Cd胁迫下杂交水稻不同部位Cd的化学形态和亚细胞分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于工业废物处理不善以及含有镉(Cd)的农药、化肥的不合理使用,我国稻田Cd污染现象日益严重,不仅影响水稻的生长发育,降低产量与品质,而且对人体健康产生了巨大威胁。目前,从Cd的化学结合形态和亚细胞分布角度探讨杂交水稻对Cd的耐性机理的研究鲜见报道。本文通过水培试验,以籽粒Cd积累量不同的4个杂交水稻品种为材料,研究了Cd在杂交水稻不同部位的化学结合形态、亚细胞分布情况以及Cd胁迫对杂交水稻体内抗坏血酸和可溶性糖含量的影响,进一步揭示了杂交水稻籽粒低量积累Cd的耐性机制。主要研究结果如下:
     (1)不同浓度Cd胁迫下,D83A/R527籽粒的Cd含量显著低于辐优838、D优498、Ⅱ优892;4个品种的Cd含量在1mg/LCd处理与0.5mg/LCd处理时相比,D83A/R527的增幅较小;3mg/LCd处理与1mg/LCd处理时相比,虽然D83A/R527的增幅较Ⅱ优892高出16%,但其Cd含量依然最低。说明D83A/R527属于籽粒低镉积累品种。
     (2)随着Cd胁迫水平的提高,根、根颈、茎、叶鞘、叶和穗颈的总Cd含量和不同化学形态Cd含量均增加。不同部位的Cd积累量不同,总体上表现为根>根颈>茎>叶鞘>叶片>穗颈;根、根颈、叶鞘、叶和穗颈中,氯化钠提取态和醋酸提取态是优势形态,但在茎中,乙醇提取态的比例较高,仅次于氯化钠提取态;茎部乙醇加水提取态的比例较高,其次是叶鞘、叶片、穗颈,根和根颈乙醇加水提取态的比例较低,证明不同部位Cd积累量的差异可能与Cd在其中的化学形态差异有关。4个品种相比较,D83A/R527各部位总Cd含量和不同化学形态Cd含量最低;乙醇加水提取态的比例最低,而醋酸加盐酸提取态的比例最高,说明其体内的Cd处于难以移动的状态,导致其籽粒中Cd积累量较低。
     (3)根颈、叶鞘、穗颈各亚细胞组分中的Cd含量随Cd处理浓度的增加而增加。Cd在各亚细胞组分中的分配比例,除分蘖期根颈可溶性部分大于细胞壁外,整体上表现为细胞壁>可溶性部分>细胞器。根颈的Cd含量显著大于叶鞘和穗颈;Cd在根颈细胞壁中的分配比例小于叶鞘和穗颈,可溶性部分的分配比例大于叶鞘和穗颈,说明不同部位Cd含量的差异可能与Cd在其中的亚细胞分布有关。D83A/R527各亚细胞组分中的Cd含量整体上较低,其次是D优498和Ⅱ优892,辐优838各组分中的Cd含量较高;Cd在D83A/R527细胞壁中的分配比例高于其他品种,可溶性部分和细胞器部分中的比例较低,降低了Cd在其体内的迁移,致使其籽粒中Cd含量较低。
     (4)0.5mg/LCd胁迫有利于提高分蘖期和孕穗期水稻叶片的抗坏血酸含量,而1mg/L和3mg/LCd胁迫对分蘖期和孕穗期叶片抗坏血酸含量有抑制作用,Cd处理显著降低了灌浆期叶片的抗坏血酸含量;任何浓度的Cd胁迫,均显著降低了茎部的抗坏血酸含量。低镉积累品种D83A/R527的茎叶中一直保持较高的抗坏血酸含量,变化幅度小,其次是D优498和Ⅱ优892,辐优838的抗坏血酸含量较低,变化幅度大。抗坏血酸的含量与不同化学形态Cd含量及总Cd含量均达极显著负相关关系,说明各种化学形态Cd含量均对抗坏血酸含量的变化产生了显著影响,水稻抗坏血酸含量的高低可以反映出抗Cd能力的高低。
     (5)在不同浓度的Cd胁迫下,水稻茎叶的可溶性糖含量较对照均显著提高,且随着Cd处理浓度的提高,可溶性糖含量不断上升。与3个籽粒高镉积累品种相比,低镉积累品种D83A/R527茎叶的可溶性糖含量较低,且始终保持较低的可溶性糖累积速度。可溶性糖的含量与不同化学形态Cd含量及总Cd含量均达显著性正相关关系,进一步证实可溶性糖发挥了在逆境胁迫中的信号作用。
In recent years, industrial waste hasn't been dealt properly, and pesticide and chemical fertilizer (Cd included) have been used unreasonably. Owing to that, a great deal of paddy soil has been contaminated by Cadmium, not only the growth and development of rice were inhibited, yield and quality were reduced, but also human health was threatened greatly. At present, the study about the mechanism of hybrid rice under Cd stress from the viewpoint of chemical forms and subcellular distribution have been reported seldom. Taking one hybrid rice cultivar with low Cd accumulated in grain and three hybrid rice cultivars with high Cd accumulated in grain as study materials, a hydroponic experiment was carried out to study the chemical forms and subcellular distribution of Cd and the effect of Cd on Ascorbate acid and soluble sugar in different organs of hybrid rice, and further to reveal the tolerance mechanism of hybrid rice under Cd stress. The main results are as follows:
     (1) The Cd content in grain of D83A/R527 was lower than FuYou838、D You498、II You892 under Cd stress. Compared with the treatment of 0.5mg/LCd, the amplification of Cd content in grain of D83A/R527 in the four varieties was the smallest under the treatment of 1mg/LCd. And contrasted the content under the treatment of 3mg/L and 1mg/LCd, although the amplification of D83A/R527 was higher than II You892 by 16%, the content in grain of D83A/R527 was also the lowest. It showed there was low Cd accumulated in grain of D83A/R527.
     (2) In root, crown, stem, leaf sheath, leaf and uppermost internode of four hybrid rice cultivars, increased Cd level in the medium caused a significant increase of Cd concentration in total Cd content and chemical forms. The contents of Cd were different in each organ, and on the whole, and the order was: root>crown>stem>leaf sheath>leaf> uppermost internode. In root, crown, leaf sheath, leaf and uppermost internode, the greatest amount of Cd was found in extraction solution of NaCl, followed by HAC. But in stem, the extraction of ethanol was higher than HAC. The proportion of ethanol and H_2O extractable-Cd in stem was the highest, then were leaf sheath, leaf, uppermost internode, and next were root and crown, it proved the different Cd content in every organ was in correlation with the difference of chemical forms. Compared with other three cultivars with high Cd accumulated in grain, total Cd content and each extractable-Cd content of D83A/R527 were lower, and it was lower in proportion of H_2O and ethanol extractable-Cd, but higher in proportion of HAC and HCl extractable-Cd. It suggested that Cd in D83A/R527 was hard to mobile, and leaded to low accumulation of Cd in grain.
     (3 ) In crown, leaf sheath and uppermost internode of four cultivars, increased Cd level in the medium caused a significant increase of Cd concentration in all fractions and total Cd content. Most Cd was distributed in F_1(cell wall fraction), followed by F3(soluble fraction) and F2(organelle fraction) except in crown in Tillering stage, F_3>F_1. The subcellular distribution of Cd in different organs was different, on the whole, the Cd content of crown was higher than leaf sheath and uppermost internode, and the proportion in cell wall of crown was lower than leaf sheath and uppermost internode, but the proportion in soluble fraction was higher, it revealed the difference of Cd content in each organ was in correlation with the difference of subcellular distribution. The Cd content in all fractions and total Cd content of D83A/R527 was the lowest, then were D You498 and II You892, FuYou838 was the highest. And D83A/R527 had higher Cd proportion in the cell wall but lower in the soluble fraction and organelle fraction, this was the mechanism of D83A/R527 low accumulation of Cd in grain.
     (4) Ascorbate acid content of leaf in tillering and booting stage increased when the four hybrid rice cultivars subjected to 0.5mg/LCd stress, but it was inhibited when subjected to 1mg/L and 3mg/LCd stress. However, in filling stage, ascorbate acid content of leaf decreased significantly under Cd stress. And ascorbate acid content of stem decreased significantly under Cd stress in the three growth stages. Compared with other three cultivars with higher Cd accumulated in grain, D83A/R527 had higer ascorbate acid content and the rangeability was small. There were significant and negative correlation between Ascorbate acid content and each extractable-Cd content and also the total Cd content, the results indicated the influence of the extractable-Cd content on ascorbate acid content was significant.
     (5) Compared with the contrast, Soluble sugar content of leaf and stem in hybrid rice increased significantly and showed rising trend with the increase of Cd concentrations. Compared with the other three cultivars with high Cd accumulated in grain, D83A/R527 had lower soluble sugar content and accumulating speed. There were significant and positive correlation between soluble sugar content and each extractable-Cd content and total Cd content, and the results further showed the effecct of the extractable-Cd content on soluble sugar content was significant.
引文
[1]胡培松.土壤有毒重金属镉毒害及镉低积累型水稻筛选与改良[J].中国稻米,2004(2):10-12.
    [2]魏秀国等.广州市菜园土和蔬菜中Cd含量水平及污染评价[J].土壤与环境,2002,11(2):129-132.
    [3]Michael P Waalkes,Bhalchandra A Diwan.Cadmium-induced inhibition of the growth and metastasis of human lung carcinoma xenografts:Role of apoptosi Carcinogenesis[J].Plant Physiol,1999,20(1):65-70.
    [4]王凯荣,郭炎,何电源,等.重金属污染对稻米品质的研究[J].农业环境保护,1993,12(6):254-257.
    [5]王凯荣.我国农田镉污染现状及治理利用对策[J].农业环境保护,1997,16(6):274-276.
    [6]陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社,1996:189-199.
    [7]华珞.中、苏六种土壤对铜、铅、镉、氟的缓冲性及影响因素[J].北京农业大学学报,1991,17(2):55-62.
    [8]傅显华,吴启堂.不同物料对菜叶吸收镉铅的影响[J].农业环境保护,1995,14(4):145-149.
    [9]曹仁林,霍文瑞,何宗兰,等.不同改良剂抑制水稻吸收镉的研究[J].农业环境保护,1992,11(5):195-198.
    [10]吴龙华,骆永明,黄焕忠.铜污染旱地红壤的络合诱导植物修复作用[J].应用生态学报,2001,12(3):435-438.
    [11]江行玉,赵可夫.植物重金属伤害及其抗性机理[J].应用与环境生物学报,2001,7(1):92-99.
    [12]王林.蔬菜对镉铅的吸收累积特征与生理响应研究[D].山东:山东农业大学,2005.
    [13]杨居荣,贺建群,等.农作物对Cd毒害的耐性机理探讨[J].应用生态学报,1995,6(1):87-91.
    [14]Antonovilles I,Bradshow AD,Turner RG.Heavy mental tolerance in plants[J].Adc.Ecol.Res,1971,7:1-11.
    [15]Devriese M,Tsakaloudi V,Garbayo L,et.al.Effect of heavy metals on nitrate assimilation in the eukaryotic microalga Chlamydomonas reinhardtii[J].Plant Physiol Bilchem,2001,39:443-448.
    [16]Hart J J,Welch R M,Norvell W A et.al,Characterization of cadmium binding,uptake,and translocation in intact seeding of bread and durum wheat cultivars[J].Plant Physilo,1998,116:1413-1420.
    [17]Baker A J M.Metal tolerance[J].New Phytol,1987,106:93-111.
    [18]Salt D E,smith R D.Raskini.Phytoremediation[J].Annu,Rev.Plant Physiol.Plant Mol,Biol.,1998,49:643-668.
    [19]廖斌,邓冬梅,杨兵,等.铜在鸭跎草细胞内的分布和化学形态研究[J].中山大学学报(自然科学版),2004,43(2):72-77.
    [20]江行玉,赵可夫.铅污染下芦苇体内铅的分布和铅胁迫相关蛋白[J].植物生理与分子生物学学报,2002,3:169-175.
    [21]许嘉琳,鲍子平,杨居荣,等.农作物体内铅、镉、铜的化学形态研究[J].应用生态学 报,1991,2(3):244-248.
    [22]吴菁,杜锁军,曾晓雯,等.锌在长柔毛陵菜细胞内的分布和化学形态研究[J].生态环境,2006,15(1):40-44.
    [23]王学峰,杨艳琴.重金属镉锌铜在蔬菜体内的形态分布研究[J].环境科学与技术,2005,28(1):34-35.
    [24]江行玉,王长海,赵可夫.芦苇抗镉污染机理研究[J].生态学报,2003,23(5):858-862.
    [25]Fei-Bo Wu,Jing Dong,Qiong Qiu Qian.Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes[J].Chemosphere,2005,60:1437-1446.
    [26]Xin Wang,Yunguo Liu,Guangming Zeng.Subcellular distribution and chemical forms of cadmium in Bechmeria nivea(L.) Gaud[J].Environmental and Experimental Botany,2007.
    [27]杨居荣,贺建群,蒋婉茹.Cd污染对植物生理生化的影响[J].农业环境保护,1995,14(5):193-197.
    [28]杨居荣,查燕,刘虹.污染稻、麦籽实中Cd、Cu、Pb的分布及其存在形态初探[J].中国环境科学,1999,19(6):500-504.
    [29]于辉.水稻(Oriza sativa L.)对重金属镉胁迫响应的品种间差异及机理研究[D].广州:中山大学,2006.
    [30]于辉.不同类型镉积累水稻细胞镉化学形态及亚细胞和分子分布[J].应用生态学报,2008,19(10):2221-2226.
    [31]何俊瑜.水稻突变体对镉敏感的生理生化及籽粒中镉积累的基因型差异[D].杭州:浙江大学,2006.
    [32]杨居荣.镉、铜抗性植物细胞株的增长及元素吸收特性[J].应用生态学报,1992,7(3):273-279.
    [33]Hayens R J.Ion exchange properties of roots and ionic interactions within the apoplasm:Their role in ion accumulation by plants[J].Bot Rev,1980,46:75-99.
    [34]Allen D L,Jarretl W M.Proton and copper adsorption to maize and soybean root cell walls[J].Plant Physiol,1989,89:823-832.
    [35]Kramer U,Picking I J,Prince R C.Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species[J].Plant Physiol,2000,122:1343-1353.
    [36]杨明杰.海州香薰对铜的超积累机理研究[D].杭州:浙江大学,2001.
    [37]陈同斌,阎秀兰,廖晓勇,等.蜈蚣草中砷的亚细胞分布与区镉化作用[J].科学通报,2005,50(24):2739-2743.
    [38]廖晓勇,谢华,陈同斌,等.蜈蚣草的超微结构和砷、钙的亚细胞分布[J].植物营养与肥料学报,2007,13(2):305-312.
    [39]龙新宪.东南景天对锌的耐性和超积累机制研究[D].杭州:浙江大学,2002.
    [40]杨志敏,郑绍建,赵秀兰,等.磷对小麦细胞镉、锌的积累及在亚细胞内分布的影响[J].环境科学学报,1999,19(6):693-696.
    [41]杨居荣,鲍子平,张素芹.镉、铅在植物细胞内的分布及其可溶性结合形态[J].中国环境科学, 1993,13(4):263-268.
    [42]Nishizono H,Ichikawa H,Suziki S,et al.The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscence[J].Plant Soil,1987,101:15-20.
    [43]Pilar Zormoza,Saul Vazquez,Elvira Esteban.Cadmium-stress in nodulated white lupin:strategies to avoid toxicity[J].Plant Physiol.Biochem,2002,40:1003-1009.
    [44]Inmaculada Ramos,Elvira Esteban,Juan Jose Lucena.Cadmium uptake and subcellular distribution in plants of Lactuca sp.Cd-Mn interaction[J].Plant science,2002,162:761-767.
    [45]Hans J.Weigel,Hans J.Jager.Subcellular Distribution and Chemical Form of Cadmium in Bean Plants[J].Plant Physilo,1980,65:480-482.
    [46]Vazquez,M D.,Poschenrieder,C.H.,Barcelo,J.Ultrastructural effects and localization of low cadimium concentrations in bean roots[J].New Phytol,1992,120:215-226.
    [47]李德明,朱祝军.镉在不同品种小白菜中的亚细胞分布[J].科技通报,2004,20(4):278-283.
    [48]Zenk M H.Heavy metal detoxification in high plants[J].Gene,1996,179:21-30.
    [49]Hall J L.Gellular mechanisms for heavy metal detoxification and tolerance[J].Exp Bot,2002,53(366):1-11.
    [50]杜秀敏,殷文璇,赵彦修,等.植物中活性氧的产生及清除机制[J].生物工程学报,2001,17(2):121-125.
    [51]沈文彪,徐朗菜,叶茂柄,等.抗坏血酸过氧化物酶活性测定的探讨[J].植物生理学通讯,1996,32(3):203-205.
    [52]李珍珍,韩阳.抗坏血酸对小麦种子老化及幼苗脂质过氧化的影响[J].辽宁大学学报,2000,27(2):170-172.
    [53]Yaneva I A,mack G,Vunkova-Radeva R V and Tischner R.Changes in nitrate reductase activity and the protective effect of molybdenum during cold stress in winter wheat grown on acid soil[J].Journal of plant physiology,1996,149(1-2):211-216.
    [54]陈坤明.植物逆境抗氧化系统和逆境氧化还原平衡[D].兰州:兰州大学,2003.
    [55]王保义,李朝苏,刘鹏,等.荞麦叶内抗氧化系统对铝胁迫的相应[J].生态环境,2006,15(4):816-821.
    [56郑雪宜.抗坏血酸在植物耐铝和UV-B辐射中的作用[D].杭州:华南农业大学,2007.
    [57]王洪政,沈振国.根系抗坏血酸在小麦幼苗耐铝性中的作用[J].西北植物学报,2006,26(4):753-758.
    [58]Sairam P.k.Srivastava G.C.Changes in antioxidant activity in sub-cellular fractions of tolerant and susceotible wheat genotypes in response to long term salt[J].Plant Sci.,2002:897-904.
    [59]Shalata A,Mittova V,Volokita M,et al.Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-deficient oxidative stress:The root antioxidative system[J].Physiol Plant,2001,112(4):487-494.
    [60]Lit,Van Standen J.Effects of plant growth regulators on the antioxidative systems in callus of two maize cultivars subjuected to water stress[J].Plant Growth Regul,1998,24:55-66.
    [61]Schwanz P,Picon C,Vivin P,et al.Response of antioxidative systems to drought stress in pendunculate oak and maritime pine as modulated by elevated CO_2[J].Plant Physiol,1996,110:393-402.
    [62]陈坤明,宫海军,王锁民.植物中抗坏血酸的生物合成、运转及其生物学功能[J].西北植物学报,2004,24(2):329-336.
    [63]徐伟君.高温胁迫对黄瓜幼苗抗坏血酸代谢影响的研究[D].杨凌:西北农林科技大学,2007.
    [64]邬飞波.作物栽培学与耕作学[D].杭州:浙江大学,2002.
    [65]黎晓红,兰利琼,吴巧玉,等.镉胁迫对小麦不同生育期活性氧代谢的影响[J].四川大学学报(自然科学版),2007,44(2):420-424.
    [66]吴旭红,罗新义.镉胁迫对苜蓿膜脂过氧化的影响及保护系统的应答[J].中国草地,2005,27(3):37-40.
    [67]孙艳斐.长春花不同生活史型可溶性糖动态变化规律的研究[D].哈尔滨:东北林业大学,2007.
    [68]孟庆英,张必弦,张海玲,等.NaCl胁迫下番茄若干生理指标的变化[J].北方园艺,2008,11:30-33.
    [69]涂三思.黄姜POD和EST同工酶及高温胁迫下脯氨酸可溶性糖和丙二醛含量变化研究[D].武汉:华中农业大学,2004.
    [70]孟令波,李淑敏.高温胁迫对黄瓜生理生化过程的影响[J].哈尔滨学院学报,2003,24(10):121-125.
    [71]吴国胜,王永键.大白菜热害发生规律及耐热性筛选方法的研究[J].华北农学报,1995,10(1):111-115.
    [72]李德全,邹琦,陈炳嵩.土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质[J].植物生理学报,1992,18(1):37-44.
    [73]王静,杨德光,马凤鸣,等.水分胁迫对玉米叶片可溶性糖和脯氨酸含量的影响[J].玉米科学,2007,15(6):57-59.
    [74]孙广玉,侯晨.盐碱土条件下马蔺幼苗渗透调节物质和光合特性对干旱的响应[J].水土保持学报,2008,22(2):202-206.
    [75]刘祖琪.植物抗性生理学[M].北京:中国农业出版社,1994.
    [76]叶晓青,王松凤,汤日圣,等.低温处理对红粉佳人生理生化特性的影响[J].江苏农业学报,2008,24(5):612-615.
    [77]李荣春.Cd、Pb及其复合污染对烤烟叶片生理生化及细胞显微结构的影响[J].植物生态学报,2000,22(4):238-242
    [78]李晓科.Cd、Pb及其复合污染对大麦(Hordeum vulgare)毒性效应的研究[D].山西:山西大学,2007.
    [79]田晓艳,刘延吉.低钾胁迫对玉米体内N、P、K、转化酶及可溶性糖分配的影响[J].玉米科学,2008,16(5):80-82,86.
    [80]孙赛初,王焕校,李启任.水生维管束植物受镉污染后的生理变化及受害机制初探[J].植物生理学报,1985,11(2):113-121.
    [81]郭智,原海燕,奥岩松.龙葵和茄子幼苗对镉胁迫的生理响应[J].生态环境,2008,17(3),1009-1015.
    [82]张杰,梁永超,娄运生,等.镉胁迫对两个水稻品种幼苗光合参数、可溶性糖和植株生长的影响[J].植物营养与肥料学报,2005,11(6):774-780.
    [83]郭燕梅.Cd胁迫对杂交水稻及其亲本生理特性和Cd含量的影响[D].雅安:四川农业大学,2007.
    [84]Wang X,Hou P.Plant adaptation on physiology under drought stress[J].Arid Zone Research,2001,18(2):42-46.
    [85]邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000:151-153.
    [86]安华明,樊卫国,刘庆林,等.刺梨果实和叶片发育过程中抗坏血酸和抗氧化酶的协同变化[J].园艺学报,2007,34(5):1293-1296.
    [87]安华明,陈力耕,樊卫国,等.刺梨叶衰老过程中维生素C含量和部分抗氧化酶活性的变化[J].园艺学报,2005,32(6):994-997.
    [88]赵江涛,李晓峰,李航.可溶性糖在高等植物代谢调节中的生理作用[J].安徽农业科学.2006,34(24):6423-6425.
    [89]赵步洪,张洪熙,奚岭林,等.杂交水稻不同器官镉浓度与累积量[J].中国水稻科学,2006,20(3):306-312.
    [90]肖美秀,林文雄,陈祥旭,等.镉在水稻体内的分配规律与水稻镉耐性的关系[J].中国农学通报,2006,22(2):379-381.
    [91]王焕校.污染生态学基础[M].云南:云南大学出版社,1990,71-148.
    [92]Shigeru S,Takuya I,M yoshi F,et al.Heavy metal immobilization in aqueous solution using calcium phosphate and calcium hydrogen phosphates[J].Colloid and interface Sci.,2003,259:401-410.
    [93]李兆军,马国瑞,徐建民,等.植物适应重金属Cd胁迫的生理及分子生物学机理[J].土壤通报,2004,35(2):234-238.
    [94]全先庆,张洪涛,单雷,等.植物金属硫蛋白及其重金属解毒机制研究进展[J].遗传,2006,28(3):375-382.
    [95]HE Jun-Yu,ZHU Cheng,REN Yan-Fang,et.al.Uptake,Subcellular Distribution,and Chemical Forms of Cadmium in Wild-Type and Mutant Rice[J].Pedosphere,2008,18(3):371-377.
    [96]徐勤松,施国新,周耀明,等.镉在黑藻叶细胞中的亚显微定位分布及毒害效应分析[J].实验生物学报,2004,37(6):461-468.
    [97]Regina Vogeli-Lange,George J.Wagner.Subcellular Localization of Cadmium and Cadmium-Binding Peptides in Tobacco Leaves[J].Plant Physilo,1990,92:1086-1093.
    [98]Lozano-Rodriguez E,Hernandez LE,Bonay P,et.al.Distribution of cadmium in shoot and root tissues of maize and pea plants:Physiological disturbances[J].Journal of Experimental Botany,1997,48:123-128.
    [99]章秀福,王丹英,储开富,等.镉胁迫下水稻SOD活性和MDA含量的变化及其基因型差异[J]. 中国水稻科学,2006,20(2):194-198.
    [100]段昌群,王焕校.重金属对蚕豆的细胞遗传学毒理作用和对蚕豆根尖微核技术的探讨[J].植物学报(英文版),1995,37(1):14-24.
    [101]Barth C,Moeder W,Klessig D F,et.al.The timing of senescence and response to pathogens in altered in the aseorbate-deficient Arabidopsis mutant vitamin-C[J].Plant Physiology,2004,134(4):1784-1792.
    [102]宋玉萍,李英,高红亮,等.不结球白菜维生素C积累与相关酶活性研究[J].西北植物学报,2007,27(11):2240-2244.
    [103]王芳,黄朝表,刘鹏,等.铝对荞麦和金荞麦根系分泌物的影响[J].水土保持学报,2005,2:107-109.
    [104]陈朝明,龚慧群,王凯荣.Cd对桑叶品质、生理生化特性的影响及其机理研究[J].应用生态学报,1996.7(4):41-48.
    [105]周建华,王永锐.硅营养缓解水稻幼苗Cd、Cr的毒害的生理研究[J].应用与环境生物学报,1999,5(1):11-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700