功能导向梯形聚苯的设计与合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梯形聚苯(LPPP)及其衍生物具有结构明确的刚性全共轭主链结构及一系列独特的光、电、热等方面性质,近年来这类材料在化学及物理相关领域都引起了广泛关注。LPPP被应用于光电领域的各类器件中,如电致发光器件、场效应晶体管、薄膜激光及光伏器件等。本论文以功能为导向设计并合成了几种具有新型结构的梯形聚苯,并对其光电性质进行了研究。工作主要包括以下几个方面:
     (1)将咔唑基团引入主链骨架结构中,提高了LPPP的空穴注入能力。由于全苯撑结构LPPP具有较低的HOMO能级,在电致发光过程中空穴的注入较难。我们将空穴注入与迁移能力较强的咔唑基团嵌入到LPPP的主链骨架结构中,成功制备了具有明确结构、高分子量、良好溶解性的含咔唑LPPP。电化学的分析表明含咔唑LPPP的HOMO能级相对于全苯撑结构的LPPP明显提高,空穴注入能力得到明显提升。
     (2)合成了具有热稳定性的螺芴-LPPP。由于梯形聚苯是一种主链由桥键连接的聚合物,桥键处易于发生氧化形成酮式缺陷,引起发光过程中的低能量发射。我们将具有高光/热稳定性的螺芴基元引入LPPP骨架结构中,合成了具有良好溶解性、主链由螺芴构筑的LPPP。该聚合物薄膜在空气条件下热处理结果表明120℃热退火24小时后,发射光谱依然稳定,聚合物材料表现出优异的热稳定性。
     (3)将环戊二噻吩(CPDT)引入LPPP主链骨架中,实现光谱的红移并研究其在光伏器件中的初步应用。梯形聚苯具有非常高的载流子迁移能力,由于材料的吸收光谱处于较高能量的吸收范围,与太阳光谱重叠较小,导致材料在光伏器件领域的应用受到限制。将CPDT基元引入到聚合物主链中,成功制备了一种具有良好溶解性,主链含有CPDT的梯形聚苯(LPPT)。LPPT的吸收光谱相对于经典的梯形聚苯明显红移,与受体材料PCBM进行1:1掺杂的光伏器件结果显示材料具有光伏器件中的潜在应用的价值。
Since the first synthesis of ladder-type poly (p-phenylene) (LPPP) by Scherf and Müllen in 1991, LPPP and its derivatives have received a great deal of attention as blue light emitting materials. LPPPs possess a rigid and fully conjugated backbone, exhibiting nice blue emission with high luminescence quantum yield. LPPP with its the two-dimensional ladder-type framework does not show any steric inhibition ofπ-electron delocalization due to the drastically reduced conformational freedom of the conjugated, ladder-type backbone. LPPP found various applications in fields such as polymer light-emitting diodes, field-effect transistors, plastic lasers and photovoltaic devices etc.
     Main problems in the applications of LPPP are the poor charge injection properties and the occurrence of an additional low energy emission component during the operation of organic light emitting diodes (OLEDs) or after heat treatment. This thesis containing three parts; the first two parts are focused on design and synthesis of two novel LPPPs which contribute in solving the problem of charge injection and unwanted low energy emissions. In the last part, we describe the generation of a new ladder-type polyarylene containing cyclopentadithiophene moieties which shows a red-shift of absorption/emission and may be used as donor component of organic photovoltaic device.
     (1) One effective route to overcome the poor charge injection in conjugated ladder polymers of the LPPP-type is the incorporation of carbazole units into the polymer backbone, due to the electron-donating capabilities associated to the nitrogen of the carbazole units. In the first part of the thesis, we describe a soluble ladder-type conjugated polymer (LPFC) with N-alkyl-2,7-carbazole units in the polymer backbone. The N-alkyl-2,7-carbazole monomers are prepared by nitration of dibromobiphenyl followed by a ring closure reaction to carbazole. The ladder polymer LPFC is prepared in a reaction sequence involving a Suzuki-type cross coupling reaction, a carbonyl reduction and subsequent ring closing to form the final ladder-type polymers. The structural characterization of LPFC and its optical and electroluminescence properties are presented. LPFC shows high molecular weight, excellent thermal stability, and good solubility in common organic solvents. It presents a blue photoluminescence (PL,λmax=465 nm) with high PL efficiency (70%). Electrochemical analysis for LPFC gave an increased HOMO level of -5.29 eV if compared to the reference LPPP (-5.5 eV) thus indicating an improved charge injection ability from ITO or PEDOT anodes. A single layer light-emitting device using LPFC as the active layer showed blue light emission (λmax=470 nm) (CIE coordinates: 0.18, 0.34) with high maximum luminescence of ~ 2000 cd/m2 and maximum luminance efficiency of 0.43 cd/A, The blue light emission is obtained with a low turn-on voltage of 4 V. These attractive properties characterize LPFC as promising material for polymer-based optical and electrooptical devices.
     (2) One very effective attempt to inhibit the unwanted low-energy emission component of LPPP-type polymers is the generation of a ladder backbone composed of spirobifluorene units. Spirobifluorene contains two biphenylene units connected via a tetrahedrally carbon. In this chapter we report a simple way to synthesize spiro-LPPP that is thoroughly composed of spirobifluorene building blocks. The route involves only two steps: a single-stranded precursor polymer containing bis(biphenyl-2-oyl)benzene building blocks is made in a Suzuki-type coupling reaction, followed by a subsequent two-fold cyclization cascade using methanesulfonic acid to form the target spiro-LPPP. The PL spectra of the spiro-LPPP in THF solution and thin film, respectively, indicate spiro-LPPP as a promising blue light emitting material with the main emission band peak at 455 and 456 nm, respectively. Spiro-LPPP shows a high PL quantum yield of 94% in THF solution. Annealing a thin film of spiro-LPPP to 120 oC in air for 3 to 24 hours its emission spectra keep unchanged thus reflecting an excellent thermooxidative stability of spiro-LPPP. Spiro-LPPP is a good candidate for realization of a stable blue light emitting in OLEDs and polymer lasers.
     (3) LPPP with rigid and fully planar conjugated backbone shows a relatively high charge carrier (especially hole) mobility of up to 2×10-3 cm2V-1s-1 in the bulk and up to 600 cm2 V-1s-1 for single polymer chains. However, the use as active material in organic solar cells is hindered by the large mismatch with the solar spectrum. To improve the absorption properties of LPPP-type ladder polymers, we have introduced bridged bithiophene building block (cyclopentadithiophene, CPDT) into the ladder-type polymer backbone. The new CPDT-based ladder polymers are generated in a sequence involving a Still-type cross coupling reaction, carbonyl reduction and subsequent ring closure to form the ladder-type framework. The new LPPP containing CPDT units (LPPT) displays a distinct red-shift the UV-Vis absorption (λmax= 525 nm) and PL (red emission,λmax= 582 nm) as well as a lower band-gap energy of 2.03 eV when compared with the corresponding all-phenylene ladder polymer LPPP (-5.5 eV). First bulk heterojuction-type photovoltaic devices with the LPPT/PCBM couple (1:1) as active blend showed a power conversion efficiency under white light illumination of 0.15% without optimization of blend composition and morphology. The promising properties of LPPT qualify it as a potential candidate for application as donor polymer in bulk heterojunction-type organic photovoltaic devices.
引文
[1] Burroughes J H, Bradley D D C, Brown A R, Marks R N, MacKay K, Friend R H, Burns P L, Holmes A B. Light-Emitting Diodes Based on Conjugated Polymers. Nature, 1990, 347: 539.
    [2] Grem G, Leditzky G, Ullrich B, Leising G. Realization of a Blue-Light-Emitting Device Using Poly(p-phenylene). Adv. Mater., 1992, 4: 36.
    [3] Rehahn M, Schlüter A-D, Wegner G, Feast W J. Soluble Poly(p-phenylene)s. 1. Extension of the Yamamoto Synthesis to Dibromobenzenes Substituted with Flexible Side Chains. Polymer, 1989, 30: 1054.
    [4] Jing W-X, Kraft A, Moratti S C, Grüner J, Cacialli F, Hamer P J, Holmes A B, Friend R H. Synthesis of a Polyphenylene Light-Emitting Polymer. Synth. Met., 1994, 67: 161.
    [5] CimrováV, Remmers M, Neher D, Wegner G. Polarized Light Emission from LEDs Prepared by the Langmuir-Blodgett Technique. Adv. Mater., 1996, 8: 146.
    [6] Scherf U, Müllen K. Polyarylenes and Poly(arylenevinylenes), 7 A Soluble Ladder Polymer via Bridging of Functionalized Poly(p-phenylene)-Precursors. Makromol. Chem., Rapid Commun., 1991, 12: 489.
    [7] Scherf U, Müllen K. The Synthesis of Ladder Polymers. Adv. Polym. Sci., 1995, 123, P. 1.
    [8] Scherf U. Conjugated Ladder-Type Structures, in: Handbook of conducting Polymers, Second Edition, eds. T. Skotheim, R. L. Elsenbaumer and J. R. Reynolds, Marcel Dekker, New York, Basel, Hong Kong, 1998, Chapter 14, p. 363.
    [9] Schlüter A-D. Ladder Polymers: The New Generation. Adv. Mater., 1991, 3: 282.
    [10] Kohnke F H, Slawin A M Z, Stoddart J F, Williams D J. Gürtel- und Kragenmoleküle: Ein Hexaepoxyoctacosahydro [12] cyclacen. Angew. Chem., 1987, 99: 941; Molecular Belts and Collars in the Making: A Hexaepoxyoctacosahydro[12]cyclacene Derivative. Angew. Chem., Int. Ed. Engi., 1987, 26: 892.
    [11] Ashton P R, Isaacs N S, Kohnke F H, Mathias J P, Stoddart J F. Sterisch Einheitliche Oligomerisierung Durch Repetitive Diels-Alder-Reaktionen Angew. Chem., 1989, 101: 1266; Stereoregular Oligomerization by Repetitive Diels-Alder Reactions Angew. Chem., Int. Ed. Engl., 1989, 28: 1258.
    [12] L?ffler M, Schlüter A–D, Gessner K, Saenger W, Toussaint J–M, Brédas J–L. Synthesis Eines Vollst?ndig Unges?ttigten“Molekularen Brettes”. Angew. Chem., 1994, 106: 2281; Synthesis of Fully Unsaturated“Molecular Board”Angew. Chem., Int. Ed. Engl., 1994, 33: 2209.
    [13] Overberger C G, Moore J A., Ladder Polymers, in: Adv. Polym. Sci., Vol. 7, 1970, p. 113.
    [14] Arnold F E, Van Deussen R L. Preparation and Properties of High Molecular Weight, Soluble Oxobenz[de]imidazobenzimidazoisoquinoline Ladder Polymer. Macromolecules, 1969, 2: 497.
    [15] Arnold F E, van Deussen R L. Unusual Film-Forming Properties of Aromatic Heterocyclic Ladder Polymers. J. Appl. Polym. Sci., 1971, 15: 2035.
    [16] Yu L, Chen M, Dalton L R. Ladder Polymers: Recent Developments in Synthesis, Characterization, and Potential Applications as Electronic and Optical Materials. Chem. Mater., 1990, 2: 649.
    [17] Leopold D J, Brown I M, Sandreczki T C. Electronic States Induced by Ion Irradiation in A Conjugated Ladder Polymer. Synth. Met., 1996, 78: 67.
    [18] Jenekhe S A, Tibbets S J. Ion Implantation Doping and Electrical Properties of High-Temperature Ladder Polymers. J. Polym. Sci., Polym. Phys., 1988, 26: 201.
    [19] Stille J K, Mainen E L. Thermally Stable Ladder Polyquinoxalines. Macromolecules, 1968, 1: 36.
    [20] Okada M, Marvel C S. Polymers with Quinoxaline Units. III. Polymers with Quinoxaline and Thiazine Recurring Units. J. Polym. Sci. A-1, 1968, 6: 1259.
    [21] Wolf R, Okada M, Marvel C S. Polymers with Qunoxaline Units. IV. Polymers with Quinoxaline and Oxazine Units. J. Polym. Sci. A-1, 1968, 6: 1503.
    [22] Jadamus H, De Schryver F, De Winter W, Marvel C S. Model Compounds and Polymers with Quinoxaline Units. J. Polym. Sci. A-1, 1966, 4: 2831.
    [23] Yu L P, Dalton L R. Synthesis and Characterization of New Electroactive Polymers. Synth. Met., 1989, 29: 463.
    [24] Yu L P, Dalton L R. Synthesis and Characterization of New Polymers Exhibiting Large Optical Nonlinearities. I. Ladder Polymers from 3,6-disubstituted 2,5-dichloroquinone and Tetraaminobenzene. Macromolecules, 1990, 23: 3439.
    [25] Freund T, Scherf U, Müllen K. Soluble, Hight Molecular Weight Ladder Polymers Possessing a Poly(phenylenesulfide) Backbone. Macromolecules, 1995, 28: 547.
    [26] Freund T, Scherf U, Müllen K. Leiterpolymere mit Heteroacen-Gerüst Angew. Chem., 1994, 106: 2547; Ladder Polymers with a Heteroacene Skeleton. Angew. Chem., Int. Ed. Engl., 1994, 33: 2424.
    [27] Scherf U. A Soluble Polymer with 6, 12-Dihydroindeno[1,2-b]fluorene-6,12-diylidene Substructures. Makromol. Chem. Rapid Commun., 1993, 14: 575.
    [28] Chmil K, Scherf U. Conjugated all-Carbon Ladder Polymers: Improved Solubility and molecular Weights. Acta Polym., 1997, 48: 208.
    [29] Kirstein S, Cohen G, Davidov D, Scherf U, Klapper M, Chmil K, Müllen K. Transient and DC Electroluminescence of Some New Conjugated Polymers. Synth. Met., 1995, 69: 415.
    [30] Goldfinger M B, Swager T M. Fused Polycyclic Aromatics via Electrophile-Induced Cyclization Reactions: Application to the Synthesis of Graphite Ribbons. J. Am. Chem. Soc., 1994, 116: 7895.
    [31] Tour J M, Lamba J S S. Synthesis of Planar Poly(p-phenylene) Derivatives for Maximization of Extended pi- Conjugation. J. Am. Chem. Soc., 1993, 115: 4935.
    [32] Lamba J S S, Tour J M. Imine-Bridged Planar Poly(p-phenylene) Derivatives for Maximization of Extended pi-Conjugated. The Common Intermediate Approach. J. Am. Chem. Soc., 1994, 116: 11723.
    [33] McCullough R D. The Chemistry of Conducting Polythiophenes. Adv. Mater., 1998, 10: 93.
    [34] Schlüter A-D. Synthesis of poly(p-phenylene)s, in : Handbook of Conducting polymers, Second Edition, eds. T. Skotheim, R. L. Elsenbaumer and J. R. Reynolds, Marcel Dekker, New York, Basel, Hongkong, 1998, Chapter 8, P. 209
    [35] Schlüter A-D. Palladium and Nickel Catalyzed Polycondensation-The Key to Structurally Defined Polyarylenes and Other Aromatic Polymers. Acta Polym., 1993, 44: 59.
    [36] Scherf U, Müllen K. Novel Conjugated Polymers—Tuning Optical Properties by Synthesis and Processing, in: ACS Symposium Series, Vol. 672: Photonic and Optoelectronic Polymers, eds. S. A. Jenekhe, K. J. Wynne, ACS, Washington, DC, 1997, Chapter 24, P. 358.
    [37] Hickl P. Ballauf M, Scherf U, Müllen K, Lindner P. Characterization of a Ladder Polymer by Small-Angle X-ray and Neutron Scattering. Macromolecules, 1997, 30: 273.
    [38] Gans C, Schnee J, Scherf U, Staikos G, Pierri E, Dondos A. Viscometric Determination of the Statistical Segment Length of Wormlike Polymers. Polymer, 1998, 39: 4155.
    [39] Galda P, Kirstner D, Martin A, Ballauff M. Characterization and Analysis of the Phase Behavior of Poly(1,4-phenylene 2,5-di-n-alkoxyterephthalates). Macromolecules, 1993, 26: 1595.
    [40] Schmitz L, Ballauf M. Characterization of a Stiff-Chain Polyimide in Solution. Polymer, 1995, 36: 879.
    [41] Lemmer U, Heun S, Mahrt R F, Scherf U, Hopmeier M, Siegner U, G?bel E O, Müllen K, B?ssler H. Aggregate Fluorescence in Conjugated Polymers. Chem. Phys. Lett., 1995, 240: 373.
    [42] Lemmer U, Heun S, Mahrt R F, Scherf U, Hopmeier M, Siegner U, G?bel E O, Müllen K, B?ssler H. Aggregate Fluorescence in Conjugated Polymers. Chem. Phys. Lett., 1995, 240: 373.
    [43] Graupner W, Eder S, Tasch S, Leising G, Lanzani G, Nisoli M, de Silvestri S, Scherf U. J. Fluorescence, 1995, 7: 195s.
    [44] Mahrt R F, Pauck T, Lemmer U, Siegner U, Hopmeier M, Hennig R, B?ssler H, G?bel E O, Haring Bolivar P, Wegmann G, Kurz H, Scherf U, Müllen K. Dynamics of Optical Excitations in a Ladder-Typeπ-Conjugated Polymer Containing Aggregate States. Phys. Rev. B, 1996, 54: 1759.
    [45] Scherf U, Bohnen A, Müllen K. Makromol. Chem., 1992, 193: 1127.
    [46] Stampfl J, Graupner W, Leising G, Scherf U. J. Lumin., 1995, 63: 117.
    [47] Tasch S, NIko A, Leising G, Scherf U. Highly Efficient Electroluminescence of New Wide Band Gap Ladder-Type Poly(para-phenylenes). Appl. Phys. Lett., 1996, 68: 1090.
    [48] Grozeema F C, van Duijnen P T, Berlin Y A, Ratner M A, Siebbeles L D A. Intramolecular Charge Transport along Isolated Chains of Conjugated Polymers: Effect of Torsional Disorder and Polymerization Defects. J. Phys. Chem. B, 2002, 106: 7791.
    [49] Hertel D, B?ssler H, Scherf U, Charge Carrier Mobility in a Ladder-Type Conjugated Polymer. Adv. Mater., 1998, 10: 1119.
    [50] Prins P, Grozema F C, Schins J M, Savenije T J, Patil S, Scherf U, Siebbeles L D A. Effect of Intermolecular Disorder on the Intrachain Charge Transport in Ladder-Type Poly(p-phenylenes). Phys. Rev. B, 2006, 73: 045204.
    [51] Prins P, Grozema F C, Schins J M, Patil S, Scherf U, Siebbeles L D A. High Intrachain Hole Mobility on Molecular Wires of Ladder-Type Poly(p-phenylenes). Phys. Rev. Lett., 2006, 96: 146601.
    [52] Kraft A, Grimsdale A C, Holmes A B. Electroluminescent Conjugated Polymers– Seeing Polymers in a New Light. Angew. Chem., Int. Ed. Engl., 1998, 37: 402.
    [53] Friend R H, Gymer R W, Holmes A B, Burrroughes J H, Marks R N, Taliani C, Bradley D D C, dos Santos D A, Bredas J L, L?glund M, Salaneck W R. Electroluminescence in Conjugated Polymers. Nature, 1999, 397: 121.
    [54] Grüner J, Wittmann H F, Hamer P J, Friend R H, Huber J, Scherf U, Müllen K, Moratti S C, Holmes A B. Electroluminescence and Photoluminescence Investigations of the Yellow Emission of Devices Based on Ladder-Type Oligo(para-phenylene)s. Synth. Met., 1994, 67: 181.
    [55] Tasch S, List E J W, Ekstr?m O, Leising G, Quante H, Geerts Y, Scherf U, Müllen K. Efficient White Light-Emitting Diodes Realized with New Processable Blends of Conjugated Polymers. Appl. Phys. Lett., 1997, 71: 2883.
    [56] Ruhstaller B, Scott J C, Brock P J, Scherf U, Carter S A. Bias-Tuned Reduction of Self-Absorption in Polymer Blend Electroluminescence. Chem. Phys. Lett., 2000, 317: 238.
    [57] Yang X H, Neher D, Scherf U, Bagnich S A, B?ssler H. Polymer Electrophosphorescent Devices Utilizing a Ladder-Type Poly(para-phenylene) Host. J. Appl. Phys., 2003, 93: 4413.
    [58] Graupner W, Leising G, Lanzani G, Nisoli M, de Silvestri S, Scherf U. Femtosecond Relaxation of Photoexcitations in a Poly(para-phenylene)-Type Ladder Polymer. Phys. Rev. Lett., 1996, 76: 847.
    [59] Graupner W, Leising G, Lanzani G, Nisoli M, de Silvestri S, Scherf U. Femtosecond Relaxation of Photoexcitations in a Solution of a Poly(para-phenylene)-Type Ladder Polymer. Chem. Phys. Lett., 1995, 246: 95.
    [60] Pauck T, Hennig R, Perner M, Lemmer U, Siegner U, Mahrt R F, Scherf U, Müllen K, B?ssler H, G?bel E O. Femtosecond Dynamics of Stimulated Emission and Photoinduced Absorption in a PPP-Type Ladder Polymer. Chem. Phys. Lett., 1995, 244: 171.
    [61] Zenz C, Graupner W, Tasch S, Leising G, Müllen K, Scherf U. Blue Green Stimulated Emission From a High Gain Conjugated Polymer. Appl. Phys. Lett., 1997, 71: 2566.
    [62] Kranzelbinder G, Nisoli M, Stagira S, de Sivestri S, Lanzani G, Müllen K, Scherf U, Graupner W, Leising G. Cooperative Effects in Blue Light Emission of Poly-(para-phenylene)-type Ladderpolymer. Appl. Phys. Lett., 1997, 71: 2725.
    [63] Haugeneder A, Hilmer M, Kallinger C, Perner M, Spirkl W, Lemmer U, Feldmann J, Scherf U. Mechanism of Gain Narrowing in Conjugated Polymer Thin Films. Appl. Phys. B, 1998, 66: 389.
    [64] Haugeneder A, Neges M, Kallinger C, Spirkl W, Lemmer U, Feldmann J, Scherf U. Nonlinear Emission and Recombination in Conjugated Polymer Waveguides. J. Appl. Phys., 1999, 85: 1124.
    [65] K?hler A, Grüner J, Friend R H, Müllen K, Scherf U. Photocurrent Measurements on Aggregates in Ladder-Type Poly(p-phenylene). Chem. Phys. Lett., 1995, 243: 456.
    [66] Kallinger C, Haugeneder A, Lemmer U, Feldmann J, Hong H, Tarabia M, Daviov D, Harth E, Walter M, Scherf U, Gügel A, Müllen K. Self-Aseembly of Fullerene Monolayers for Optoelectronic Applications, in: Molecular Nanostructures, eds. Kuzmany H, Fink J, Mehring M and Roth S. World Scientific Publishing Company, 1998, p. 515.
    [67] Waldauf C, Graupner W, Tasch S, Leising G, Gügel A, Scherf U, Kraus A, Walter M, Müllen K. Opt. Mater., 1998, 9: 449.
    [68] Kocher M, D?ubler T K, Harth E, Scherf U, Gügel A, Neher D. Photoconductivity of an Inorganic/Organic Composite Containing Dye-Senstized Nanocrystalline Titanium Dioxide. Appl. Phys. Lett., 1997, 72: 650.
    [69] Scherf U, List E J W. Semiconducting Polyfluorenes-Towards Reliable Structure-Property Relationships. Adv. Mater., 2002, 14: 477.
    [70] Scherf U. Ladder-type Materials. J. Mater. Chem., 1999, 9: 1853.
    [71] Kreyenschmidt M, Klaerner G, Fuhrer T, Ashenhurst J, Karg S, Chen W D, Lee V Y, Scott J C, Miller R D. Thermal Stable Blue-Light-Emitting Copolymers of Poly(alkylfluorene). Macromolecules, 1998, 31: 1099.
    [72] Lee J I, Kl?rner G, Miller R D. Oxidative Stability and Its Effects on the Photoluminescence of Poly(fluorene) Derivatives: End Group Effects. Chem. Mater., 1999, 11: 1083.
    [73] CimrováV, Scherf U, Neher D. Microcavity Devices Based on a Ladder-Type Poly(p-phenylene) Emitting Blue, Green and Red Light. Appl. Phys. Lett., 1996, 69: 608.
    [74] Bliznyuk V N, Carter S A, Scott J C, Kl?rner G, Miller R D, Miller D C. Electrical and Photoinduced Degradation of Polyfluorene Based Films and Light-Emitting Devices. Macromolecules, 1999, 32: 361.
    [75] Gaal M, List E J W, Scherf U. Excimers or Emissive On-Chain Defects?. Macromolecules, 2003, 36: 4236.
    [76] Lupton J M. On-Chain Defect Emission in Conjugated Polymers-Comment on‘Exciton dissociation dynamics in a conjugated polymer containing aggregate states’[A. Haugeneder, U. Lemmer, U. Scherf, Chem. Phys. Lett.351 (2002) 354]. Chem. Phys. Lett., 2002, 365: 366.
    [77] Zhao W, Cao T, White J M. On the Origin of Green Emission in Polyfluorene Polymers: the Roles of Thermal Oxidation Degradation and Crosslingking. Adv. Funct. Mater., 2004, 14: 783.
    [78] List E J W, Guentner R, Scandiucci de Freitas P, Scherf U. The Effect of Keto Defect Sites on the Emission Properties of Polyfluorene-Type Materials. Adv. Mater., 2002, 14: 374.
    [79] Jacob J, Sax S, Piok T, List E J W, Grimsdale A C, Müllen K. Ladder-Type Pentaphenylenes and Their Polymers: Efficient Blue-Light Emitters and Electron-Accepting Materials via a Common Intermediate. J. Am. Chem. Soc., 2004, 126: 6987.
    [80] Ego C, Grimsdale A C, Uckert F, Yu G, Srdanov G, Müllen K. Triphenylamine-subtituted Polyfluorene- A Stable Blue-emitter with Improved Charge Injection for Light-emitting Diodes. Adv. Mater., 2002, 14: 809.
    [81] Hale G D, Jackson J B, Shmakova O E, Lee T R, Halas N J. Enhancing the Active Lifetime of Luminescent Semiconducting Polymers via Doping with Metal Nanoshells. Appl. Phys. Lett., 2001, 78: 1502.
    [82] Lim Y T, Lee T W, Lee H C, Park O O. Impediment of Photo-oxidation in PPV Nanocomposites Doped by Metal-coated Silica Nanoparticles. Synth. Met., 2002, 128: 133.
    [83]吕凤婷,郑海荣,房喻.表面增强荧光研究进展.化学进展, 2007, 19: 256.
    [84] Park J H, Lim Y T, Park O O, Kim J K, Yu J-W, Kim Y C. Polymer/gold Nanoparticle Nanocomposite Light-emitting diodes: Enhancement of Electroluminescence Stability and Quantum efficiency of Blue-light-emitting Polymers. Chem. Mater., 2004, 16: 688.
    [85] Grisorio R, Suranna G P, Mastrorilli P, Nobile C F. Insights into the Role of the Oxidation on theThermally Induced Green Band in Fluorene-Based Systems. Adv. Funct. Mater., 2007, 17: 538.
    [86] Cho S Y, Grimsdale A C, Jones D J, Watkins S E, Holmes A B. Polyfluorenes without Monoalkylfluorene Defects. J. Am. Chem. Soc., 2007, 129: 11910.
    [87] Miteva T, Meisel A, Knoll W, Nothofer H G, Scherf U, Müller D C, Meerholz K, Yasuda A, Neher D. Improving the Performance of Polyfluorene-Based Organic Light-Emitting Diodes via End-Capping. Adv. Mater., 2001, 13: 565.
    [88] Keivanidis P E, Jacob J, Oldridge L, Sonar P, Carbonnier B, Baluschev S, Grimsdale A C, Müllen K, Wegner G. Photophysical Characterization of Light-emitting Poly (indenofluorene)s. ChemPhysChem, 2005, 6: 1650.
    [89] Jacob J, Sax S, Gaal M, List E J W, Grimsdale A C, Müllen K. A Fully Aryl-substituted Poly(ladder-type pentaphenylene): a Remarkably Stable Blue-light-emitting Polymer. Macromolecules, 2005, 38: 9933.
    [90] Wu Y G, Li J, Fu Y Q, Bo Z S. Synthesis of Extremely Stable Blue Light Emitting Poly(spirobifluorene)s with Suzuki Polycondensation. Org. Lett., 2004, 6: 3485.
    [91] Wu Y G, Zhang J Y, Bo Z S. Synthesis of Monodisperse Spiro-bridged Ladder-type Oligo-p-phenylenes. Org. Lett., 2007, 9: 4435.
    [92] Morin J-F, Leclerc M. Syntheses of Conjugated Polymers Derived from N-Alkyl-2,7-carbazoles. Macromolecules, 2001, 34: 4680.
    [93] Wakim S, Bouchard J, Simard M, Drolet N, Tao Y, Leclerc M. Organic Microelectronics: Design, Synthesis, and Characterization of 6, 12- Dimethylindolo[3,2-b]Carbazoles. Chem. Mater., 2004, 16: 4386.
    [94] Bouchard J, Wakin S, Leclerc M. Synthesis of Diindolocarbazoles by Cadogan Reaction : Route to Ladder Oligo(p-aniline)s. J. Org. Chem., 2004, 69: 5705.
    [95] Wakin S, Bouchard J, Blouin N, Michaud A, Leclerc M. Synthesis of Diindolocarbazoles by Ullmann Reaction : A Rapid Route to Ladder Oligo (p-aniline)s. Org. Lett., 2004, 6: 3413.
    [96] Sonntag M, Strohriegl P. Novel 2,7-Linked Carbazole Trimers as Model Compounds for Conjugated Carbazole Polymers. Chem. Mater., 2004, 16: 4736.
    [97] Iraqi A, Wataru I. Preparation and Properties of 2,7-Linked N-Alkyl-9H-carbazole Main-Chain Polymers. Chem. Mater., 2004, 16: 442.
    [98] Morin J–F, BeaupréS, Leclerc M, Lévesque I, D’lorio M. Blue Light-Emitting Devices from New Conjugated Poly(N-substituted-2,7-carbazole) Derivatives. Appl. Phys. Lett., 2002, 80: 341.
    [99] Zotti G, Schiavon G, Zecchin S, Morin J-F, Leclerc M. Electrochemical, Conductive, and Magnetic Properties of 2,7-Carbazole-Based Conjugated Polymers. Macromolecules, 2002, 35: 2122.
    [100] Patil S A, Scherf U, Kadashchuk A. New Conjugated Ladder Polymer Containing Carbazole Moieties. Adv. Funct. Mater., 2003, 13: 609.
    [101] Dierschke F, Grimsdale A C, Müllen K. Novel Carbazole-Based Ladder- Type Polymers for Electronic Applications. Macromol. Chem. Phys., 2004, 205: 1147.
    [102] Pei Q B, Yang Y. Efficient Photoluminescence and Electroluminescence from a Soluble Polyfluorene. J. Am. Chem. Soc., 1996, 118: 7416.
    [103] Bernius M T, Inbasekaran M, O’Brien J, Wu W S. Progress with Light-Emitting Polymers. Adv. Mater., 2000, 12: 1737.
    [104] Sudhakar M, Djurovich P I, Hogen-Esch T E, Thompson M E. Phosphorescence Quenching By Conjugated Polymers. J. Am. Chem. Soc., 2003, 125: 7796.
    [105] Katsis D, Geng Y H, Ou J J, Culligan S W, Trajkovska A, Chen S H, Rothberg L J. Spiro-Linked Ter-, Penta-, and Heptafluorenes as Novel Amorphous Materials for Blue Light Emission. Chem. Mater., 2002, 14: 1332.
    [106] Wu Y G, Zhang J Y, Fei Z P, Bo Z S. Spiro-Bridged Ladder-Type Poly(p-phenylene)s: Towards Structurally Perfect Light-Emitting Materials. J. Am. Chem. Soc., 2008, 130: 7192.
    [107] Forster M, Annan K O, Scherf U. Conjugated Ladder Polymers Containing Thienylene Units. Macromolecules, 1999, 32: 3159.
    [108] Grem G, Leising G. Electroluminescence of‘wide-bandgap’chemically tunable cyclic conjugated polymers. Synth. Met., 1993, 55-57: 4105.
    [109] Tasch S, Hochfilzer C, List E J W, Leising G, Quante H, Geerts Y, Schlichting P, Rohr U, Scherf U, Müllen K. Efficient red- and orange-light-emitting diodes realized by excitation energy transferfrom blue-light-emitting conjugated polymers. Phys. Rev. B., 1997, 56: 4479.
    [110] Kallinger C, Hilmer M, Haugeneder A, Perner M, Spirkl W, Lemmer U, Scherf U, Müllen K, Gombert A, Wittwer V. A Flexible Conjugated Polymer Laser. Adv. Mater., 1998, 10: 920.
    [111] Schweitzer B, Wegmann G, Giessen H, Hertel D, B?ssler H, Mahrt R F, Scherf U, Müllen K. The optical gain mechanism in solid conjugated polymers. Appl. Phyl. Lett., 1998, 72: 2933.
    [112] Romanovskii Y V, Gerhard A, Schweitzer B, Personov R I, B?ssler H. Delayed luminescence of the ladder-type methyl-poly(para-phenylene). Chem. Phys., 1999, 249: 29.
    [113] Lupton J M, Pogantsch A, Piok T, List E J W, Patil S, Scherf U. Intrinsic Room-Temperature Electrophosphorescence from aπ-Conjugated Polymer. Phys. Rev. Lett., 2002, 89: 167401.
    [114] Qiu S, Liu L L, Wang B L, Shen F Z, Zhang W, Li M, Ma Y G. Facile Synthesis of Carbazole-Containing Semiladder Polyphenylenes for Pure-Blue Electroluminescence. Macromolecules, 2005, 38: 6782.
    [115] Sonntag M, Strohriegl P. Chem. Mater., 2004, 16: 4736.
    [116] Wakin S, Bouchard J, Simard M, Drolet N, Tao Y, Leclerc M. Chem. Mater., 2004, 16: 4386.
    [117] Bouchard J, Wakin S, Leclerc M. J. Org. Chem., 2004, 69: 5705.
    [118] Wakin S, Bouchard J, Blouin N, Michaud A, Leclerc M. Org. Lett., 2004, 6: 3413.
    [119] Iraqi A, Wataru I. Chem. Mater., 2004, 16: 442.
    [120] Dierschke F, Grimsdale A C, Müllen K. Efficient Synthesis of 2,7-Dibromocarbazoles as Components for Electroactive Materials. Synthesis, 2003, 16: 2470.
    [121]《实用红外光谱解析》,石油工业出版社,1982.
    [122] Huber J, Müllen K, Salbeck J, Schenk H, Scherf U, Stehlin T, Stern R. Blue Light-Emitting Diodes Based on Ladder Polymers of the PPP Type. Acta Polym., 1999, 45: 244-247.
    [123] Stampfl J, Tasch S, Leising G, Scherf U. Quantum Efficiencies of Electroluminescent Poly(para-phenylenes). Synth. Met., 1995, 71: 2125-2128.
    [124] Romaner L, Heimel G, Wiesenhofer H, de Freitas P S, Scherf U, Brédas J-L, Zojer E, List E J W. Ketonic Defects in Ladder-Type Poly(p-phenylene)s. Chem. Mater., 2004, 16: 4667-4674.
    [125] Liu L L, Tang S, Liu M R, Xie Z Q, Zhang W, Lu P, Hanif M, Ma Y G. Photodegradation of Polyfluorene and Fluorene Oligomers with Alkyl and Aromatic Disubstitutions. J. Phys. Chem. B, 2006, 110: 13734-13740.
    [126] Ranger M, Rondeau D, Leclerc M. New Well-Defined Poly(2,7-fluorene) Derivatives: Photoluminescence and Base Doping. Macromolecules, 1997, 30: 7686
    [127] Wu F-I, Dodda R, Reddy D S, Shu C–F. Synthesis and Characterization of Spiro-Linked Poly(terfluorene): a Blue-Emitting Polymer with Controlled Conjugated Length. J. Mater. Chem., 2002, 12: 2893-2897.
    [128] Wu R, Schumm J S, Pearson D L, Tour J M. Convergent Synthetic Routes to Orthogonally Fused Conjugated Oligomers Directed Toward Molecular Scale Electronic Device Applications. J. Org. Chem., 1996, 61: 6906.
    [129] Kim Y H, Shin D C, Kim S H, Ko C H, Yu H S, Chae Y S, Kwon S K. Novel Blue Emitting Material with High Color Purity. Adv. Mater., 2001, 13: 1690.
    [130] Shin D C, Kim Y H, You H, Kwon S K. Sterically Hindered and Highly Thermal Stable Spirobifluorenyl-Substituted Poly(p-phenylenevinylene) for Light-Emitting Diodes. Macromolecules, 2003, 36: 3222.
    [131] Cheng X, Hou G-H, Xie J-H, Zhou Q-L. Synthesis and Optical Resolution of 9,9’-Spirobifluorene-1,1’-diol. Org. Lett., 2004, 6: 2381.
    [132] Chiang C-L, Shu C-F, Chen C-T. Improved Synthesis of 2,2’-Dibromo-9,9’-spirobifluorene and Its 2,2’-Bisdonor-7,7’-bisacceptor-Substit uted Fluorescent Derivatives. Org. Lett., 2005, 7: 3717.
    [133] Bundgaard E, Krebs F C. Low Band Gap Polymers for Organic Photovoltaics. Solar Energy Materials and Solar cells, 2007, 91: 954.
    [134] Roquet S, Cravino A, Leriche P, Aleveque O, Frere P, Roncali J. Triphenylamine-Thienylenevinylene Hybrid Systems with Internal Charge Transfer as Donor Materials for Heterojunction Solar Cells. J. Am. Chem. Soc., 2006, 128: 3459.
    [135] Roncali J, Leriche P, Carvino A. From One- to Three-Dimensional Organic Semiconductors: In Search of the Organic Silicon? Adv. Mater., 2007, 19: 2045.
    [136] Wang W L, Yang C Y, Gong X, Lee K, Heeger A J. Thermally Stable, Efficient Polymer Solar Cells with nanoscale control of the Interpenetrating Network Morphology. Adv. Fun. Mat., 2005, 15: 1617.
    [137] Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Polymer Photovoltaic Cells– Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions. Science, 1995, 270: 1789.
    [138] Halls J J M, Walsh C A, Greenham N C, Marseglia E A, Friend R H, Moratti S C, Holmes A B. Efficient Photodiodes from Interpenetrating Polymer Networks. Nature, 1995, 376: 498.
    [139] Hoppe H, Sariciftci N S. Organic Solar Cells: An Overview. J. Mater. Res., 2004, 19: 1924.
    [140] Thompson B C, Frechet J M J. Organic Photovoltaics– Polymer-Fullerene Composite Solar Cells. Angew. Chem. Inter. Edi., 2008, 47: 58.
    [141] Zhang F L, Perzon E, Wang X J, Mammo W, Andersson M R, Inganas O. Polymer Solar Cells Based on a Low-Bandgap Fluorene Copolymer and a Fullerene Derivative with Photocurrent Extended to 850 nm. Adv. Fun. Mater., 2005, 15:745.
    [142] Wang X J, Perzon E, Delgado J L, de la Cruz P, Zhang F L, Langa F, Andersson M, Inganas O. Infrared Photocurrent Spectral Response from Plastic Solar Cell with Low-Band-Gap Polyfluorene and Fullerene Derivative. Appl. Phys. Lett., 2004, 85: 5081.
    [143] Andersson L M, Zhang F L, Inganas O. Stoichiometry, Mobility and Performance in Bulk heterojunction Solar Cells. Appl. Phys. Lett., 2007, 91: 071108.
    [144] Mihailetchi V D, Xie H X, de Boer B, Koster L J A, Blom P W A. Charge Transport and Photocurrent Generation in Poly(3-hexylthiophene): Methanofullerene Bulk-Heterojuction Solar Cells. Adv. Fun. Mat., 2006, 16: 699.
    [145] Shaheen S E, Brabec C J, Sariciftci N S, Padinger F, Fromherz T, Hummelen J C. 2.5% Efficient Organic Plastic Solar Cells. Appl. Phys. Lett., 2001, 78: 841.
    [146] Ma W L, Yang C Y, Gong X, Lee K, Heeger A J. Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Adv. Fun. Mater., 2005, 15: 1617.
    [147] Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y. High-Efficiency Solution Processable Polymer Photovoltaic Cells by Self-Organization of Polymer Blends. Nature Materials, 2005, 4: 864.
    [148] Huitema H E A, Gelinck G H, van der Putten J B P H, Kuijk K E, Hart K M, Cantatore E, de Leeuw D M. Adv. Mater., 2002, 14: 1201.
    [149] Sirringhaus H, Brown P J, Friend R H, Nielsen M M, Bechgaard K, Langeveld-Voss B M W, Spiering A J H, Janssen R A J, Meijer E W, Herwig P, de Leeuw D M. Nature, 1999, 401: 685.
    [150] Yamada S, Tokito S, Tsutsui T, Saito S. J. Chem. Soc., Chem. Commun., 1987, 1448.
    [151] Jen K-Y, Eckhardt H, Jow T R, Shacklette L W, Elsenbaumer R. J. Chem. Soc., Chem. Commun., 1988, 215.
    [152] Qiu S, Lu P, Liu X, Shen F Z, Liu L L, Ma Y G, Shen J C. New Ladder-Type Poly(p-phenylene)s Containing Fluorene Unit Exhibiting High Efficient Electroluminescence. Macromolecules, 2003, 36: 9823.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700