem. Commun.2012,48,8553-8555.
    [84]Nakamura, Y.; Yoshikai, N.; Hies, L.; Nakamura, E. Nickel-Catalyzed Monosubstitution of Polyfluoroarenes with Organozinc Reagents Using Alkoxydiphosphine Ligand. Org. Lett.2012,14,3316-3319.
    [85]Matsubara, K.; Ishibashi, T.; Koga, C-F Bond-Cleavage Reactions of Fluoroalkanes with Magnesium Reagents and without Metal Catalysts, Y. Org. Lett.2009,11,1765-1768.
    [86]Zheng, T.; Sun, H.; Chen, Y.; Li, X.; Simon Durr, Radius, U.; Harms, K. Synergistic Effect of a Low-Valent Cobalt Complex and a Trimethylphosphine Ligand on Selective C-F Bond Activation of Perfluorinated Toluene. Organometallics.2009,28,5771-5776
    [87]Li, X.; Sun, H.; Yu, F.; FlOrke, U.; Klein, H. C-F Bond Cleavage and Unexpected C-CN Activation by Cobalt Compounds Supported with Phosphine Ligands. Organometallics 2006,25,4695-4697.
    [88]Xu, W.; Sun, H.; Xiong, Z.; Li, X. Acid-Promoted Selective Carbon-Fluorine Bond Activation and Functionalization of Hexafluoropropene by Nickel Complexes Supported with Phosphine Ligands. Organometallics,2013,32, 7122-7132.
    [89]Schaub, T.; Backes, M.; Radius, U. Catalytic CC bond formation accomplished by selective CF activation of perfluorinated arenes, J. Am. Chem. Soc.2006,128, 15964-15965.
    [90]Banks, R. E.; Jondi, W. J.; Tipping, A. E. Reaction of pentafluoropyridine with lithium hydrazonides; competing monosubstitution at the 2-and 4-positions, Journal of Fluorine Chemistry,1996,99,87-92.
    [91]Thathagar, M. B.; Beckers, J.; Rothenberg, G Combinatorial design of copper-based mixed nanoclusters:New catalysts for Suzuki cross-coupling, Adv. Synth. Catal.2003,345,979-985.
    [92]Kanyiva, K. S.; Kashihara, N.; Nakao, Y.; Hiyama, T.; Ohashib, M.; Ogoshi, S. Hydrofluoroarylation of alkynes with fluoroarenes, Dalton Trans.,2010,39, 10483-10494.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700