苎麻(Boehmeria nivea(L.)Gaud)高细度种质筛选及其纤维发育相关基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苎麻(Boehmeria nivea(L.)Gaud)是一种重要的韧皮纤维作物,其纤维是麻类纤维中优良的纤维,是纺织工业的重要原料,以其独特的优点和用途在国民经济中起着不可缺少和替代的重要作用。而现有苎麻品种的纤维质量难以满足纺织高支、细薄产品的要求。本研究对国家种质长沙苎麻圃中的213份材料进行了鉴定评价,以筛选的纤维细度对比鲜明的种质为材料,检测纤维发育相关基因在不同组织、不同品种、不同时期的表达情况。获得的主要结果如下:
     1.单蔸产量与株高、茎粗、皮厚、有效株率和鲜皮出麻率达到极显著正相关。原麻长与株高、茎粗、皮厚、有效株率、鲜皮出麻率和单蔸产量达极显著正相关。纤维细度与株高、茎粗、皮厚、有效株率和鲜皮出麻率达极显著负相关。
     2.苎麻单蔸产量和纤维细度存在丰富的遗传变异,单蔸产量的最大变异系数47.27%,最小值为0.08%。纤维细度的最大变异系数29.56%,最小值0.07%。
     3.筛选出高产种质(单蔸产量≥110g)56份,优质(纤维细度≥2200m/g)种质38份,高产(单蔸产量≥110g)优质(纤维细度≥2200 m/g)的种质5份。
     4.筛选出能同时稳定扩增目的基因FB27和CFE-1片段的最优化反应条件:最佳镁离子浓度为3.0 mmol L-1,退火温度为55.6℃,35个循环。
     5.在根中纤维蛋白FB27基因的相对表达量为0.294,茎皮为0.845,叶为0.347,茎尖为0.267,茎骨为0.719,总的规律是茎皮>茎骨>叶>根>茎尖。在各器官均有表达,FB27基因无组织表达特异性,但在苎麻纤维生长增粗期的茎部表达量最高,尤其是茎皮。在高纤维细度种质中相对表达量较高,在低纤维细度种质中相对表达量较低;在不同的生长季FB27基因的相对表达量为:头麻>三麻>二麻。在同季麻不同生长发育时期,伸长增粗期FB27基因的相对表达量较高,苗期和工艺成熟期较低。
     6.纤维表达蛋白CFE-1基因在各器官均有表达,其相对表达量总的规律是茎皮>茎骨>茎尖>叶>根。在高纤维细度种质中相对表达量较高,显著高于在低纤维细度种质中相对表达量;在不同的生长季CFE-1基因的相对表达量为,头麻>三麻>二麻。在同季麻不同生长发育时期,伸长增粗期CFE-1基因的相对表达量较高,苗期、工艺成熟期较低。
Ramie (Boehmeria nivea (L.) Gaud)is an important bast fiber crop, whose fiber which is one of the best bast fibers, is widely used in textile industry and plays an indispensable and irreplaceable role in the national economy. But now the fiber quality of ramie accessions are difficult to meet the high-textiles, small thin product requirements. Agronomic characters and bast fibre quality characters of totally 213 collected accessions of ramie were evaluated, and the genes expression related with fiber development were detected in different development period, between different genotypes by the semi-quantitative PCR. The main results were as follow:
     1. Yeild per rootstock and plant Height , diameter of stem, thickness of bark, rate of effective tiller, fibre rate of fresh bark existed a significant positive correlation relationships. There was a significant positive correlation between the raw ramie length and plant Height, diameter of stem, thickness of bark, rate of effective tiller, fibre rate of fresh bark, yeild per rootstock .It was a significant negative correlation between fibre fineness and plant Height, diameter of stem, thickness of bark, rate of effective tiller, fibre rate of fresh bark.
     2. There was significantly variance among agronomical characters and bast fibre quality characters. The Maximum coefficient of variation of yeild per rootstock was 47.27 %, the minimum is 0.08%, and that The Maximum coefficient of variation of fibre fineness was 29.56% and the minimum was 0.07%.
     3. 56 varieties were found to be high yield(≥110g). 38 varieties were identified as germplasm with good fineness(≥2200m/g). 5 varieties were identified as the accessions with excellently high yield (≥110g)and high fineness(≥2200m/g).
     4. The best optimal conditions amplifying fragments FB27 and CFE-1 at the same time could be screened: the best concentration of magnesiumions is 3.0 mmol L-1, annealing temperature is 55.6℃, 35 cycles.
     5. The relative expression of FB27 gene is 0.294 in the root, 0.845 in skin stem, 0.347 in leaves, 0.267 in shoot tip, 0.719 in stem bone. The general rule is that, bast> stem bone>leaf> root>shoot tip. FB27 expressed in various organs showed that FB27 gene expression is non-specific organizations, but the highest expression in the term of strong growth of stem, in particular, bast. The relative higher expression existed in high-fiber fineness germplasms, and the relative lower expression existed in low-fiber fineness germplasms. The relative gene expression of FB27 is that first-crop> third-crop > second-crop.
     6. CFE-1 gene was expressed in various organs, the general rule of the relative expression was that, bast> stem bone> shoot tip> leaf> root. The relatively higher expression existed in high-fiber fineness germplasms was significantly higher than those in low-fiber fineness germplasms. The relative gene expression of CFE-1 in Harvest periods was that first-crop> third -crop > second -crop.
引文
1. 蔡马.研究基因转录的 RT- PCR 技术.生物学杂志,2002,19(6):31- 34.
    2. 陈观水,潘大仁,周以飞等.甘薯 NPR1 基因半定量 RT-PCR 检测方法的建立.福建农林大学学报(自然科学版),36(1):56-59.
    3. 陈建荣.苎麻木质素合成关键酶基因分离及遗传转化的研究.长沙,湖南农业大学.2005.
    4. 陈瑞祥,刘世凡,龙忠富,等.毕节高支数苎麻资源研究与利用.中国麻作,1999,21(2):14-20.
    5. 陈昕,王保莉,曲东,等.小麦硫转运蛋白基因半定量 RT- PCR 检测方法的建立[J].西北植物学报,2006,2(62):0309-0313.
    6. 谷守芹,解灵君,范永山.植物组织总 RNA 提取的常用方法及优化策略.保定师范专科学校学报,2005,18(2):40-43.
    7. 郭瑛,郭旺珍,张天真,等.一个新的棉纤维表达蛋自cDNA的克隆表达及功能初步分析.棉花学报,2006,18(2):67-73.
    8. 何嵩山.苎麻纤维细度的研究.中国麻作,1985(2):17-22.
    9. 胡立勇,彭定祥.苎麻产量构成因素的分析.中国麻作 1998,20(2):12-16.
    10. 姜繁昌.苎麻纺纱学.纺织工业出版社,1989.
    11. 蒋建雄,张天真.一个陆地棉半胱氨酸蛋白酶全长 cDNA 的克隆及其序列特征分析.作物学报,2004,305:512-515.
    12. 蒋彦波,揭雨成,周建林等.苎麻基因组微卫星的分离与鉴定.作物学报,2007,33,(1):158-162.
    13. 揭雨成,冷鹃.中国苎麻种质资源研究的现状和展望.中国麻作,2000,22(3):13-15.
    14. 揭雨成,周青文,陈佩度.苎麻栽培品种亲缘关系的 RAPD 分析.作物学报,2002,28(2):254-259.
    15. 李亚青,葛荣朝,赵保存,等.RT-PCR 法半定量检测不同逆境胁迫下 TaGSKl 基因的表达. 华北农学报,2007,22(1):83-85.
    16. 李元沅.苎麻土壤生态系统的类型和组成.湖南农学院学报,1989,(增):60-68.
    17. 李宗道.苎麻生理生化与遗传育种.北京:农业出版社,1989.
    18. 林仁勇,丁剑冰,温浩,等.半定量 RT- PCR 检测细胞因子表达的研究.新疆医科大学学报,2003,2(65):427- 429.
    19. 刘飞虎,郭清泉,郑思乡,等.苎麻种质资源研究导论.北京:中国农业出版社,2002.
    20. 刘淑梅.苎麻优质高产的气象生态条件试验研究.中国麻作,1991,(2):13-40.
    21. 刘中成,赵锦,刘孟军.mRNA 差异显示技术评述.分子育种,2004,2(6):895-900.
    22. 龙火生.瘦肉型与脂肪型猪基因表达差异的研究.杨凌:西北农林科技大学,2003.
    23. 卢浩然等.中国麻类作物栽培学.北京:农业出版社,1992
    24. 卢建雄,臧荣鑫,潘和平.半定量 RT- PCR 法检测原代培养脂肪细胞生脂基因 mRNA 转录表达.中兽医医药杂志,2005,(6):16-18.
    25. 芦亚,罗小敏,朱生伟,等.棉花生长素结合蛋白(GhABP)的初步研究.黑龙江八一农垦大学学报.2006,18(4):19-24.
    26. 吕善模.麻类纤维标准与检验.中国标准化协会纤维分会,1993.
    27. 罗素玉.苎麻品种纤维形态结构与产量、品质相关性的研究.中国麻作,1983(4):24-29.
    28. 孟和,往桂花.上启贵,等.鸡 PPAR 基因单核苷酸多态性与腹脂性状相关的侧日石.遗传学报.2002(2):119-123.
    29. 牟琼,陈瑞祥.贵州苎麻种质资源的研究与利用.中国麻作,2002,22(2):12-14.
    30. 彭定祥,胡立勇,余德谦,等.苎麻新品种“华苎 3 号”选育研究.中国麻作,1999,21(3):3-6.
    31. 秦治翔,杨佐明.棉纤维次生壁增厚相关基因的 cDNA 克隆与分析.作物学报,2003, 29:860-866.
    32. 佘玮,邢虎成,秦占军等.苎麻茎皮 cDNA 文库的构建.中国麻业科学,2007,1:16-19.
    33. 石艳丽,郭学平,王凤山,等.半定量 RT-PCR 法测定链球菌透明质酸合成酶 mRNA 的水平.食品与药品,2005,7(2):22-24.
    34. 孙建波,崔百明,彭明,等.棉花生长索结合蛋自ABP1基因cDNA的克隆及序列分析.棉花学报, 2007,19(4):243-247.
    35. 孙杰,李艳军,李园莉,等.棉花纤维特异表达基因GhFl的分离及鉴定.棉花学报, 2005,17(5):259-263.
    36. 索金凤,普莉,梁小娥,等.棉花胚珠内种皮特异基因GhIAAl6的分离鉴定.植物学报,2004, 46(4):492-479.
    37. 田志坚,易蓉,张学文,等.苎麻纤维素合成酶cDNA克隆及表达分析.作物学报,2008, 34(1):76-83.
    38. 汪以真,林文学,许梓荣.半定量 RT- PCR 法评定小同生氏阶段猪抗菌肤 pr- 39 基因表达差异.农业生物技术学报,2004(1):52-55.
    39. 王金明,丁在松,张桂芳,等.家稗丙酮酸磷酸双激酶(PPDK)基因的克隆及序列分析.作物学报,2007,33(6):927-930.
    40. 肖爱平.OFDA 细度仪在苎麻测试上的应用.中国麻业,2002(5):31—34.
    41. 熊和平,蒋金根,喻春明,等.苎麻产量构成因素主成份及其聚类分析.中国麻作,1993,(4):15—19.
    42. 徐春兰,汪以真.半定量 RT- PCR 法分析猪肌肉组织细胞谷胱甘肽过氧化物酶 mRNA 表达水平.中国兽药杂志,2005,39(8):3-6;23.
    43. 严文淦等,武陵山区优质高产苎麻生态条件与栽培技术研究,中国麻作,1991,(1):10-15.
    44. 杨锦琏.遮荫对苎麻生长发育及纤维产量、品质影响的研究.中国麻作,1988,(3):22-27.
    45. 张保龙,杨郁文,倪万潮,等.陆地棉 CC-NBS-LRR 基因的克隆及特征分析.江苏农业学报, 2006,22(4):351-355.
    46. 张鸿平,吴秉铨,张卫国,等.半定量 PCR 方法的建立及其在病理学中应用.中华病理学杂志,1994,23(5):312-313.
    47. 张中华,魏刚,徐建俊,等.优质高产杂交苎麻新组合“川苎 8 号”选育报告.中国麻作,2003,25(4):168-171.
    48. 中国农业科学院麻类研究所主编.中国苎麻品种志[M],农业出版社,1992,1~13.
    49. 周 建 林 , 揭 雨 成 , 蒋 彦 波 等 . 用 微 卫 星 标 记 分 析 苎 麻 品 种 的 亲 源 关 系 . 作 物 学报,2004,30(3):289-292.
    50. 周林福,陈离伟,姜云水,等.荧光定量 PCR 与半定量 PCR 检测 HBV DNA 的对比分析.中国病理生理杂志,2005,21(5):837-848.
    51. 朱该.苎麻纤维细度与生长期关系的探讨.中国麻作,1986,(1):31-32.
    52. Bustin S A, Nolan T. Pitfalls of quantitative real - time reverse transcription polymerase chain reaction. J Biomol Tech , 2004 , 15(3) : 155- 166.
    53. Chase M W, et al. Phylogenetics of seed plants:an analysis of nucleotide sequences from the plastid gene rbcLAnn. Mo. Bot Gard, 1993, 80: 528-580.
    54. Cottrez F, Auriault C, Apron A, et al. Quantitative PCR: validation of the use of multispecific internal control.Nucleic A cida Res, 1994, 22(1): 2712- 2713.
    55. Dukas K, Sarfati P, Vaysse N, Pradayrol L.Quantitation of changes in the expression of multiple genes by simultaneous polymerase chain reaction. Anal. Biochem, 1993, 215:66-72.
    56. Fellenr M D, Durand K, Correa M. A semi quantitative PCR method (SQ- PCR) to measure Epstein- Barr virus (EBV)load: its application in transplant patients.Biotechniques, 1997, 22 (1): 630-634, 636.
    57. Gao Yuan, Suo Guangli, Han Jin. Expression of human BMP- 2 Gene in different tissues of tobacco plants. Acta Genetica Sinica, 2006, 33(1): 56- 62.
    58. Kim S W, Harney J W, Larsen P R. Studies of the hormonal regulation of type 25 - iodothyronine deiodinase messenger ribonucleic acid in pituitary tumor cells using semiquantitative reverse transcription-polymerase chain reaction. Endocrinology, 1998, 129 (12):4895- 4905.
    59. Kuddus R H, Lee T H, Valdivea L A. A semi- quantitative PCR technique for detecting chimerism in hamster - to - rat bone marrow xenotransplantation. J Immunol Methods, 2004, 285(1): 245-251.
    60. LI C H, Zhu Y Q, Meng Y L, et al. Isolation of genes preferentially expressed in cotton fibers by cDNA fiber arrays and RT-PCR. Plant science, 2002, 163:1113-1120.
    61. LIANG X E, Suo J F, Xue Y B, et al. Development and application of a transformation-competent artificial chromosome(TAC) genomic DNA library in allotetrapolid cotton(Gossypium hirsutum L.).Cotton science, 2002, 14(sup): 52.
    62. LIU Y L, Sun J, Li C H, et al. Preferential expression of a beta-tubulin gene in developing cotton fibers. Cotton science, 2002, 14(sup): 44.
    63. LIU Y, Zhao G R, Zhang H M, et al. Analysis of functional genes for Cotton fibers development. Cotton science, 2002,14(sup): 51.
    64. Mathias C, Martine B, Anne V C. A semi- quantitative RT- PCR method to readily compare expression levels within Botrytis cinerea multigenic families in vitro and in planta.Curr Genet, 2003, 43(1):303- 309.
    65. May J, Costa M, Ojeda S R. Developmental expression of the genes encoding transforming growth factor alpha and its receptor in the by pothalamus of female rhesus macaques.Neuroendocrino, 1994, 60(1): 346.
    66. Monro A K, et al. The revision of species-rich genera: a phylogenetic framework for the strategic revision of Pilea (Urticaceae) based on cpDNA, nrDNA,and morphology. Am. J. Bot, 2006,3(93): 426-441.
    67. Orlando C, Pinzani P, Mazzagli M. Developments in Quantitative PCR Clin. Chem. Lab.Med.,1998, 36:255-269.
    68. Pallansch L, Beswick H, Talian J, et al. Use of an RNA folding algorithm to choose regions for amplification by the polymerase chain reaction. Anal Biochem, 1990, 185(1): 57- 62.
    69. Qiu,Y.-L, et al. Phylogenetics of the Hamamelidae and their allies:parsimony analyses of nucleotide sequences plastid gene rbcL. Plant Sci.,1998,6(159):891-905.
    70. R.H.Kibry, Vegetable Fibers. 1963, Interscience Publishers, Inc.Newyork.
    71. Raemaekers L. A commentary on zhe practical applications of competitive PCR. Genome Res, 1996,5:91-94 ;
    72. Reidy M C, Timm E A, Stewart C C. Quantitative RT-PCR for measuring gene expression. BioTechniques, 1995, 18: 70-76.
    73. Rinehart J A, Petersen M W and John M E Tissue-pecific and developmental regulation of cotton gene FbL2A. Plant Physiology, 1996,112:1131-1141
    74. Roll and V G. Semi - quantitative analysis of gene expression in cultured chondrocytes by RT- PCR. Methods Mol Med, 2004, 100(1): 69-78.
    75. Sytsma K J, et al. Urticalean rosids: circumscription,rosid ancestry, and phylogenetics based on rbcL ,trnL-F and ndhF sequences. Am.J.Bot, 2002, 9(89): 1531-1546.
    76. Wang A M, Doyle M V, Mark D F. Quantitation of mRNA by the polymerase chain reaction.Leukemia, 2000,14(2):316-323.
    77. Winslow S G, Henkart P A. Polyinosinlc acid as a carrier in the microscale purification of total RNA. Nucleic Acids Res, 1991, 19: 3251- 3253.
    78. YAMAMOTOE, Baird W V. Three Cotton Fiber Expressed cDNAs(Accession Nos. AF072404, AF07240 and AF072406). (PGR98-144) Plant Physiol, 117: 1525.
    79. Zerega N.J.C. et al.Biogeography and divergence times in the mulberry family (Moraceae). Mol. Phylogenet. Evol, 2005,2(37): 402-416.
    80. ZHU Y Z, Ji S T, Lu Y C, et al. Current status and progresses in Chinese cotton genomic research.Cotton science, 2002, 14(sup): 36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700