接种丛枝菌根提高柑橘对镁元素吸收及促进光合机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑橘(Citrus reticulata Banco)为芸香科(Rutaceae)柑橘属(Citrus Linn)植物。柑橘是我国南方重要的栽培果树,在南方柑橘的产量是所有水果里面最多的,在南方种植柑橘可以帮助果农增加经济效益,从而促进我国农业经济的整体发展,对提高农民收入,促进社会的稳定发展有重要的作用。镁是参与叶绿素合成的重要元素,柑橘缺镁表现出叶片失绿、坏死等症状,在外界高光照强度下,植物叶片上的失绿、坏死症状更加明显。柑橘生产上缺镁的原因除了土壤自身亏缺外,还与土壤pH过高是镁离子变成不溶解状态的络合物使柑橘缺镁。重庆是柑橘的主要产区之一,而重庆自身的气候特征和天气资料显示重庆在五到八月份的时候天气状况为温度高,降雨少土壤偏干,光照量充足。而在九月到十二月的天气资料却显示重庆的日照强度不够,为明显的“寡”日照地方。重庆有其独特的光照和气候条件,这些因素又是制约柑橘生长的重要条件,柑橘是容易形成菌根的植物,易于被各种的丛枝菌根真菌所侵染,而且柑橘根系对矿质元素和水分等的吸收很大程度上都依赖丛枝菌根真菌。丛枝菌根真菌和宿主相互间存在一定的选择性,不同的真菌对不同的宿主具有不同的侵染率,而且真菌不同其对柑橘的侵染效应和生长的促进作用也不同。因此,为柑橘选择合适的丛枝菌根真菌对促进柑橘根系对矿质元素的吸收,促进柑橘生长有重要作用。本试验是针对在重庆这个“独特”的天气情况下,通过接种地表球囊霉Glomus versiforme(Gv)、摩西球囊霉Glomus mosseae(G. m)和透光球囊霉Glomus diaphanum(G. d)来筛选柑橘的优势菌种,并且研究在不同拮抗条件下菌根真菌对柑橘镁元素吸收、利用及促进柑橘光合效应的机制,设置了3个试验:试验1优势菌种的筛选:
     试验1试验以盆栽一年生砧木卡里佐枳橙(Carrizo citrange, Citrus sinensis Osbeck×Poncirus trifoliata (L.) Raf.)为试材,分别接种地表球囊霉G.v,摩西球囊霉G.m和透光球囊霉G.d,每处理3株为1个小区,设3个重复,随机区组排列。研究这三种不同的菌根真菌对柑橘的侵染情况及生长发育指标的影响,从而筛选出柑橘的优势菌种。
     结果表明,接种从枝菌根真菌对柑橘的生长发育有促进作用,接种后柑橘的株高,地下部分干重,地上部分干重都显著高于未接种对照。并且不同的真菌之间促进的程度有差异,接种摩西球囊霉对柑橘生长的促进作用最明显,柑橘的株高达到52.14±2.77cm,地下部分干重达到5.575±0.231cm,地上部分干重14.92±1.27cm。试验表明摩西球囊霉所研究菌种的柑橘的优势菌种。试验2菌根真菌对柑橘在缺镁条件下吸收镁元素的影响研究
     取同样的管理水平下的一年生砧木卡里佐枳橙(Carrizo citrange, Citrus sinensis Osbeck×Poncirus trifoliata(L.)Raf.),对柑橘苗进行无土栽培处理,研究在缺镁情况下菌根真菌对柑橘吸收镁元素的影响。试验共设3个处理,分别为对柑橘苗施加不含镁元素的营养液,对柑橘苗施加含40%量镁元素的营养液,对柑橘苗施加含100%量镁元素全营养液。以不接种为对照。每处理3株为1个小区,设3个重复,随机区组排列。
     结果表明,柑橘通过接种菌种可以促进柑橘根系对土壤中镁元素的吸收,并且在适度范围内缺镁的情况下接种菌根对柑橘根系对镁元素的吸收的促进作用最明显。柑橘苗施加含40%量镁元素的营养液,柑橘体内镁含量为112.37±4.87 mg·g~(-1)。试验3菌根真菌对柑橘光合效应及生长效应的影响研究
     取同样的管理水平下的一年生砧木卡里佐枳橙(Carrizo citrange, Citrus sinensis Osbeck x Poncirus trifoliata (L.) Raf.),试验共设3个处理,在pH5.5-6.4的土壤中种植接种了优势菌种的柑橘苗,在pH6.5-7.4的土壤中种植接种了优势菌种的柑橘苗,在pH7.5-8.5的土壤中种植接种了优势菌种的柑橘苗,以不接种为对照。每处理3株为1个小区,设3个重复,随机区组排列。
     结果表明,在相同的处理中接种丛枝菌根真菌能促进柑橘光合作用的进行,尤其是在pH5.5-6.4的土壤中光合效率最好,它的光合作用速率平均值为5.234±0.561(C0_2m~(-2)s~(-1))蛋白质含量为3.987±0.543 mg·g~(-1),可溶性糖含量为1.617±0.107 mg·g~(-1)。
The citrus is a member of Citrus Linn of Rutaceae. citrus is fruit cultivation in China Southern,production of citrus in the south which is the highest of all fruits, citrus cultivation in the south to help farmers increase the economic efficiency, thereby promoting the overall development of China's agricultural economy, on increasing farmers income, promote social stability important role in the development. Magnesium is an important element involved in chlorophyll synthesis, citrus magnesium deficiency show leaf chlorosis, necrosis and other symptoms, high light intensity in the outside world, the loss of green leaves, necrosis of more obvious symptoms. Citrus production, magnesium deficiency causes deficiency in addition to the soil itself, but also with the soil pH are too high magnesium ions into an insoluble form of the complex to citrus magnesium deficiency.
     Chongqing is one of the main producing areas of citrus, while the climate in Chongqing's own characteristics and weather information in Chongqing in August when five to weather conditions as high temperature, low rainfall in dry condition of soil, sunlight is sufficient. In September to December the weather information is displayed in Chongqing sunshine strong enough for the obvious "widowed" sunshine place. Chongqing has a unique light and weather conditions [5], these factors is an important condition for restricting the growth of citrus, citrus is easy to form mycorrhizal plants, easy to be all kinds of infection by arbuscular mycorrhizal fungi, and the citrus root on the other mineral elements and water absorption are largely dependent on mycorrhizal fungi. Arbuscular mycorrhizal fungi and host each other there is a certain selectivity, different fungi on different hosts with different infection rates, and different fungal infection of its citrus effect and growth promoting effects are also different. Therefore, in order to choose the right citrus arbuscular mycorrhizal fungi on citrus root for the absorption of mineral elements, play an important role to promote the growth of citrus. This test is for in Chongqing this "unique" weather conditions, by inoculating the surface Glomus Glomus versiforme (Gv), Moses Glomus Glomus mosseae (Gm) and light transmission Glomus Glomus diaphanum (Gd) to filter citrus the dominant species, and to study the antagonistic conditions different mycorrhizal fungi on citrus magnesium absorption, utilization and promotion of citrus photosynthesis effects, the set of three tests:
     Experiment 1 The filtration of preponderant Arbuscular Mycorrhizal Fungi of citrus
     Test 1 Test with potted rootstock Carrizo citrange annual (Carrizo citrange, Citrus sinensis Osbeck x Poncirus trifoliata (L.) Raf.) As test materials were inoculated versiforme Gv, Glomus Moses and transparency balloon Gm mold Gd, each dealing with three to a cell, with 3 repeats, randomized block arrangement. Study three different mycorrhizal fungi on citrus growth and development of infection conditions and the impact indicators to screen out the dominant species of citrus.
     The results showed that vaccination from the mycorrhizal fungi on citrus growth and development are stimulated after vaccination citrus height, ground dry weight, shoot dry weight were significantly higher than non-vaccinated control. And between the different fungi to promote the degree of difference, Moses Glomus inoculation the growth promoting effects of citrus most significant citrus height to 52.14±2.77cm, underground dry weight were 5.575±0.231cm, shoot dry weight 14.92±1.27cm. Test showed that Glomus Moses studied the dominant species of citrus species.
     Experiment 2 Study on mycorrhizal fungi on citrus photosynthesis and growth effects
     Obtained under the same management level annual rootstock Carrizo citrange (Carrizo citrange, Citrus sinensis Osbeck x Poncirus trifoliata (L.) Raf.), On citrus seedlings in soilless cultivation treatment of mycorrhizal fungi in the case of magnesium deficiency on Citrus absorb the impact of magnesium. Test consists of three treatments were imposed on citrus seedlings in nutrient solution without magnesium element, imposed on citrus seedlings with 40% of the amount of magnesium in the nutrient solution, applied to citrus seedlings with 100% total amount of magnesium nutrition. To non-inoculated as controls. Each treatment three to a cell, with 3 repeats, randomized block arrangement. The results show that citrus by citrus roots inoculated with bacteria can contribute to soil in the absorption of magnesium and magnesium deficiency in the appropriate context within the scope of VA mycorrhiza on citrus roots on the absorption of magnesium the most significant effect. Citrus seedlings with 40% of the amount of applied nutrient solution magnesium, citrus body magnesium content 112.37±4.87 mg·g-1.
     Experiment 3 Study on photosynthesis by increasing of AMF the effect on growth of citrus
     Obtained under the same management level annual rootstock Carrizo citrange (Carrizo citrange, Citrus sinensis Osbeck×Poncirus trifoliata (L.) Raf.), Total of three treatment experiment, the soil in the pH5.5-6.4 to grow immunized dominant strain of citrus seedlings, the soil in the pH6.5-7.4 to grow the dominant strain of citrus inoculated seedlings, the soil in the pH7.5-8.5 to grow the dominant strain of citrus inoculated seedlings, with no vaccination for the control. Each treatment three to a cell, with 3 repeats, randomized block arrangement.
     The results show that the same treatment in the arbuscular mycorrhizal fungi inoculation could promote the conduct of citrus photosynthesis, especially in the pH5.5-6.4 in the photosynthetic efficiency of the best soil, its photosynthetic rate averaged 5.234±0.561 (CO2m-2s-1) Protein content was 3.987±0.543 mg·g-1, soluble sugar content was 1.617±0.107 mg·g-1.
引文
[1]左华清,王子顺.柑橘土壤微生物种群动态及根际效应的研究[J].生态农业研究,1995,3(1):39-47
    [2]韩振海,沈隽,王倩.园艺植物根际营养学的研究一文献评述[J].园艺学报,1993,20(2):116-118
    [3]郭朝晖,张扬珠,黄子蔚.根际微域营养研究进展[J].土壤通报,1999,30(1):46-53
    [4]陈宁,王幼珊,李晓林,等.宿主植物栽培密度对AM真菌生长发育的影响[J].菌物系统,2003,22(1):88-94.
    [5]吴继光,林索桢.囊丛枝内生菌根菌种原生产技术[A].囊丛枝内生菌根菌应用技术手册[M].台湾:台湾省农业试验所,1998:1-151.
    [6]吴毅文.根和根际的植物营养研究方法[A].毛达如.植物营养研究方法[M].北京:北京农业大学出版社.1994:1-370.
    [7]张福锁.植物根际引起的根际pH值改变的原因及效应[J].土壤通报,1993,24(1):29-36
    [8]李伏生.南方地区土壤镁素状况和镁肥效.广10西农学报,1992(2):21-30
    [9]李延,刘星辉,庄卫民.缺镁胁迫对龙眼苗期氮代谢的影响.植物营养与肥料学报,2001,117(2):218~222
    [10]李伏生.热带作物的镁素营养问题.广西热作科技,1994(2):48-52
    [11]王家玉.土壤营养元素交互作用研究.土壤学13进展,1992,20(2):1~10郑家基.柑桔叶片镁素营养的研究.福建农学院学报,1989,18(3):285-289
    [12]Jones D L. Darrah P R. Role of root derived organic acids in the mobilization of nutrients from therhizospHere[J]. Plant Soil,1994,166:247—257
    [13]Lynch J M, Whipps J M. Substrate flow in the rhizospHere[J]. Plant soil,1990,129:1-10
    [14]JONER E J, JAKOBSENLL. Growth and extracellular pHospHataseactivity of arbuscular mycorrhizal hypHae influenced by soil organic matter[J].Boil Biol Biochem,1995,27(6): 1153-1159
    [15]Athanassios Molassiotis, Georgia Tanou, Grigorios Diamantidis, Angelos Patakas and Ioannis Therios,Effects of 4-month Fe deficiency exposure on Fe reduction mechanism, pHotosynthetic gas exchange, chloropHyll fluorescence and antioxidant defense in two peach rootstocks differing in Fe deficiency tolerance [J].Journal ofPlant PHysiology, Volume 163, Issue 2,25 January 2006, Pages 176-185
    [16]李晓林,曹一平.VA菌根吸收矿质养分的机理[J].土壤,1993,5:274-277
    [17]张梅芳.菌根的研究和应用概况[J].广西农学院,1989,8(2):75-81.
    [18]张美庆.略论VA菌根在我国的应用[J].华北农学报,1998,13(1):106-111
    [19]Schwartz S, Bar—Yosef B. Magnesium uptakeby tomato plants as affected by Mg and Caconcentration in solution culture and plan tage. Agronomy Journal,1983,75:267~272
    [20]Mortveldt J J, Kelsoe J J. Crop response tofine and granular magnesium fertilizers. Fertilizer Research,1988,15(2):155~161
    [21]Awasthi R P. Godara R K. Knith N S. Effeet Of fertiliser and biofertiliser on spore number and root colonisatiot of peach seedling[J]. Journal of Hill Research.1996,9(1):28-32
    [22]Zhang X K,Zharig F S and Mao D R 1999 Effect of iron plaque outside roots on nutrient uptake by rice (Oryza sativa L.):PHospHorus uptake.2001(2):187-192
    [21]Rasmussen H N. Recent developments in the study of orchid mycorrhiza[J]. Plant and Soil, 2002,244:149—163
    [22]宋经元,郭顺星.离体培养时真菌对铁皮石斛和金钗石斛生长的影响[J].中国医学科学院学报,2001.23(6):547-551.
    [23]李明,张灼.杏黄兜兰菌根研究与应用[J].生物学杂志2001,18(6):17-18.
    [24]Zettler L W, Piskin K A, Stewart S L。et al. Protoeorm mycobionts ofthe federally threatened eastern prairie fringed orchid. Platanthera leucophaea(Nutt.)Lindley and a technique to prompt leaf elongation in seedlings[J]. Studies in Mycology,2005(53):163-171.
    [25]Batty A I, Dixon K W. Porundretl M C, et al. Constraints to symbioticgermination of terrestrial orchid seed in a mediterranean bushland[J]NewPhytologist,2001(152):511—520.
    [26]伍建榕,金辉,韩素芬,等.春兰菌根真菌的筛选[J].福建林学院学报,2007,27(3):267-271.
    [27]徐云鹃,于力文,吴庆生,等.霍山石斛的光合特性研究[J].应用生态学报,1993,4(1):18-21.
    [28]吕献康,徐春华,舒小英.3种石斛的光合特性研究[J].中草药,2004,35(11):1296-1298.
    [29]王维华,李敏,刘润进等.AM真菌对生姜某些生理指标的影响[J].莱阳农学院学报,2003,20(3):175-177.
    [30]刘润进,李晓林.丛枝菌根及其应用.北京:科学出版社,2000.1-224.
    [31]吕斯文,连瑞娣,张喜宁.台大农学院研究报告,1994,34(1)121-32.
    [32]Gadkar V, Adholya A. Mycol Res,2OOO,104(6):716~721.
    [33]Gatrr A, Adholeya A. Mycon-hiz~,2O0O,10:43~48.
    [34]Giovannetti M, Sbrana C, Citemesi A S, etal. New Phytol,1996,133:65—71.
    [35]Karandash0v V。Kuzovkina I, Hawkins H—J, etal. Myeorrhiza,2OOO,10:23—28
    [36]Mohanunad A。Khan A. GMyeordaiza,2OOO,9:337~339.
    [37]Pawlowska T E, Dotlds Jr D D, Charvat I. Myeol Res,1999,1113(12):1549—1556.
    [38]Pltmehette C, Deelerek S, Diop T A, etal. AppliedMicrobiology and Biotechnolof~,1996, 46:545—548.
    [39]Vierheilig H, Reikhel N, Wiemken A, etal. BoUer T Plant Soil,1996,183:131~136.
    [40]Vierhel/gH, thso B, A/brVeeht c, etal. In Flavoldsinthe Li~ns Sy. t~m. New York,1998.
    [41]Yin SX. Liu R J. Acta BolaniPAt Siniea,1997,39(8):725—730.
    [42]李树林,赵士燕.VA苗根真菌对马铸薯生长发育的影响口[J].土壤学报,1994.31(增刊1):100-105
    [43]扬兴洪,罗新书,刘润进.VA菌根对西瓜生长、产量及品质的影响[J].果树科学,1994,11(2):117-119.
    [44]林先贵,顾希贤,都文奠.VA菌根在芦笋栽培上的接种效应[J].土壤学报,1994, (增刊):84-90
    [45]薛炳烨,罗新书.VAM真菌对再植桃实生苗生长的作用[J].果树科学,1992,9:106-109.
    [46]扬兴洪,罗新书,刘润进等.利用VA苗根真菌解决苹果重茬问题[J].落叶果树,1992,(4):5-7.
    [47]陈贵林,张广华,葛会波.保定地区日光温室草莓生产调查[J].中国果树,1998,(2):45-46.
    [48]Weissenhom I. Leyval C. Berthelin J. Bioavailbility of heavymetals and abundance of arbuscular myeorrhiza in a soil polluted by atmospheric deposition from asmelter. Biol Fertil Soils, 1995.19:22~28
    [49]Post K, Marschner H, Romheld V. Manganese reduction inthe rhizosphere of myeorrhizal and nonmyeorrhizal maize. Mycorrhiza.1994,5:119~124
    [50]Song YC(宋勇春),Feng G(冯固),Li XL(李晓林).Effect of VAM fungi on phosphatase acitivity in the rhizosphere of clover. Chin J Appl Evniron Bioli应用与环境生物学报),2000.6(2):171~175
    [51]Phillips JM, Hayman DS. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular myeorrhizal fungi for rapid assessment of infection. Trans Br MycolSoc.1970.55:158~161
    [52]Torma AE. Leaching of metals. In:Rehm HJ, Reed G eds. Bioteehnology. VCH. Weinheim,1988.368~399
    [53]Leyval C, Turnau K, Haselwandter K. Effect of heavy metal pollution on myeorrhizal colonization and function:physiologica. ecological and applied aspects. Mycorrhiza,1997, 7:139~153
    [54]Weissenhorn I.Glashof A.Le yval C, Berthelin J. Differential tolerance to Cd and Zn of arbuseular myeorrhizal (AM)fungal spores isolated from heavy metal—polluted and unpollutedsoils. Plant & soil.1994.167:189~196
    [55]Le yval C, Singh B, Joner EJ. Occurrence and infectivity of arbuseular myeorhizal fungi in some Norwegian soils influenced by heavy metals and soil properties. Water. Air& Soil poilution,1995,84:203~216
    [56]Linderman RG. Myeorhizal interactions with rhizosphere microflora:the myeorhizosphere effect. Phytopathology,1988.78:366~371
    [57]Bansal M, Mukeqi KG. Efficacy of root litter as a biofertilizer. Biol Fertil Soils.1994。 18:228~230
    [58]Oswald ET. Ferchau HA. Bacterial associations of coniferousmyeorhizae. Plant& Soil.1968.1:187~192
    [59]Dodd JC, Burton CC, Burns RG, Jeffries P. Phosphatase ae-tivity associated with the roots and the rhizosphere of plants infected with vesicular—arbuseular myeorhizal fungi. New Philologist,1987,107:163~172
    [60]Tarafdar JC. Claassen N. Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biol Fertil Soils,1988.5:308-312
    [61]Turnau K. Dexheimer J. Acid phosphatase activity in Pisolithus arrhizus mycelium treated wi th cadmium dust. Mycorrhiza,1995,5:205~211
    [62]Gast CH, Jansen E, Bierling J, Haanstra L. Heavy metals in mushroom and their relationships with soil characteristics. Chemosphere,1988,17:789~799
    [63]陈宁,王幼珊,李晓林,等.营养液强度对AM真菌生长发育的影响[J].菌物系统,2003,22(3):394-401.
    [64]王幼珊,刘相梅,张美庆等.盆栽基质及营养液对AM真菌接种剂繁殖的影响[J].华北农学报,2001,16(4):81-86.
    [65]Salf S R. The influence of soil aeration on the efficiency of VA mycorrhizae. Effect ofsoil oxygen onthe growth andmineral uptake of Eupatorium ordoralum L. Inoculated with Glomus macrocarpum[J]. New phytol.1981,88:649-659.
    [66]Lambert D H, Cole H. Efects of mycO Ⅱ lhiz on establishment and performance of forage species in mine spoil[J]. Agrun. J.,1980,72:257—263.
    [67]Phillips J M, Hayman D S. Improved procedures for cleating and staining parasitic and vesicular arbuscular mycorrhizal f. ngi for rapid assessment of infection[J]. Trans. Br. Myeol. Soc.,1970,55:158—161.
    [68]Abbott L K, Robson A D, De Boer G. The efect ofphosphorus on the formation of hyphae in soil by the vesicular—arbusoular mycorrhizalfungus, Glomus fasciculatum[J]. New Phytol. 1984,97:437—446.
    [69]Gerdemann J W, Nieolson T H. Spores of myeorrhizal endogone species extracted from soll by wet sieving and decanting[J]. Tram. Br. Mycol. SOc.1963,46:235—244.
    [70]吴毅文.根和根际的植物营养研究方法[A].毛达如.植物营养研究方法[M].北京:北京农业大学出版社,1994,1-370.
    [71]Kruckelmarm H W. Effect offertilizers, soils, soil tillage, and plantspecies on the frequency of endogone chlamydospores and mycorrhzal infection in arable soils[A]. Sanders F E et al. Endomyoorrhizas[M]. London:Academic Press,1975,511—525.
    [72]Graham J H. Membrane—mediated decrease in root exudation respotmible for phosphorus inhibition of vesicular—arbuscular mycorrhizafomlafion [J]. Plant Physiol.,1981,68: 548-552.
    [73]Mcarthur D A J, Knowles N R. Influnee of vesicular—arboscular mycorrhizal fungi on the response of potato to phosphorus deficiency [J]. Plant Physiol.,1993,101(1):147—160.
    [74]李晓林.施磷水平与VA菌根效应的关系[J].北京农业大学学报,1990,16(2):177-180.
    [75]Hep-r C M. efect of nitrate and phosphate on the vesicular—arbuscular myeorrhizal infection of lettuce[J]. New Phytol.1983,92:389—399.
    [76]Same B I, Robson A D, Abbott L K. Phosphorus, soluble earbohydrates and endomyeorrhizal infection[J]. Soil Biol. Biochem.1983,15:593—597.
    [77]Douds D D, Schenck N C. Increased sporulation of vesicular—arhus cular myeorrhizal fungi by manipulation of nutrient regimes[J]. Appl. Environ. Miereb.1990,56:413-418.
    [78]Tawaraya K, Watana~S, Yoshioda E et al. Efect of onion(Alliumcepa) root exudates on the hyphal growth of Gigaspora margarita[J]. Mycorrhiza,1996,6(1):57—59.
    [79]Brown V K, Gange A C. Herbivory by soil-dwelling insects depresses plants species richness. Functional Ecology,1989,3:667—671.
    [80]Miller R M, Miller S P, Jastrow J D, et al. Mycorrhizal mediated feedbacks influence net carbon gain and nutrient uptake in Andropogon gerardii Vitarnan. New Ph~ol,2002,155:149—162.
    [81]Zhao Z W. The roles of mycorrhizal fungi in terrestrial ecosystems. Chinese Biodiversity,1999, 7(3):240—244.
    [82]Dobson A, Cranley M J. Pathogens and the structure of plant communities. Trends in Ecology and Evolution,1994,9:393—398.
    [83]Read D. Mycorhizal fungi:the ties that bind. Nature,1997,388:517—518.
    [84]Van der Heijden MGA, Klironomos J N, Ursic M, et al. Mycorhizal fungal diversity determines plants biodiversity, ecosystem variability and productivity. Nature,1998.396:69~72.
    [85]Klironnomos J N. Feedback with soil biota contributes to plant rarity and in vasiveness in communities. Nature,2002,417:67~70.
    [86]Rilling M C, W right S F, Nichols K A, et al Large contribution of arbuscular mycorhizal fungi to soil carbo n pools in tropical forest soils. Plant Soil,2001,.233:167—177.
    [87]Zhu Y G, Miller R M Carbon cycling by arbuscular mycorhizal fungi in soil-plant systems. Trends in Plant Science,2003,8(9):407—409.
    [88]Zhang M Q, Wang Y s, Zhang C. The ecological distribution characteristics of some genera and species of VAM fungi in northern China. Acta MycologiaSinica,1994,13(3):166~172.
    [89]Zhang M Q, Wang Y S, Xing L J. The biological distribution of AM fungi in the east and south coast of China. Mycosystema,1999,18(2):145~148.
    [90]Zhang M Q, Wang Y S, Xing L J. The ecological distribution of AM fungi community in south and east of China. Mycosystema,1998,17(3):274~277.
    [91]Gerdemann J W, Nicolson T H. Spores of mycorhizal endogune species extracted from soil by wet sieving and decanting. Trans Br Mycol SOc。1963,46:235~244.
    [92]Schenck N C, Spain J L, Sieverding E, et al. Several new and unreported VA mycorhizal fungi (Endogonaceae)from Colombia. Mycologia,1984.76:690~692
    [93]Abott L K, Robson A D, De Boer G. The effect of phosphorus on the formation of hyphae in soil by the vesicular-arbuscular mycorhizal fungus, Glomus fasciculatum, New Phytol,1984, 97:437~446.
    [94]Grime J P, Mackey J M L, HiHier S H, et al. Floristic diversity in model system using experimental microesms. Nature,1987,328:420~422.
    [95]陈宁,王幼珊,李晓林,等.宿主植物栽培密度对AM真菌生长发育的影响[J].菌物系统,2003,22(1):88-94.
    [96]吴继光,林索桢.囊丛枝内生菌根菌种原生产技术[A].囊丛枝内生菌根菌应用技术手册[c].台湾:台湾省农业试验所,1998:1-151.
    [97]Gaur A, Adholeya A. Efects of the particle size of soil—less substrates upon AM fungus inoculum production[J]. Mycorrhiza,2000,10:43—48.
    [98]Furlan V, Fortin J A. Formation of endomycorrhizae by Endogone calospora on AUium cepa under three temperature regimes[J]. Nat Can,1973,100:467—477.
    [99]Ferguson J J, Menge J A. The influence of light intensity and artificially extended photopefiod upon infection and sporulation of Gluomus fasciculatus on sudan grass and on root exudation of sudan grass[J]. New Phytol,1982,92:183—191.
    [100]Menge J A. Inoculum production[A]. VA Mycorrhiza[C]. USA:CRC Press, Raton norida USA.1984:187—204.
    [101]Smenivasa M N, Bagyaraj D J. Chloris gayana (Rhodes grass), a better host for the mass production of Cdomusfasciculatum inoculum [J]. Plant Soil,1988,106:289—290.
    [102]Phiuips J M, Hayman D S. Improved procedures for clearing and staining parasitic and vesicular— arbuseular myeorrhiz. alfungi for rapid assessment of infection[J]. Tram Br My col Soc,1970,55:158—161.
    [103]Gerdemann JW, NicolsonTH. Spores ofmyeorrhizal endogone species extracted from soil by wet sieving and decanting[J]. Trans Br Mycol Soc,1963,46:235—244.
    [104]吴毅文.根和根际的植物营养研究方法[A].毛达如.植物营养研究方法[c].北京:北京农业大学出版社.1994:1-370.
    [105]Giovannetti M, Schubert A, Cravem M C. Spore production by the vesicular arbuseular mycorrhizal fungus Glomus monosporttm as related to host species, root colonization and plant growth enhancement[J]. Biol Fertil Soils,1988,6:120—124.
    [106]李晓林.施磷水平与VA菌根效应的关系[J].北京农业大学学报,1990,16(2):177-180.
    [107]Same B I, Robson A D, Abbott L K. Phosphorus, soluble carbohydrates and endomyeorrhizal infection[J]. SoIl Biol Biochem,1983,15:593—597.
    [108]Amijee F, Stribley D P, Tinker P B. rhe development of cndomycorrhizal root systems. Efects of soil phosphorus andfungal colonization on the concentration of solublle earbohy. drates in roots[J]. New Phytol,1993,123:297—306.
    [109]Davi~FS, Albrigo L G. Citrus. Wallingford:CAB International,1994.1~254
    [110]Camprubi A, Calvet C. Isolation and screening of mycorrhizal fungi from citrus nurseries and orchards and inoculation studies. HortSci..1996.31(3):366~369
    [111]Phillips J M, Hayman D S. Improve procedures for clearing roots and staining parasitic and sessment of infection. Trans. Br. Mycol. Soc.1970,55:158~161
    [112]Estrada—Luna A A, Davies Jr F T. Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscisic acid and growth of microprogated chile peper(Capsicum annuum)plantlets during acclimatization and postacclimatization. J. Plant Physio 1.,2003.160: 1073—1083
    [113]Fidelibus M W, Martin C A, Stutz J C. Geographic isolates of Glomus increase root growth and whole—plant transpiration of Citrus seedlings grown with high phosphorus. Mycorrhiza,2001,10:231—236
    [114]Stevenson F J, el al. Cycles of Soil:Carbon, Nitrogen, Phosphorus, Sulfur,Micronutrients[M]. New York:JohnWiley& Sons Inc..1999:279·329.
    [115]Sharpley A N. Soil phosphorus dynamics:agronomic and environmental impacts[J]. Ecol Eng.,1995,5:261.279.
    [116]Leinweber P.etal. Management effects of forms of phosphorus in soil and leaching losses[J]. Eur J Soil Sci.1999,50:413.424.
    [117]Wissuwa M, el al. Genotypic variation for phosphorus uptake from hardly soluble iron-phosphate in groundnut(Arachis hypogaea L.)[J]. Plant Soil,1999,206:163.171.
    [118]Lopez-Bucio J, etal. Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate[J]. Nat Biotechnol,2000,18:450-453.
    [119]Smith A D, el al. The involvement of mycorrhiza in assessment of genetically dependent eficiency of nutrient uptake and use[M]Randall P J, el al. Genetic Aspects of Plant Miner Nutrition. Dordrecht:Kluwer Academi c Publishers,1993:221-231.
    [120]Yao Q, etal. Mobilization of sparingly soluble phosphates by the external mycelium of an abuscular mycorrhizal fungus[J]. Plant Soil,2001,230:279-285.
    [121]Koide R T, etal. Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolysis organic phosphate[J]. New Phytol.2000,148:511—517.
    [122]Sally E, etal. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses[J]. Plant Physiology,2003,133:16-20.
    [123]BolanNS. Acritical review onthe role of mycorrhizal fungi intheuptake of phosphorusbyplants [J]. PlantandSoil,1991,134:189.207.
    [124]Harrison M J. Molecular and cellular aspects of arbuscular mycorrhizal symbiosis[J]. Annu Rev Plant Physiol Plant Mol Biol.,1999,50:361-89.
    [125]Shenoy V el al. Enhancing plant phosphorus use eficiency for sustainable cropping[J]. Biotechn -ology Advances.2005,23:501·513.
    [126]李晓林,等.VA菌根吸收矿质养分的机制[J].土壤,1993,25(5):274.277.
    [127]Smith F S and P transport systems in plants[J]. Plant Soil,2001,232:109-118.
    [128]Smith S E, eTal. Mycorrhizal Sym biosis[M]. London:Academi c Press,1997:74-79.
    [129]Hattingh M J, el al. Uptake and translocation of北P labelled phosphate to onion roots by endomycorrhizal fungi[J]. Soil Science,1973,116:383—387.
    [130]RhodesLH, elal. Phosphateuptakezonesofmycorrhizalandnon-mycorrhizal onions [J]. NewPhytol.1975,75:555—561.
    [131]Li X L, el al. Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcarenous soil[J]. Plant and Soil,1991,136:41-48.
    [132]Gaume A.etal. Low-P tolerance by maize(Zea mays L.)genotypes:Significance of root growth, and organic acids and acid phosphatase root exudation[J]. Plant Soil,2001,228: 253-264.
    [133]Shen H, et al. Exudationof organic acids in common bean as related to mobilization of alum inum. and iron. Bound phosphates[J]. Environ Exp Bot.2002,48:1-9.
    [134]Bago B, et al. Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxiec culture[J]. New phytologist,1996,133:273-280.
    [135]Li X L, et al. Phosphorus depletion and pH decrease at the root-soil and hyphae-soil interfaces of VA-mycorrhizal white clover fertilized with ammonium [J]. New Phytologist,1991,119: 397-404.
    [136]Hinsinger E Bio-availability of soil inorganic P in the rhizosphere as afected by root induced chemical changes:a review[J]. Plant Soil,2001,237:173-195.
    [137]Grifiths R et al. Soil solution chemistry of ectomycorrhizal mats in forest soil[J]. Soil Biology and Biochemistry,1994,26:331-337.
    [138]Ames R N, et al. Nitrogen sources and"'values for vesicular-arbuscular and non mycorrhizal sorghum grown at three rate of)N-ammoniu sulphate[J]. New Phyto 1.1982,97:269-276.
    [139]Yun S J, Pf al. Induction of maize acid phosphatase activities under phosphorous starvation[J]. Plant Soil,2001,237:109-115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700