糖基化青蒿素的制备及抗肿瘤活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青蒿素是举世闻名的抗疟药,虽然临床应用多年,但仍存在一些缺点,尤其水溶性和脂溶性均很低,造成生物利用率低、复燃率高。目前青蒿素及其衍生物的抗肿瘤活性成为研究的热点,有希望被开发成为新型植物广谱抗癌药,同样存在溶解性问题。因此,开展青蒿素的修饰及抗肿瘤活性的研究对其综合利用具有重要的意义。
     为了改善青蒿素的水溶性,提高其抗肿瘤活性,本研究通过化学制药和生物制药方法对中药单体青蒿素进行糖基化修饰,并进行结构表征和抗肿瘤活性研究,最后对现有的青蒿素类药物构效关系进行探讨,以对后续研究工作提供指导。主要研究内容和结论如下:
     ①化学法合成糖基化青蒿素衍生物及体外抗肿瘤活性研究
     1)首次采用溴代乙酰化一锅法对青蒿素进行糖基化修饰,产物经1H NMR、13C-NMR、LC-MS和IR等方法表征,获得几个新的糖类修饰的青蒿素衍生物。该方法与曾报道的方法相比,反应条件相对温和、操作简便,不需要额外的脱保护步骤。
     2)水溶性实验表明,青蒿素经糖基修饰后,水溶性均得到提高,有利于药物的吸收和生物利用率的提高。
     3)MTT法对正常细胞及肿瘤细胞增殖抑制活性实验表明,糖基修饰的青蒿素对正常细胞的增殖抑制降低,而抑瘤作用没有降低或者提高,其中青蒿素葡萄糖苷对Hela细胞作用最好。
     4)采用倒置显微镜和透射电镜手段直观观察到青蒿素葡萄糖苷作用Hela细胞后,细胞形态发生变化,细胞数量减少,能诱导Hela细胞产生凋亡。
     5)利用流式细胞仪和western印迹探讨了青蒿素葡萄糖苷诱导Hela细胞凋亡的机制,可能是通过上调bax基因的表达,下调bcl-2基因的表达,来促进线粒体细胞色素C的释放,从而达到上调caspase-3基因,激活caspases系统的级联效应,最终导致Hela细胞凋亡,凋亡机制为非p53基因依赖途径。
     ②酶催化合成糖基化青蒿素衍生物及体外抗肿瘤活性研究
     1)在国内外首次通过酶催化方法对青蒿素进行糖基化修饰,其中以半乳糖作为给体效率最高,达到68%。该方法与化学方法相比,具有产物效率高、底物专一性强等特点。
     2)对酶催化法的反应条件进行摸索和优化,得到最优化的操作条件。
     3)鉴于酶催化法的特点,将半乳糖基化青蒿素处理后首先借助生物分析手段进行结构分析。采用Tricine-SDS-PAGE电泳从分子量角度,确定了取代糖基数目;通过圆二色谱检测取代位置为青蒿素羟基位置,非内酯环,糖苷键的构型为β型;通过荧光分析,进一步确定糖基连接到青蒿素分子上。其次,采用红外、核磁光谱等化学分析手段对结构进行确证。最后,采用ArgusLab软件模拟了糖基化青蒿素分子的立体结构。
     4)MTT法对正常细胞及肿瘤细胞Hela实验表明,半乳糖基化青蒿素对正常细胞生长抑制降低,抑瘤能力增强。Hoechst33342/PI细胞核染色进一步说明半乳糖基化青蒿素能诱导肿瘤细胞的细胞核凋亡。利用流式细胞仪和western印迹探讨了半乳糖基化青蒿素诱导细胞凋亡的机制,与化学方法制备的产物机制相似。
     ③糖基化青蒿素体内抗肿瘤活性研究
     成功建立了小鼠宫颈癌模型,对体外筛选得到的糖基化青蒿素进行初步的体内抗肿瘤活性研究。结果表明,与生理盐水对照组相比,青蒿素及其糖基化衍生物均可有效抑制肿瘤的生长和延长小鼠寿命,毒性实验表明属于低毒类物质。与青蒿素组相比,糖基修饰产物各个指标均有提高,以酶催化法制备的半乳糖-青蒿素效果最好。
     ④从分子对接和三维定量构效关系角度对青蒿素及其衍生物的生物活性进行了初步的探讨,通过理论模型研究了非键效应(静电、立体和疏水)对Fe2+介导青蒿素过氧桥断裂及其抗疟活性的影响。
     1)基于Autodock对青蒿素与血红素作用模式进行调查,寻找潜在的活性构象。
     2)将有机分子中常见的原子按基本的化学性质进行分类,通过计算不同种类原子之间的非键作用模型,得到用于描述分子的三维场描述子,即三维全息作用矢量(3D-HoVAIF)。
     3)在青蒿素活性构象基础上搭建一系列具有药效活性的青蒿素衍生物空间构象,并使用3D-HoVAIF对这些分子结构信息进行表征。
     4)采用遗传-偏最小二乘回归(GA-PLS)方法建立青蒿素及其衍生物的3D-HoVAIF描述子与其生物活性之间隐含关系的线性模型,并使用内部和外部验证的方法确认了模型的统计意义。该模型具有稳定性和预测能力。
     5)通过统计模型对青蒿素及其衍生物的生物活性进行分析和解释,此举为青蒿素结构修饰和改造提供了有益的帮助。
     总之,通过研究发现糖基修饰青蒿素能提高其水溶性、降低毒副作用,并且某些糖修饰后其抗肿瘤活性得到提高。这些研究将对青蒿素的综合利用具有实际价值,为青蒿素的修饰提供新的思路,也为其他药物的糖基修饰提供借鉴和参考。
Artemisinin, serving as antimalarial, is generally accepted in the world. However, there are still some defects, e.g. low water-solubility and liposolubility that leads to low bioavailability and high recrudescence rate. The anticancer activites of artemisinin and its derivates may become the hot of research, and it is potent to develop a new broad-spectrum anticancer drug. Therefore, artemisinin modification and exploration of antineoplastic activity are extremely meaningful to its multiple utilizations.
     This project proposed pro-drug's glycosylation modification, traditional Chinese herb monomer artemisinin was glycosylated, then performed structural characterization and investigation of anticancer activites, finally exploring structure-activity relationship for presently available artemisinin analogues. Main woks are presented as following:
     ①Synthesizing glycosylated artemisinin by chemical methods, and studying on anti-tumor activites of the compound in vitro.
     1)Preparing a few new sugar-residue products of artemisinin by acetylated protection one-pot.Measuring and analyzing products in 1H NMR, 13C-NMR ,LC-MS and IR methods, and ascertaining the target products. Compared this synthetic methods and methods previously reported, the methods had relatively mild reaction conditions, which was not only simpler, but also needn't extra deprotection steps.
     2)It showed that the water-solubility was enhanced and profited its absorption and raising the utilization rate of biology.
     3)MTT test showed that glycosylation artemisinin derivates had larger ability of inhibiting growth in cancer cells and lowered toxicity in normal cells. In particular, artemisinin-glucoside had the best activity on Hela cells.
     4)Directly observing the effection of artemisinin-glucoside on Hela cells by inverted microscope and transmission electron microscope, which the cells shape changed and the number of cells reduced. It showed that artemisinin-glucoside can induce apoptosis of Hela cells.
     5)Detected apoptosis by flow cytometry and western blotting for approaching mechanism of artemisinin-glucoside, which could be up-regulated bax gene and down -regulated bcl-2 gene, so as to release the cyc.Therefore, it can increase the expression caspase-3 gene and activate the caspases cascading effect, so resulted the apoptosis, the mechanisms on Hela cells was non-p53 gene way.
     ②Synthesizing glycosylated artemisinin by enzyme catalysis methods, and then studying on activites of anti-cancer in vitro.
     1)Modifying artemisinin with sugar-residue by enzyme catalysis methods at the first time in the world, and found that galactose had the maximum of efficiency, which can up to 68%. Compared enzyme catalysis and chemical methods, it was found that enzyme catalysis reaction had the characteristics of higher efficiency and stronger specific.
     2)Groping and optimizing the reaction condition of glycosylation by enzyme catalysis, and then obtaining the best operating conditions.
     3)Firstly, respecting the feature of enzyme catalysis, analyzing structure of galactosylated artemisinin with bioanalysis methods after treating it.Determining the number of sugar substitute in galactosylated artemisinin by Tricine-SDS-PAGE electrophoresis from the perspective of molecular weight. Detecting the artemisinin hydroxy position by Circular Dichroism, which showed that the position was replaced at hydroxide radical. The glucosidic bond isβ-type. Fluorescence method confirmed further that the artemisinin-residue had sugar molecule. Then confirming the structure by NMR and IR methods. At last, simulating the stereochemical structure of glycosylation artemisinin by Arguslab soft.
     4)MTT test showed that the galactosylated artemisinin had larger ability of inhibiting growth in cancer cells and lowered toxicity in normal cells. Moreover, it was demonstrated that galactosylated artemisinin can induce apoptosis in cancer cells by Hoecst33342\PI stain. Approaching the apoptosis mechanism by flow cytometry and western blotting, it was similar to that of the product by chemical methods.
     ③Studying on anti-tumor activites of glycosylated artemisinin in vivo. Establishing mouse cancer of the cervix model,then studying on anti-tumor activites of glycosylated artemisinin in vivo. Compared with normal sodium, the results showed artemisinin and its glycosylated derivates can suppress growth of tumor and increase in life span of mouse.The products belonged to low-toxicity materials.Otherwise, compared with artemisinin, each index of glycosylated products raised, galactose- artemisinin by enzyme catalysis methods was best.
     ④Base on molecular docking and three-dimensional structure-activity relationship, bioactivities of artemisinin and analogues were primarily explored, and via theoretical modeling, nonbonding effects (referring to electrostatic, steric and hydrophobic interactions) had been investigated for their influences on Fe2+-mediated artemisinin peroxy-bridge breakage and antimalarial activity.
     1)With Autodock, artemisinin-haemoglobin interaction modes were investigated, expecting to find potential active conformations.
     2)Common atoms in organic molecules were classified in terms of their fundamental chemical properties, and three-dimensional field descriptor (referring to three-dimensional holographic vector, 3D-HoVAIF) was yielded via calculating nonbonding interactions among different types of atoms.
     3)Based upon the active conformation of artemisinin, spatial conformations for a series of derivatives of pharmacological activities were constructed, with their structures characterized by 3D-HoVAIF.
     4)Genetic algorithm-partial least square (GA-PLS) was employed to build up relationship between 3D-HoVAIF descriptors and the bioactivities, and meanwhile internal-external dual-testes were used to confirm statistical significance of SAR models. This model possessed stability and ability of forecasting.
     5) That analyzing and interpreting bioactivities of artemisinin and analogues by the statistical model benefits structural modification of artemisinin.
     In sum, artemisinin modified with glycon can enhance water solubility, lower the toxicity. Moreover, some glycon modified artemisinin can raise the activity of anticancer. These works not only has actual value to artemisinin multiple utilizations, but also provide new path for artemisinin modification and reference for other drugs modified with glycon.
引文
[1] Rita Baraldi, Benedetta Isacchi, Stefano Predieri, et al.Distribution of artemisinin and bioactive flavonoids from Artemisia annua L. during plant growth[J].Biochemical Systematics and Ecology, 2008,36(5-6):340-348.
    [2] Ikuhiko Nakase, Henry Lai, Narendra P. Singh, et al. Anticancer properties of artemisinin derivatives and their targeted delivery by transferrin conjugation[J]..International Journal of Pharmaceutics, 2008, 354(1-2):28-33.
    [3]李国栋,周全,赵长文等.青蒿素类药物的研究现状[J].中国药学杂志, 1998,33(07): 385-389.
    [4] Zhong-Shun Yang, Jun-Xia Wang, Yu Zhou, et al.Synthesis and immunosuppressive activity of new artemisinin derivatives. Part 2: 2-[12(βorα)-Dihydroartemisinoxymethyl(or 1′-ethyl)]phenoxyl propionic acids and esters[J].Bioorganic & Medicinal Chemistry, 2006, 14(23): 8043-8049.
    [5]李伟,石崇荣.青蒿素研究进展[J].中国药房, 2003,14(02): 118-119.
    [6] Tu Youyou.The Inventor of New Anti-Malaria Drugs of Qinghaosu and Dihydroqinghaosu [J]. Chinese Journal of Integrated Traditional and Western Medici, 1999, 5(2):146-147.
    [7] Guillaume Magueur, Benoit Crousse, Michèle Ourévitch, et al.Fluoro-artemisinins: When a gem-difluoroethylene replaces a carbonyl group[J].Journal of Fluorine Chemistry, 2006, 127(4-5): 637-642.
    [8]徐进,郑莹,张睿等.青蒿素类药物作用机制的探讨[J].药学进展, 2002,26(05): 274-278.
    [9]梁瑞玲.青蒿素类衍生物的抗疟作用机理及多维构效关系研究[D].郑州大学硕士学位论文, 2006.
    [10]曹培国,王肇炎.青蒿素及其衍生物的抗肿瘤作用[J].肿瘤防治杂志, 2004,11(06): 666-668.
    [11] Thomas D. Avery, Peter I. Macreadie, Ben W. Greatrex, et al.Design of endoperoxides with anti-Candida activity[J].Bioorganic & Medicinal Chemistry, 2007, 15(1): 36-42.
    [12]黄汾生,胡谦.青蒿素衍生物对Na^+和K^+通道的抑制及其与普鲁卡因作用的比较[J].生理学报, 1998,50(02): 145-152.
    [13]周晋,孟然,李丽敏等.青蒿素对人白血病细胞株和原代细胞的影响[J].中华内科杂志, 2003,42(10): 713-714.
    [14] Jiao, Y. Dihydroartemisinin is an inhibitor of ovarian cancer cell growth[J]. Acta Pharmacol Sin, 2007,28(7):1045-1056.
    [15]胡淼,钱国平,杨亦文等.超临界CO2提取青蒿素的工艺[J].江南大学学报(自然科学版), 2006,5(01): 100-103.
    [16] Elisabeth Hsu .The history of qing hao in the Chinese materia medica[J].Transactions of the Royal Society of Tropical Medicine and Hygiene, 2006, 10(6): 505-508.
    [17] Jacob Golenser, Judith H. Waknine, Miriam Krugliak, et al.Current perspectives on the mechanism of action of artemisinins[J].International Journal for Parasitology, 2006, 36(14): 1427-1441.
    [18]李英.从青蒿素类抗疟药的开发历程谈创新新药的体会[J].国外医药:植物药分册,1999,14(3): 102-107.
    [19]张中朋,刘张林.我国青蒿素产品出口跨上新台阶——2006年青蒿素产品出口分析[J].中国现代中药, 2007,9(04): 43-44.
    [20]梁德毅.让中国青蒿素走向世界——记广州中医药大学首席教授、国际知名疟疾防治专家李国桥[J].广东科技, 2007,1(01): 35-37.
    [21] Chun-Zhao Liu, Hua-Ying Zhou, Yan Zhao.An effective method for fast determination of artemisinin in Artemisia annua L. by high performance liquid chromatography with evaporative light scattering detection[J].Analytica Chimica Acta, 2007, 58(2): 298-302.
    [22] Tzu-Ching Tzeng, Young-Lung Lin, Ting-Ting Jong, et al. Ethanol modified supercritical fluids extraction of scopoletin and artemisinin from Artemisia annua L[J].Separation and Purification Technology, 2007, 56(1): 18-24.
    [23]徐朝辉,童晋荣,万端极.超声提取-膜过滤-超临界萃取联合技术提取青蒿素[J].化工进展, 2006,25(12): 1447-1450.
    [24]刘静明,倪慕云,樊菊芬等.青蒿素(Artemisinin)的结构和反应[J].化学学报, 1979,46(02):78-85.
    [25] Choon-Sheen Lai, N.K. Nair, S.M. Mansor, et al. An analytical method with a single extraction procedure and two separate high performance liquid chromatographic systems for the determination of artesunate, dihydroartemisinin and mefloquine in human plasma for application in clinical pharmacological studies of the drug combination[J].Journal of Chromatography B, 2007, 857(2):308-314.
    [26] Zhang, D. Determination of artemisinin, artemisinin B and artemisinic acid in Herba Artemisiae Annuae by HPLC-UV-ELSD[J]. Yao Xue Xue Bao, 2006,42(9): 978-981.
    [27] Wu, H., K.D. Moeller.Anodic coupling reactions: a sequential cyclization route to the artemisinin ring skeleton[J]. Org Lett, 2007,9(22): 4599-4602.
    [28]李英,虞佩琳,陈一心等.青蒿素类似物的研究Ⅱ.应用高效酰化催化剂DMAP合成双氢青蒿素的羧酸酯和碳酸酯类衍生物[J].化学学报, 1982,50(6):88-95.
    [29]李英,陈一心,虞佩琳等.青蒿素类似物的研究Ⅵ.从青蒿素降解产物双酮合成二氢青蒿酸的研究[J].药学学报, 1986,33(12):75-82.
    [30] Qi Zhang, Yikang Wu .Simplified analogues of qinghaosu (artemisinin) [J].Tetrahedron, 2007, 63(42): 10407-10414.
    [31] V. Galasso, B. Kova?, A. Modelli.A theoretical and experimental study on the molecular and electronic structures of artemisinin and related drug molecules[J].Chemical Physics, 2007, 335(2-3): 141-154.
    [32] Jun-Xia Wang, Wei Tang, Zhong-Shun Yang, et al.Suppressive effect of a novel water-soluble artemisinin derivative SM905 on T cell activation and proliferation in vitro and in vivo[J].European Journal of Pharmacology, 2007, 564(1-3): 211-218.
    [33] Charles W. Jefford New developments in synthetic peroxidic drugs as artemisinin mimics[J].Drug Discovery Today, 2007, 12(11-12): 487-495.
    [34] Loup, C. Trioxaquines and heme-artemisinin adducts inhibit the in vitro formation of hemozoin better than chloroquine[J]. Antimicrob Agents Chemother,2005,51(10): 3768-3770.
    [35] Hale, V. Microbially derived artemisinin: a biotechnology solution to the global problem of access to affordable antimalarial drugs[J]. Am J Trop Med Hyg, 2005,77(6): 198-202.
    [36] Enserink, M. Combating malaria[J]. Malaria treatment: ACT two. Science, 2007,318(5850): 560-563.
    [37] Elsohly, M.A. W. Gul. Recent patent reviews on small molecule-based antimalarial drugs[J]. Recent Patents Anti-Infect Drug Disc, 2005,2(3): 222-232.
    [38]李雯,刘宏民,尤启冬.二丁基氧化锡在糖苷类化合物脱乙酰保护基中的应用[J].化学学报,2003, 61 (9): 1516-1520.
    [39] Brendebach, Van Neck. EXAFS study of aqueous Zr(IV) and Th(IV) complexes in alkaline CaCl(2) solutions: Ca(3)[Zr(OH)(6)](4+) and Ca(4)[Th(OH)(8)](4+)[J]. Inorg Chem, 2007,46(16): 6804-6810.
    [40] Forbes JM,Yee LT,Thallas V, et al. Advanced glycation endproduct interventions reduce diabetes accelerated atherosclerosis[J] .Diabetes, 2004, 53 (7) :1813-1823.
    [41]杨清香,曹军卫,黄国锦.糖基转移酶和去糖基化酶[J].氨基酸和生物资源,1997, 19(2):38-43.
    [42] Makoto Takaishi, Fumitaka Kudo, Tadashi Eguchi. Biosynthetic pathway of 24-membered macrolactam glycoside incednine[J].Tetrahedron, 2008,64(28): 6651-6656.
    [43]秦燕,宁正祥.β-半乳糖苷酶的应用研究进展[J].沈阳农业大学学报,2000, 16(3): 595-599.
    [44]曹孟婵,张部昌.大环内酯类抗生素糖基合成及生物学功能[J].中国抗生素杂志,2007, 32 (3) :140-145.
    [45]倪威,杨廷全.功能性低聚糖的酶法合成.http://jpkc.xmu.edu.cn/yjhx/rs/03/318.pdf, 2005-04-01.
    [46] Mamoru Okasaka, Yoshiki Kashiwada, Olimjon K,et al. Monoterpene glycosides from Paeonia hybrida[J].Phytochemistry, 2007, 69(8): 1767-1772.
    [47]张真庆,于广利,赵峡等.几种糖醛酸及其寡糖的薄层层析分析[J].分析化学,2005,33(12): 1750-1752.
    [48] Li Lin, Xiao-Peng He, Qing Xu,et al.Synthesis ofβ-C-glycopyranosyl-1,4-naphthoquinone derivatives and their cytotoxic activity[J].Carbohydrate Research, 2006, 343(4):773-779.
    [49]黄敏,裘娟萍,钟莉.酶法生产葡萄糖基维生素C的产酶条件及转化条件优化[J].中国食品添加剂, 2006, (2): 100-104.
    [50] Zhou, X. Dual silencing of epidermal growth factor and insulin-like growth factor 1 receptors significantly limits growth of nasopharyngeal carcinoma in nude mice[J]. J Laryngol Otol, 2007, 35(8):1-15.
    [51] Constantinou, T. SFRP-4 abrogates Wnt-3a-induced beta-catenin and Akt/PKB signalling and reverses a Wnt-3a-imposed inhibition of in vitro mammary differentiation[J]. J Mol Signal, 2002,3(1): 10.
    [52] Xie P, Browning DD, Hay N et al. Activation of NF-kappa B by bradykinin through a Galpha(q)- and Gbeta gamma-dependent pathway that involves phosphoinositide 3-kinase and Akt[J]. J Biol Chem., 2000,275(32):24907-24914.
    [53] Ceder R, Merne M, Staab CA, et al. The application of normal, SV40 T-antigen-immortalised and tumour-derived oral keratinocytes, under serum-free conditions, to the study of the probability of cancer progression as a result of environmental exposure to chemicals[J]. Altern Lab Anim,2007,35(6):621-639.
    [54] Silva RD, Sotoca R, Johansson B, et al. Hyperosmotic stress induces metacaspase and mitochondria-dependent apoptosis in Saccharomyces cerevisiae[J].MolMicrobiol, 2005, 58 (3): 824 - 834.
    [55] Beheshtian, A. Role of endogenous cannabinoids in ischemia/reperfusion injury following testicular torsion in rats[J]. Int J Urol, 2005,15(5): 449-454.
    [56] Zhang, P. Improved effects of a double suicide gene system on prostate cancer cells by targeted regulation of prostate-specific membrane antigen promoter and enhancer[J]. Int J Urol, 2003,15(5): 442-448.
    [57] Namazi, M.R. ,F. Jowkar. A succinct review of the general and immunological pharmacologic effects of proton pump inhibitors[J]. J Clin Pharm Ther, 2007,33(3): 215-217.
    [58] Yang, L., W.K. Kang. The Effect of HIF-1alpha siRNA on Growth and Chemosensitivity of Mia-paca Cell Line[J]. Yonsei Med J, 2002,49(2): 295-300.
    [59] Efferth T.Molecular pharmacology and pharmacogenomics of artemisinin and its derivativesin cancer cells[J]. Curr Drug Targets,2006, 7(4):407-21.
    [60] Singh N P, Lai H. Artemisinin induces apoptosis in human cancer cells [J]. Anticancer Res,2004,24(4):2277-2280.
    [61] Efferth T,Volm M.Glutathione-related enzymes contribute to resistance of tumor cells and low toxicity in normal organs to artesunate[J].In Vivo,2005,19(1):225-232.
    [62] Liang J , L i Y. Synthesis of the aryl ether derivatives of artemisinin [ J ]. Chin J Med Chem , 1996, 6: 22– 25.
    [63]李玉文,李英霞,张伟等.一锅法制备全乙酰吡喃溴代糖[J].有机化学,2004,20 (4): 438 - 439.
    [64]刘绪峰,官文超,程珍贤.6-氨基己酸及2-氨基乙磺酸C60加成物的合成及溶解性[J].有机化学,2005,25(6): 741-744.
    [65] Chevalier F.,Chobert J-M. and Popineru Y. et al. Improvement of Functional Properties ofβ–Lactoglobulin Glycated through the Maillard Reaction is Related to the nature of the Sugar[J].International Dairy Journal,2001,11:145-152.
    [66]刘铁梅,朱光泽,卜丽梅等.葡萄糖苯氮芥衍生物的合成及抗肿瘤活性的研究[J].中国实验诊断学,2007,11(8): 1011-1013.
    [67]董海鹰,宋维华,孙建平等.青蒿素对体外培养的HeLa细胞生长的影响[J].哈尔滨医科大学学报, 2002,36(6):423-427.
    [68]韩锐.抗癌药物研究与实验技术[M].北京:北京医科大学协和医科大学联合出版社,1997, 285.
    [69] Carmichael J, DeGraff W G, Gazdar A F, et al. Evaluation of a tetrazolium- basedsemiautomated colorimetric assay:assessment of radiosensitivity [J].Cancer Res,1987,47 (4):943-946.
    [70]李达,刘瑞萍,杨淑莲等.中医药诱导肿瘤细胞凋亡的可能性探讨[J].中国中西医结合杂志,1996,16(7):433.
    [71] Gong JP, Traganos F, Darzynkiewicz Z. A.Selective procedure for DNA extraction from apoptotic cells applicable for gel electrophoresis and flow cytometry[J].Anal Biochem,1994, 218:314-319.
    [72]龚峻梅.青蒿素及其衍生物的抗肿瘤作用[J].国际肿瘤学杂志,2007,34(2):101-104.
    [73]孙玮辰,韩家娴.四种青蒿酸及青蒿素B衍生物的体外抗癌作用[J].中国药理学报,1992,13(6):541-543.
    [74] LAI H, SINGH N P. Selsective cancer cells cytotoxiclty from exposure to dihydroartem- iasnin and holotransferrin [J]. Cancer Lett, 1995,91(1):41.
    [75] REUNGPATTHANAPHONG P, MANKHETKORN S. Modulation of multidrug resistance by artemisinin, artesunate and dihydroartemisinin in K562/adr and GLC4/adr resistant celllines [J]. Biol Pharm Bull,2002,25(12): 1555-1561.
    [76] Saleh M, Vaillanconrt JP, Graham RK et al. Differential modulation of endotoxin responsiv -eness by human caspase-12 polymorphisms[J].Nature,2004,429 (6987):75-79.
    [77] Hara I, Ichise N, Kojima K, et al. Relationship between the size of the bottle neck from ironin the main channel and the reactivity of catalase corresponding to the molecular size of substrates [J] .Biochemistry, 2007, 46 (1) :11-22.
    [78] Esders, T.W., R.J. Light. Occurrence of a uridine diphosphate glucose: sterol glucosyl transferase in Candida bogoriensis[J]. J Biol Chem, 1972, 247(23): 7494-7497.
    [79] Ullmann, M., W. Hemmer, A. Hannekum. The urgent pulmonary embolectomy: mechanical resuscitation in the operating theatre determines the outcome[J]. Thorac Cardiovasc Surg,1999, 47(1): 5-8.
    [80] Wojciechowski, K.V. Tretiakov, M. Kowalik. Elastic properties of dense solid phases of hard cyclic pentamers and heptamers in two dimensions[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2003, 67(3): 036121.
    [81] Wojciechowski, R. Age, gender, biometry, refractive error, and the anterior chamber angle among Alaskan Eskimos[J]. Ophthalmology,2003,110(2): 365-375.
    [82] Wojciechowski, M. Prediction of secondary ionization of the phosphate group in phosphotyrosine peptides[J]. Biophys J, 2003,84(2): 750-756.
    [83] Danieli, B. Regioselective enzymatic glycosylation of natural polyhydroxylated compounds: galactosylation and glucosylation of protopanaxatriol ginsenosides[J]. J Org Chem, 2001,66(1): 262-269.
    [84] Berteau, O. Alpha-L-fucosidases: exoglycosidases with unusual transglycosylation properties[J]. Biochemistry, 2004, 43(24): 7881-7891.
    [85] Berteau.O., R. Stenutz. Web resources for the carbohydrate chemist[J]. Carbohydr Res, 2004,339(5): 929-936.
    [86] Aisaka, K. The effect of occult hyperprolactinemia (OHP) on gonadotropin secretion system[J]. Nippon Naibunpi Gakkai Zasshi, 1994,70(10): 1101-1114.
    [87] Kaneko, S. Ca2+ channel inhibition by kappa opioid receptors expressed in Xenopus oocytes[J]. Neuroreport, 1994,5(18): 2506-2508.
    [88] Takeuchi, H. Fetal urine production at different gestational ages: correlation to various compromised fetuses in utero[J]. Early Hum Dev,1994,40(1): 1-11.
    [89] Daines, A.M., B.A. Maltman et al. Synthesis and modifications of carbohydrates, using biotransformations[J]. Curr Opin Chem Biol, 2004, 8(2): 106-113.
    [90] Hamilton, C.J. Enzymes in preparative mono- and oligo-saccharide synthesis[J]. Nat ProdRep, 2004,21(3): 365-385.
    [91] Kim, Y.W. Directed evolution of a glycosynthase from Agrobacterium sp. increases its catalytic activity dramatically and expands its substrate repertoire[J]. J Biol Chem, 2004,279(41): 42787-42793.
    [92] Chokephaibulkit, Pingwang B. Comparison of BACTEC automated blood culture system and conventional system in hospitalized pediatric patients[J]. J Med Assoc Thai, 1999, 82 (10):1011-1016.
    [93] Perugino, G.. Oligosaccharide synthesis by glycosynthases[J]. Trends Biotechnol, 2004,22(1): 31-37.
    [94] Watts, A.G., S.G. Withers. Glycosynthase-catalysed formation of modified polysaccharide microstructures[J]. Biochem J, 2004,380(3): 9-10.
    [95] Le Nours, J. The structure and characterization of a modular endo-beta-1,4-mannanase from Cellulomonas fimi[J]. Biochemistry, 2005,44(38): 12700-12708.
    [96] Hanzy, Pantazis P, Wyehe J H, etal. A Fas-assoeiated death domain protein-dependent meehanism mediates the aPoPtotieaetion of non-steroidal anti-infianunatory drug sinthehuman leukentie[J]. Jurkateellline. J Biol Chem, 2001, 276:38748-38754.
    [97] Yang L.Y.,Huang W.J.,Hsieh H.G.,et al.,H1-A extracted from Cordyceps sinensis suppresses the proliferation of human mesangial cells and promotes apoptosis,probably by inhibiting the tyrosine phosphorylation of Bcl-2 and Bcl-XL[J]..Journal of Laboratory and Clinical Medicine,2003,141(1):74-83.
    [98] Kuo Y.C.,Tsai W.J.,Wang J.Y.,et al.,Regulation of bronchoalveolar lavage fluids cell function by the immunomodulatory agents from Cordyceps sinensis[J].Life Sciences, 2001, 68 (9):1067-1082.
    [99] Koh J.H.,Yu K.W.,Suh H.J.,et al.,Activation of macrophages and the intestinal immune system by an orally administered decoction from cultured mycelia of Cordyceps sinensis[J].Biosci.Biotechnol.Biochem.2002,66(2): 407-411.
    [100]赵东利,谢小卫,李明众,等.姜黄素对S180小鼠体内抗肿瘤作用的实验研究[J].西安交通大学学报(医学版),28(1):70-73.
    [101]路景涛,魏伟,陈敏珠.青蒿素抗肿瘤作用的初步研究[J].安徽医药,2007,11(1):14-15.
    [102]郭燕,王俊,章必成,等.青蒿素对小鼠Lewis肺癌移植瘤生长和淋巴管生成的影响[J].第四军医大学学报, 2007, 28 (4):357-360.
    [103]韩锐.抗癌药物研究与实验技术[M] .北京:北京医科大学、中国协和医科大学联合出版社,1997.
    [104] DEICHMAN W B. Toxocology of drug and chemicals [M] . New York :AcademicPress ,1969.
    [105]徐叔云,卞如濂,陈修,等.药理实验方法学[M].北京:人民卫生出版社, 2001.
    [106]李明远,李燕,李婉宜,等. hTR-siRNA腺病毒对裸鼠人宫颈癌移植瘤的治疗作用[J].中国科技论文在线,http://www.paper.edu.cn.
    [107] D.A. Winkler. The role of quantitative structure-activity relation-ships (QSAR) in biomolecular discovery[J]. Brief. Bioinfom. 2002, 3: 73–86.
    [108] Winer H. Structural determination of paraffin boiling point[J]. J. Am. Chem. Soc. 1947, 69:2636-2641.
    [109] Hansch C, Fujita T.ρ-σ-πanalysis: a method for the correlation of biological activity and chemical structure[J]. J. Am. Chem. Soc. 1964, 86(8): 1616-1626.
    [110] Free S M, Wilson J B. A mathematical contribution to structure-activity studies[J]. J. Med. Chem. 1964, 7(4): 395-399.
    [111] Koga, H. Structure-activity relationships and drug design of the pyridonecarboxylic and type synthetic antibacterial agents, Chem[J]. Field, 1982, 126: 177-202.
    [112] Selassie C. D., Fang Z, X., Li R. L., et al. On the structure selectivity problem in drug design: A comparative study of benzylpyrimidine inhibition of vertebrate and bacterial dihydrofolate reductase via molecular graphics and quantitative structure-activity relationships[J]. J. Med. Chem, 1989, 32: 1895-2824.
    [113] Cramer R D, Patterson D E, Bunce J D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins[J]. J. Am. Chem. Soc. 1988, 110:5959-5967.
    [114] D. E. Walters, R. M. Hinds. Genetically evolved receptor models: a computational approach to construction of receptor models[J]. J. Med. Chem. 1994, 37:2527–2536.
    [115] A.J. Hopfinger, S. Wang, J.S. Tokarski, et al. Construction of 3D-QSAR models using 4D-QSAR analysis formalism[J]. J. Am. Chem. Soc. 1997, 119: 10509–10524.
    [116] A. Vedani, M. Dobler. Multidimensional QSAR: moving from three- to five-dimensional concepts[J]. Quant. Struct. -Act. Relat. 2002, 21: 382–390.
    [117] R.C. Wade, A.R. Oritz, F. Gago. Comparative binding energy analysis. Perspect[J]. Drug Discov. Des. 1998, 9: 19–34.
    [118] van Agtmael M A ,Eggelte T A ,van Boxtel CJ . Artemisinin drugs in the treatment of malaria :f rom medicinal herb to registered medication [J]. Trends Pharmacol Sci ,1999 ,20 (5) :199– 205.
    [119] Henry Lai ,Narendra P. Singh Selective cancer cell cytotoxicity f rom exposure to dihydroartemisinin and holot ransferrin[J]. Cancer Letters ,1995 ,1 (91) :41 - 46.
    [120] Singh N P ,Lai H. Selective toxicity of dihydroartemisinin and holot ransferrin toward human breast cancer cells[J]. Life Sci, 2001 ,70 (1) : 49 - 56.
    [121] Lai H ,Sasaki T ,Messay A ,et al. Effect s of artemisinin tagged holotransferrin on cancer cells [J]. Life Sci ,2005 ,76(11) :1267 -1279.
    [122]吴吉安,嵇汝运.青蒿素衍生物的油水分配系数与抗疟活性之间的Hansch分析[J].中国药理学报,1982,3: 55-61.
    [123]蒋华良,陈凯先,王红武等.用比较分子力场分析法研究青蒿素醚类和酯类衍生物的三维定量结构—活性关系[J].中国药理学报, 1994, 15: 6-16.
    [124] Wu W M, Wu Y, Wu Y L, et al. Unified Mechanistic Framework for the Fe(II)-Induced Cleavage of Qinghaosu and Derivatives/Analogues. The First Spin-Trapping Evidence for the Previously Postulated Secondary C-4 Radical[J]. J. Am. Chem. Soc.; (Article); 1998, 120(14):3316-3325.
    [125] Butler A.R., Gilbert B.C., Hulme P., et al. 1998. EPR evidence for the involvement of free radicals in the iron-catalysed decomposition of qinghaosu (artemisinin) and some derivatives; antimalarial action of some polycyclic endoperoxides[J]. Free Radic. Res. 2003,28: 471-476.
    [126] S Krishna, A-C Uhlemann, R K. Haynes. Artemisinins: mechanisms of action and potential for resistance[J]. Drug Resistance Updates. 2004, 7: 233-244.
    [127] Tonmunphean S, Parasuk V, Kokpol S. QSAR study of antimalarial activities and artemisinin-heme binding properties obtained from docking calculations[J]. Quant. Struct -Act. Relat. 2000, 19: 475-483.
    [128] Avery M A, Mehrotra S, Johnson T L.et al. Structure-activity relationships of the antimalarial agent artemisinin. 5. Analogs of 10-seoxoartemisinin substituted at C-3 and C-9[J]. J. Med. Chem. 1996, 39: 4149-4155.
    [129] J C Pinheiro, R Kiralj, M M C Ferre. Artemisinin Derivatives with Antimalarial Activity against Plasmodium falciparum Designed with the Aid of Quantum Chemical and Partial Least Squares Methods[J]. QSAR Comb. Sci. 2003, 22:830-842.
    [130] R Guha, P C Jurs. Development of QSAR Models To Predict and Interpret the Biological Activity of Artemisinin Analogues[J]. J. Chem. Inf. Comput. Sci. 2004, 44:1440-1449.
    [131] Yanrong Ren, Guoping Chen, Zongli Hu, etal. Applying Novel Three Dimensional Holographic Vector of Atomic Interaction Field to QSAR Studies on Artemisinin Derivatives[J].QSAR & Combinatorial Science, 2008, 27 (2):198-207.
    [132] P Zhou, F Tian, Z Li. Three dimensional holographic vector of atomic interaction field (3D-HoVAIF)[J]. Chemometrics and Intelligent Laboratory Systems. 2007, 87: 114-120.
    [133]仝建波,周鹏,张生万,等.三维全息原子场作用矢量用于HETP类抗艾滋病药物的QSAR研究[J].物理化学学报,2006, 22:721-725.
    [134] F Tian, P Zhou, F Lv, et al. Three-dimensional holograph vector of atomic interaction field (3D-HoVAIF): a novel rotation–translation invariant 3D structure descriptor and its applications to peptides[J]. J. Pept. Sci. 2007,13: 549–566.
    [135] L Xu, G. Liang, Z Li Zhi, et al.. Three-dimensional holographic vector of atomic interaction field for quantitative structure–activity relationship of Aza-bioisosteres of anthrapyrazoles (Aza-APs)[J]. Journal of Molecular Graphics and Modelling 2008, 26:1252-1258.
    [136]仝建波,周鹏,张生万,等.三维全息原子场作用矢量用于嘌呤衍生物定量结构保留相关的研究[J].科学通报, 2006, 51: 1-6.
    [137] Levitt M. Protein folding by restrained energy minimization and molecular dynamics[J]. J. Mol. Biol. 1983, 170:723-764.
    [138] Hahn M. Receptor surface models. 1. Definition and construction[J]. J. Med. Chem. 1995, 38:2080-2090.
    [139] Kellogg G E, Semus S F, Abraham D J. HINT—a new method of empirical hydrophobic field calculation for CoMFA[J]. J. Comput. -Aided Mol. Des. 1991, 5:545-552.
    [140] Hasel W, Hendrikson T F, Still W C. A rapid approximation to the solvent accessible surface areas of atoms[J]. Tetrahed. Comp. Method. 1988, 1:103-116.
    [141] Pei J, Wang Q, Zhou J, et al.. Estimating protein-ligand binding free energy: atomic solvation parameters for partition coefficient and solvation free energy calculation[J]. Proteins. 2004, 57:651-664.
    [142] Haynes R K, Vonwiller S C. From qinghao, marvelous herb of antiquity, to the antimalarial trioxane qinghaosu-and some remarkable new chemistry[J]. Acc. Chem. Res. 1997, 30:73-79.
    [143] layman D L. Qinghaosu (artemisinin): an antimalarial drug from China[J]. Science 1985, 228: 1049-1055.
    [144] Ye Z, Li Z, Li G, et al. Effects of qinghaosu and chloroquine on the ultrastructure of the. erythrocytic stage of P. falciparum in continuous. cultivation in vitro[J]. J Trad Chin Med 1983, 3:95-102.
    [145] Berman P A, Adams P A. Artemisinin enhances heme-catalysed oxidation of lipid membranes[J]. Free Radic BiolMed. 1997, 22(7): 1283-1288.
    [146] Butler A R, Gilbert B C, Hulme P, et al. EPR evidence for the involvement of free radicals in the iron-catalysed decomposition of qinghaosu (artemisinin) and some derivatives, antimalarial action of some polycyclic endoperoxides[J]. Free Radic Res. 1998, 28: 471-476.
    [147] Posner G H, Cumming J N , Ploypradith P, et al. Evidence for Fe(IV): O in the molecular mechanism of action of the trioxane antimalarial artemisinin[J]. J. Am. Chem. Soc. 1995,117:5885-5886.
    [148] Wu W M, Yao Z J , Wu Y l, et al. Ferrous ion induced cleavage of the peroxy bond in qinghaosu and its derivatives and the DNA damage associated with this process[J]. J. Chem. Soc. Chem. Comm. 1996, 2213-2214.
    [149] Wu W M, Wu Y K, Wu Y L, et al. Unified mechanistic framework for the Fe(II)-induced cleavage of qinghaosu and derivatives/analogues. The first spin-trapping evidence for the previously postulated secondary C-4 radical[J]. J. Am. Chem. Soc. 1998, 120: 3316-3325.
    [150] Lin A J, Klayman D L, Milhous W K. Antimalarial activity of new water-soluble dihydroartemisinin derivatives[J]. J. Med. Chem. 1987, 30:2147-2150.
    [151] Lin A J, Li L Q, Klayman D L, et al.. Antimalarial activity of new water-soluble dihydroartemisinin derivatives. 3. Aromatic amine analogs[J]. J. Med. Chem. 1990, 33:2610-2614.
    [152] Lin A J, Miller R E. Antimalarial activity of new dihydroartemisinin derivatives. 6. Alpha.-alkylbenzylic ethers[J]. J. Med. Chem. 1995, 38: 764-770.
    [153] Pu Y M, Torok D S, Ziffer H, et al. Synthesis and antimalarial activities of several fluorinated artemisinin serivatives[J]. J. Med. Chem. 1995, 38: 4120-4124.
    [154] Avery M A, Mehrotra S, Johnson T L, et al. Structure-activity relationships of the antimalarial agent artemisinin. 5. Analogs of 10-seoxoartemisinin substituted at C-3 and C-9[J]. J. Med. Chem. 1996, 39:4149-4155.
    [155] Avery M A, Alvim-Gaston M, Rodrigues C R, et al. Structure-activity relationships of the antimalarial agent artemisinin. 6. The development of predictive in vitro potency models using CoMFA and HQSAR methodologies[J]. J. Med. Chem. 2002, 45:292-303.
    [156] Shaanan B. The iron-oxygen bond in human oxyhaemoglobin[J]. Nature, 1982, 296, 683—684.
    [157] Hypercube Inc., HyperChem 7.5, 2004. www.hyper.com.
    [158] Morris G M, Goodsell D S, Huey R, et al. AutoDock Version 3.0, The Scripps Research Institute, Department of Molecular Biology, MB-5, LaJolla, California, USA.
    [159] Stewart J J P. MOPAC: A semiepirical molecular orbital program[J]. J. Comput.-Aided Mol. Des. 1990, 4:1-105.
    [160] Leonard J T, Roy K. On selection of training and test sets for the development of predictive QSAR models[J]. QSAR Comb. Sci. 2006, 25:235-251.
    [161] S?antai-Kis C, K?vesdi I, Kéri G, et al. Validation subset selections for extrapolation oriented QSPAR models[J]. Molecular Diversity, 2003, 7:37-43.
    [162] Gramatica P, Pilutti P, Papa E. Validated QSAR prediction of OH tropospheric degradation ofVOCs: splitting into training-test sets and consensus Modeling[J]. J. Chem. Inf. Comput. Sci. 2004,44:1794-1802.
    [163] Baroni M, Clement S, Cruciani G, et al. D-optimal designs in QSAR[J]. Quant. Struct. -Act. Relat. 1993, 12:225-231.
    [164] Aguiar P F, Bourguignon B, Khots M S, et al. D-optimal designs[J]. Chemometr. Intell. Lab. Syst. 1995, 30:199-210.
    [165] MathWorks Inc., Matlab 7.0, 2004. http://www.mathworks.com.
    [166] Golbraikh A, Tropsha A. Beware of q2[J].J. Mol. Graphics Mod. 2002, 20:269-276.
    [167] Tropsha A, Gramatica P, Gombar V K. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models[J]. QSAR Comb. Sci. 2003, 22:69-77.
    [168] H Mei, Z H. Lia, Y Zhou, et al. A New Set of Amino Acid Descriptors and Its Application in Peptide QSARs[J]. Biopolymers (Peptide Science), 2005, 80:775-786.
    [169] Umetrics Inc., SIMCA-P 10.0, 2002. http://www.umetrics.com.
    [170] Leardi R, González A L. Genetic algorithms applied to feature selection in PLS regression: how and when to use them[J]. Chemometr. Intell. Lab. Syst., 1998, 41:195-207.
    [171] Houck C R, Joines J, Kay M. A genetic algorithm for function optimization: a matlab I mplementation[J]. ACM Transactions on Mathmatical Software. 1996.
    [172] Eigenvector Research Inc., PLS Toolbox 3.0, 2003. http://www.eigenvector.com.
    [173] Wold S, Sj?str?m M, Eriksson L. PLS regression: a basic tool of chemometrics[J]. Chemometr. Intell. Lab. Syst., 2001, 58:109-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700