棘球绦虫的DNA条形码可行性分析及高原鼠兔棘球绦虫感染率初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
包虫病(Echinococcosis),又名棘球蚴病(Echinococcosis)是由棘球绦虫(Echinococcus)引起的一种人兽共患病。囊型包虫病(Cysitc Echinococcosis, CE)由细粒棘球绦虫(E. granulosus)引起,泡型包虫病(Alveolar Echinococcosis, AE)由多房棘球绦虫(E. multilocularis)引起。四川省石渠县,位于青藏高原东部,是世界上包虫病感染最严重的地区之一,当地分布着全球常见的细粒棘球绦虫、多房棘球绦虫和本地仅有的石渠棘球绦虫(E. shiquicus)。棘球绦虫属内各种的分类界定一直以来饱受争议:最早对棘球绦虫的分类主要采用形态学及生态学的方法,但此方法多用于成年虫体,且对样本质量的要求较高;后随着分子生物学的发展,大量线粒体基因和核基因也被用来鉴别棘球绦虫。但至今并没有一种受到广泛认可且简单易行的鉴别方法。随着近些年DNA条形码(DNA barcoding)技术的不断发展,越来越多的生物都被证实了可以用此技术进行鉴别:一个适用于全球生物的鉴别手段和数据库也日益形成。本研究的第一部分,即首次以我们开展工作的石渠县已发现的三种棘球绦虫为基础,结合GenBank中棘球绦虫属各个种的序列,探索DNA barcoding技术在棘球绦虫属中的适用性。同时,因本实验选用了在整个带科(Taeniidae)都适用的通用引物,所以也结合以前的研究,探索了DNA barcoding技术在带科中的适用性。
     主要研究结果如下:
     1、本实验成功扩增测序了13个细粒棘球绦虫,15个多房棘球绦虫和17个石渠棘球绦虫个体的序列,并结合了GenBank中已发表的带科中,棘球绦虫属和带绦虫属26个种的396条可用序列进行遗传距离的分析和基因结构的分析。在棘球绦虫属内,种内的平均遗传距离为0.62%,(标准差SD,0.81%;范围0-8.9%);种间的平均遗传距离为9.86%,(标准差SD,1.15%;范围,4%-15.28%).在带绦虫属内,种内的平均遗传距离为1.30%,(标准差SD,2.65%;范围0-11.71%);种间的平均遗传距离为16.06%,(标准差SD,3.28%;范围,3.39%-24.59%).在带科中,种内的平均遗传距离为1.06%,(标准差SD,2.17%;范围0-11.71%);所有种种间的平均遗传距离为16.95%,(标准差SD,4.12%;范围,3.39%-30.69%);不同属种问的平均遗传距离为19.29%,(标准差SD,2.46%;范围,11.99%-30.69%)。证明了DNA barcoding是一种鉴别带科各种的行之有效的方法和技术。
     2、本研究利用限制性片段长度多态性聚合酶链反应技术(PCR-RFLP),以扩增测序成功的13个细粒棘球绦虫,15个多房棘球绦虫和17个石渠棘球绦虫的444-bp的DNA片段为基础,发现内切酶AluI可将细粒棘球绦虫的444-bp片段切为210-bp和234-bp两段;内切酶BfaI可将多房棘球绦虫444-bp的片段切为281-bp和163-bp两段;以上两种限制性内切酶均不能对石渠棘球绦虫相同位点的序列产生作用。因此可结合琼脂糖凝胶电泳技术,在电泳图上将三种虫区分开。此方法可用于青藏高原地区棘球绦虫的鉴别工作。
     本论文中的另一部分,为初步对高原鼠兔感染棘球绦虫的种类和感染率进行研究。
     高原鼠兔(Ochotona curzoniae)是广泛分布于青藏高原地区的一种小型哺乳类动物,可以作为棘球绦虫的中间宿主。此前的研究主要通过剖检和病理学的方法对其棘球绦虫感染率进行调查,研究结果发现高原鼠兔主要感染多房棘球绦虫和石渠棘球绦虫:几乎未发现细粒棘球绦虫。本实验采用剖检和分子生物学检验的方法,选取三种棘球绦虫各自特异的引物,对在四川省石渠县捕获的高原鼠兔感染棘球绦虫的种类和感染率进行研究。
     主要研究结果如下:
     1、筛选了10对已在国内外论文中发表的细粒棘球绦虫、多房棘球绦虫和石渠棘球绦虫各自的特异引物,通过多重对比实验分别选取了对三种棘球绦虫的鉴别效果最好的特异引物。
     2、共捕获和剖检105只高原鼠兔,疑似感染量为9只,分子鉴定后,细粒棘球绦虫感染数量0(感染率0%),多房棘球绦虫感染数量2(感染率1.9%),石渠棘球绦虫感染数量2(感染率1.9%)。还存在着多房棘球绦虫和石渠棘球绦虫两种虫同时感染于同一个个体的情况,数量2(感染率1.9%)。
Echinococcosis is a zoonosis caused by Echinococcus. Cystic echinococcosis (CE) caused by E. granulosus and alveolar echinococcosis (AE) caused by E. multilocularis are distributed all around the world. Shiqu County, on the East Qing-hai Tibet Plateau, is one of the most serious Echinococcus infection districts. Besides the two Echinococcus mentioned above, there is another special species, called E. shiquicus, which is only found existing on the Qing-hai Tibet Plateau. The taxonomy of Echinococcus has been a controversial issue for years:early identification has been based on morphological and ecological features, which were mainly used on adult worms and required high quality samples; as the development of molecular biology, lots of mtDNA and nuclear genes have been used to identify Echinococcus spp., but there has been no standard identification method so far. As a growing technology, DNA barcoding has been proved useful on150,250species (until Feb.2012). In this study, based on the three Echinococcus species, we originally tried to test the utility of DNA barcoding in the genus Echinococcus, with sequences of other Echinococcus spp. in the GenBank. Meanwhile, for the primers we used are family Taeniidae universal primers, we extended the range of our research to the whole family Taeniidae.
     The major results and conclusions are as follows:
     1.13E. granulosus isolates,15E. multilocularis isolates and17E. shiquicus isolates were successfully amplified and sequenced. These45Echinococcus sequences,136Echinococcus sequences and260Taenia sequences from GenBank were cut and calculated separately and integrally. In the genus Echinococcus, the mean K2P distance within species is0.62%,(SD,0.81%; range,0-8.9%). Mean K2P distance between species is9.86%,(SD,1.15%; range,4%-15.28%). In the genus Taenia, the mean K2P distance within species is1.30%,(SD,2.65%; range,0-11.71%). Mean K2P distance between species is16.06%,(SD,3.28%; range,3.39%-24.59%). In the family Taeniidae, the mean K2P distance within species is1.06%,(SD,2.17%; range,0-11.71%). Mean K2P distance between species is16.95%,(SD,4.12%; range,3.39%-30.69%). Mean K2P distance between genera is19.29%,(SD,2.46%; range,11.99%-30.69%). The COI DNA barcodes were successfully proved to be a powerful and reliable tool for species identification in the family Taeniidae.
     2. A polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) based on the444-bp COI gene was developed to give a rapid way to differentiate among E. granulosus, E. multilocularis, and E. shiquicus, for practical application in the Eastern Tibetan Plateau. The E. granulosus samples were yielded to two clear bands of210-bp and234-bp using AluI, and the samples from E. multilocularis were yielded to two clear bands of281-bp and163-bp using BfaI. E. shiquicus could be yielded by neither restriction endonuclease above. These results could be detected directly by agarose gel electrophoresis.
     The second part of this dissertation is a primary study on the Echinococcus infection of plateau pika (Ochotona curzoniae)
     Plateau pika is a kind of small mammal widely distributed on the Qing-hai Tibet Plateau. It can serve as an intermediate host for Echinococcus. Former studies mainly used autopsy and histopathological examinations to survey its infection and found it mainly infected with E. multilocularis and E. shiquicus. This present study used the autopsy method and molecular technology to investigate the Echinococcus infection rates of plateau pika from Shiqu County, Sichuan Province, by choosing specific primers for the three Echinococcus species.
     The major results and conclusions are as follows:
     1. Three out of ten published and designed specific primers for E. multilocularis, E. shiquicus and E. granulosus were chosen to evaluate the Echinococcus infection rates.
     2. In total, nine isolates were suspected infected out of105hunted plateau pikas. The molecular identification result is that zero pikas were infected with E. granulosus (infection rate0); two pikas were infected with E. multilocularis (infection rate1.9%); two pikas were infected with E. shiquicus (infection rate1.9%). Two pikas were mixed infected with E. multilocularis and E. shiquicus (infection rate1.9%)
引文
[1]阿里木·马木提.包虫病地理分布、危害及防治策略[J].新疆医学,2011,(41):96-106.
    [2]马秀敏.棘球绦虫基因多态性及实验诊断学研究[D].乌鲁木齐:新疆医科大学,2007.
    [3]Kumaratilake LM, Thompson RCA. A review of taxonomy and speciation of the genus Echinococcus rudolphi 1801 [J]. Z. Parasitenkunde,1982, (68): 121-146.
    [4]马金友,彭文峰.棘球绦虫分子分类的研究进展[J].医学动物防治,2007,23(2):93-95.
    [5]朵红.棘球绦虫分类学研究进展[J].上海畜牧兽医通讯,2011,(1):10-11.
    [6]刘海青,何多龙,赵延梅,刘玉芳.青海省玉树藏族自治州棘球蚴病血清流行病学调查[J].中国人兽共患病学报,2009,25(3):294-297.
    [7]Hiittner M, Romig T. Echinococcus species in African wildlife [J]. Parasitology,2009,136(10):1089-1095.
    [8]Soriano SV, Pierangeli NB, Pianciola L, Mazzeo M, Lazzarini LE, Saiz MS, Kossman AV, Bergagna HF, Chartier K, Basualdo JA. Molecular characterization of Echinococcus isolates indicates goats as reservoir for Echinococcus canadensis G6 genotype in Neuquen, Patagonia Argentina [J]. Parasitol. Int.,2010,59 (4): 626-628.
    [9]唐崇惕,崔贵文,钱玉春,康育民,彭文峰,王彦海,吕洪昌,陈东.我国内蒙古大兴安岭北麓泡状肝包虫种类的研究:Ⅰ.多房棘球绦虫(Echinococcus multilocularis Leuckart,1863)[J]中国人兽共患病学报,2006,22(12):1089-1094.
    [10]唐崇惕,崔贵文,钱玉春,康育民,彭文峰,王彦海,吕洪昌,陈东.我国内蒙古大兴安岭北麓泡状肝包虫种类的研究:Ⅱ.西伯利亚棘球绦虫(Echinococcus sibiricensis Rausch et Schiller,1954)[J]中国人兽共患病学报,2007a,23(5):419-426.
    [11]唐崇惕,康育民,崔贵文,钱玉春,王彦海,彭文峰,吕洪昌,陈东.我国内蒙古大兴安岭北麓泡状肝包虫种类的研究:Ⅲ.苏俄棘球绦虫(Echinococcus russicensis sp.nov.)[J]中国人兽共患病学报,2007b,23(10):957-963.
    [12]何金戈,邱加闽,刘凤洁,陈兴旺,刘大伦,陈卫东,张奕,Schantz Peter.四川西部藏区包虫病流行病学研究:Ⅱ.牲畜及野生动物两型包虫病感染状况调查[J].中国人兽共患病杂志,2000,16(5):62-65.
    [13]Xiao N, Qui J, Nakao M, Li T, Yang W, Chen X, Schantz P, Craig PS, Ito A. Echinococcus shiquicus n. sp., a taeniid cestode from Tibetan fox and plateau pika in China [J]. Int. J. Parasitol.,2005, (35):693-701.
    [14]肖宁,邱加闽,Nakao M,李调英,陈兴旺,Schantz PM, Craig PS, Ito A.青藏高原东部地区发现的新种:石渠棘球绦虫的生物学特征[J].中国寄生虫学与寄生虫病杂志,2008,26(4):307-312.
    [15]王正寰,王小明,丁由中.狐狸在两型包虫病传播途径中所起的作用[J].自然杂志,2003,25(5):255-260.
    [16]Thompson RCA. The taxonomy, phylogeny and transmission of Echinococcus [J]. Exp. Parasitol.,2008, (119):439-446.
    [17]刘春燕,马秀敏,丁剑冰,谌宏鸣.我国棘球绦虫感染的不同宿主状况[J].中国人兽共患病学报,2009,25(6):586-588.
    [18]黎能金,张霞,邱海勇,秦胜超,李民杰.2008年四川省阿坝藏族羌族自治州人与家畜棘球蚴病流行病学调查研究[J].2010,10(1):26-29.
    [19]王春江,李金岭,吕广国,何凤军,张守红.包虫病的流行过程、症状及危害[J].兽医导刊,2011,(6):24-25.
    [20]努斯来提,马利克,王文,海如拉,买买提江,艾尔肯.新疆家畜棘球蚴病感染情况调查[J].草食家畜,2010,9(3):80-83.
    [21]达赖.棘球蚴病的防控[J].2010,31(11-12):192-193.
    [22]刘洪波,谢妍,王宁.包虫病[J].中国实用乡村医生杂志,2006,13(11):10-11.
    [23]邱加闽,刘凤洁,Schantz Peter, Akira Ito, Carol Dleker,何金戈,张奕,陈兴旺.四川西部藏区包虫病流行病学研究:Ⅰ.囊型包虫病与泡型包虫病人群感染特点与分布趋势[J].中国人兽共患病杂志,2000,16(2):77-80.
    [24]努斯来提,马利克,祖力胡马尔.新疆部分县市的人兽共患棘球蚴病(包虫病)感染情况与对策[J].新疆畜牧业,2011,6:45-46.
    [25]李艳芳,李德寿.海晏地区棘球蚴病流行情况调查[J].2010,27(5):38.
    [26]王正寰.四川省石渠县藏狐的生态学研究[D].上海:华东师范大学博士学位论文,2005.
    [27]马波.高原鼠兔洞口数量与结构的空间分布特征研究[D].上海:华东师范大学硕士学位论文,2011.
    [28]陈盖.石渠县志[Z].四川人民出版社,2000.
    [29]Tautz D, Arctander P, Minelli A. DNA points the way ahead in taxonomy [J]. Nature,2002,418(6897):479.
    [30]Hebert PDN, Cywinska A, Ball SL, de Waard JR. Biological identifications through DNA barcodes [J]. Proc. R. Soc. Lond. B,2003a, (270):313-322.
    [31]Hebert PDN, Ratnasingham S, de Waard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species [J]. Proc. R. Soc. Lond. B,2003b, (270):96-99.
    [32]程佳月,王丽华,彭克美,张宁波,唐中林,杨述林,李奎.国际生命条形码计划-DNA Barcoding[J]生物技术,2009,36(8):49—53.
    [33]陈念,付晓燕.DNA条形码:物种分类和鉴定技术[J].生物技术通讯2008,19(4):629-631.
    [34]傅美兰,彭建军,王莹,于冬梅,王利利,张宇姝.DNA条形码技术的应用和分析[J].河南师范大学学报(自然科学版),2010,38(4):118-122.
    [35]Nakao M, Sako Y, Yokoyama N, Fukunaga M, Ito A. Mitochondrial genetic code in cestodes [J]. Mol. Biochem. Parasitol.,2000, (111):415-424.
    [36]Bowles J, Blair D, McManus DP. Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing [J]. Mol. Biochem. Parasitol.,1992, (54):165-174.
    [37]Harandi MF, Hobbs RP, Adams PJ, Mobedi I, Morgan-Ryan UM, Thompson RC. Molecular and morphological characterization of Echinococcus granulosus of human and animal origin in Iran [J]. Parasitology,2002, (125): 367-373.
    [38]Obwaller A, Schneider R, Walochnik J, Gollackner B, Deutz A, Janitschke K, Aspock H, Auer H. Echinococcus granulosus strain differentiation based on sequence heterogeneity in mitochondrial genes of cytochrome c oxidase-1 and NADH dehydrogenase-1 [J]. Parasitology,2004, (128):569-575.
    [39]Beato S, Parreira R, Calado M, Gracio MA. Apparent dominance of the G1-G3 genetic cluster of Echinococcus granulosus strains in the central inland region of Portuga [J]. Parasitol. Int.2010,59 (4):638-642.
    [40]Simsek S, Kaplan M, Ozercan IH. A comprehensive molecular survey of Echinococcus granulosus in formalin-fixed paraffin-embedded tissues in human isolates in Turkey [J]. Parasitol Res,2011, (109):411-416.
    [41]Beyhan YE, Umur S. Molecular characterization and prevalence of cystic echinococcosis in slaughtered water buffaloes in Turkey [J]. Vet. Parasitol.2011, 181 (2-4):174-179.
    [42]Bowles J, McManus DP. Genetic characterization of the Asian Taenia, a newly described taeniid cestode of humans [J]. Am. J. Trop. Med. Hyg.,1994, (50):33-44.
    [43]Okamoto M, Bessho Y, Kamiya M, Kurosawa T, Horii T. Phylogenetic relationships within Taenia taeniaeformis variants and other taeniid cestodesinferred from the nucleotide sequence of the cytochrome c oxidase subunit I gene [J]. Parasitol. Res.,1995,81:451-458.
    [44]Gasser RB, Zhu XQ, McManus DP. NADH dehydrogenase subunit 1 and cytochrome c oxidase subunit I sequences compared for members of the genus Taenia (Cestoda) [J]. Int. J. Parasitol.,1999, (29):1965-1970.
    [45]Hancock K, Broughel DE, Moura IN, Khan A, Pieniazek NJ, Gonzalez AE, Garcia HH, Gilman RH, Tsang VC. Sequence variation in the cytochrome oxidase I, internal transcribed spacer 1, and Ts14 diagnostic antigen sequences of Taenia solium isolates from South and Central America, India, and Asia [J]. Int. J. Parasitol.2011,31 (14):1601-1607.
    [46]Varcasia A, Lightowlers MW, Cattoli G, Cancedda GM, Canu S, Garippa G, ScalaA. Genetic variation within Taenia multiceps in Sardinia, Western Mediterranean (Italy) [J]. Parasitol. Res.2006,99 (5):622-626.
    [47]Zhang L, Hu M, Jones A, Allsopp BA, Beveridge I, Schindler AR, Gasser RB. Characterization of Taenia madoquae and Taenia regis from carnivores in Kenya using genetic markers in nuclear and mitochondrial DNA, and their relationships with other selected taeniids [J]. Mol. Cell. Probes 2007,21 (5-6):379-385.
    [48]Lavikainen A, Haukisalmi V, Lehtinen MJ, Henttonen H, Oksanen A, Meri S. A phylogeny of members of the family Taeniidae based on the mitochondrial coxl and nadl gene data [J]. Parasitology,2008,135 (12):1457-1467.
    [49]Lavikainen A, Haukisalmi V, Lehtinen MJ, Laaksonen S, Holmstrom S, Isomursu M, Oksanen A, Meri S. Mitochondrial DNA data reveal cryptic species within Taenia krabbei [J]. Parasitol. Int.2010,59 (2):290-293.
    [50]Lavikainen A, Laaksonen S, Beckmen K, Oksanen A, Isomursu M, Meri S. Molecular identification of Taenia spp. in wolves(Canis lupus), brown bears (Ursus arctos) and cervids from North Europe and Alaska [J]. Parasitol. Int.2011, 60(3):289-295.
    [51]Liang XJ, Zhang HJ, Li GQ, Li JP, Zhang GL, Pu WJ, Li GQ. Amplification and Phylogenetic Analysis of Mitochondrial coxl and nadl Genes for Taenia hydatigena in Dog from Guangdong Province [J]. Journal of Foshan University (Natural Science Edition).2010,28 (5):72-76.
    [52]Oryan A, Nazifi S, Sharifiyazdi H, Ahmadnia S. Pathological, molecular, and biochemical characterization of Coenurus gaigeri in Iranian native goats [J]. J. Parasitol.2010,96 (5):961-967.
    [53]Avcioglu H, Yildirim A, Duzlu O, Inci A, Terim KA, Balkaya I. Prevalence and molecular characterization of bovine coenurosis from Eastern Anatolian region of Turkey [J].Vet. Parasitol.2011,176 (1):59-64.
    [54]Jiang WB, Wang XM, Li M, Wang ZH. Identification of the Tibetan fox (Vulpes ferrilata) and the red fox(Vulpes vulpes) by copro-DNA diagnosis [J]. Mol. Ecol. Resour.,2010,11(1):206-210.
    [55]Ito A, Agvaandaram G, Bat-Ochir O, Chuluunbaatar B, Gonchigsenghe N, Yanagida T, Sako Y, Myadagsuren N, Dorjsuren T, Nakaya K, Nakao M, Ishikawa Y, Davaajav A, Dulmaa N. Histopathological, serological and molecular analyses of alveolar echinococcosis cases in Mongolia [J]. Am. J. Trop. Med. Hyg.,2010, (82):266-269.
    [56]Galimbertid A, Romano F, Genchi M, Paoloni D, Vercillo F, Bizzarri L, Sassera D, Bandi C, Genchi C, Ragni B, Casiraghi M. Integrative taxonomy at work:DNA barcoding of taeniids harboured by wild and domestic cat [J]. Mol. Ecol. Resour.,2012,12(3):403-413.
    [57]Jeon HK, Eom KS. Taenia asiatica and Taenia saginata:genetic divergence estimated from their mitochondrial genomes [J]. Exp. Parasitol.,2006, (113): 58-61.
    [58]Yamasaki H, Allan JC, Otake SM, Nakao M, Sako Y, Nakaya K, Dongchuan Q, Mamuti W, Craig PS, Ito A. DNA differential diagnosis of Taeniasis and cysticercosis by Multiplex PCR [J]. J. Clin. Microbiol.2004, (42):548-553.
    [59]Yamasaki H, Nakao M, Nakaya K, Schantz PM, Ito A. Genetic analysis of Echinococcus multilocularis originating from a patient with alveolar echinococcosis occurring in Minnesota in 1977 [J]. Am. J. Trop. Med. Hyg.,2004, (79):245-247.
    [60]Jeon HK, Kim KH, Eom KS. Complete sequence of the mitochondrial genome of Taenia saginata:Comparison with T. solium and T. asiatica [J]. Parasitol. Int.,2007,56(3):243-246.
    [61]Jia WZ, Yan HB, Guo AJ, Zhu XQ, Wang YC, Shi WG, Chen HT, Zhan F, Zhang SH, Fu BQ, Littlewood DTJ, Cai XP. Complete mitochondrial genomes of Taenia multiceps, T. hydatigena and T. pisiformis:additional molecular markers for a tapeworm genus of human and animal health significance [J]. BMC Genomics,2010, (11):447.
    [62]Huttner M, Nakao M, Torsten W, Siefert L, Boomker JDF, Dinkel A, Sako Y Mackenstedt U, Romig T, A. Ito. Genetic characterization and Phylogenetic position of Echinococcus felidis (Cestoda: Taeniidae) from the African lion [J]. Int. J. Parasitol.,2008, (38):861-868.
    [63]Michelet L, Carod J, Rakontondrazaka M, Ma L, Gay F, Dauga C. The pig tapeworm Taenia solium, the cause of cysticercosis:Biogeographic (temporal and spacial) origins in Madagascar [J]. Mol. Phylogenet. Evol.,2010, (55):744-750.
    [64]Nakao M, McManus DP, Schantz PM, Craig PS, Ito A. A molecular phylogeny of the genus Echinococcus inferred from complete mitochondrial genomes [J].Parasitology,2007, (134):713-722.
    [65]Nakao M, Yokoyama N, Sako Y, Fukunaga M, Ito A. The complete mitochondrial DNA sequence of the cestode Echinococcus multilocularis (Cyclophyllidea:Taeniidae) [J]. Mitochondrion,2002, (1):497-509.
    [66]Nakao M, Sako Y, Ito A. The mitochondrial genome of the tapeworm Taenia solium:a finding of the abbreviated stop codon U.J [J]. Parasitol.,2003, (89): 633-635.
    [67]Nakao M, Xiao N, Okamoto M, Yanagida T, Sako Y, Ito A. Geographic pattern of genetic variation in the fox tapeworm Echinococcus multilocularis [J]. Parasitol. Int.2009, (58):384-389.
    [68]Nakao M, Li TY, Han XM, Ma XM, Xiao N, Qiu JM, Wang H, Yanagida T, Mamuti W, Wen H, Moro PL, Giraudoux P, Craig PS, Ito A. Genetic polymorphisms of Echinococcus tapeworms in China as determined by mitochondrial and nuclear DNA sequences [J]. Int. J. Parasitol.,2010, (40): 379-385.
    [69]Nakao M, Yanagida T, Okamoto M, Knapp J, Nkouawa A, Sako Y, Ito A. State-of-the-art Echinococcus and Taenia:phylogenetic taxonomy of human-pathogenic tapeworms and its application to molecular diagnosis [J]. Infect. Genet. Evol.,2010a, (10):444-452.
    [70]Okamoto M, Nakao M, Blair D, Anantaphruti MT, Waikagul J, Ito A. Evidence of hybridization between Taenia saginata and Taenia asiatica [J]. Parasitol. Int.,2010, (59):70-74.
    [71]Myadagsuren, N, Davaajav A, Wandra T, Sandar T, Ichinkhorloo P, Yamasaki H, Sako Y, Nakao M, Sato MO, Nakaya K, Ito A. Taeniasis in Mongolia, 2002-2006 [J]. Am. J. Trop. Med. Hyg.,2007, (77):342-346.
    [72]Moro P, Nakao M, Ito A, Schantz PM, Cavero C, Cabrera L. Molecular identification of Echinococcus isolates from Peru [J]. Parasitol. Int.,2009, (58): 184-186.
    [73]Soriano SV, Pierangeli NB, Pianciola L, Mazzeo M, Lazzarini LE, Saiz MS, Kossman AV, Bergagna HF, Chartier K, Basualdo JA. Molecular characterization of Echinococcus isolates indicates goats as reservoir for Echinococcus canadensis G6 genotype in Neuquen, Patagonia Argentina [J]. Parasitol. Int.2010,59(4): 626-628.
    [74]Le TH, Blair D, Agatsuma T, Humair PF, Campbell NJH, Iwagami M, Littlewood DTJ, Peacock B, Johnston DA, Bartley J, Rollinson D, Herniou EA, Zarlenga DS, McManus DP. Phylogenies inferred from mitochondrial gene orders—A cautionary tale from the parasitic flatworms [J]. Mol. Biol. Evol.,2000, (17):1123-1125.
    [75]Varcasia A, Canu S, Kogkos A, Pipia AP, Scala A, Garippa G, Seimenis A. Molecular characterization of Echinococcus granulosus in sheep and goats of Peloponnesus, Greece [J]. Parasitol. Res.2007, (101):1135-1139.
    [76]Snabel V, Altintas N, D'Amelio S, Nakao M, Romig T, Yolasigmaz A, Gunes K, Turk M, Busi M, Huttner M, Sevcova D, Ito A, Altintas N, Dubinsky P. Cystic echinococcosis in Turkey:genetic variability and first record of the pig strain (G7) in the country [J]. Parasitol. Res.,2009, (105):145-154.
    [77]Lara A, Ponce de Leon JL, Rodriguez R, Casane D, Cote G, Bernatchez L, Garcia-Machado E. DNA barcoding of Cuban freshwater fishes:evidence for cryptic species and taxonomic conflicts [J]. Mol. Ecol. Resour.,2009, (10): 421-430.
    [78]Waldenstrom J, Bensch S, Hasselquist D, Ostman O. A New Nested Polymerase Chain Reaction Method Very Efficient in Detecting Plasmodium and Haemoproteus Infections From Avian Blood [J]. J. Parasitol.,2004,90(1): 191-194.
    [79]Brown WM, George M Jr., Wilson A C. Rapid evolution of animal mitochondrial DNA [J]. PNAS,1979, (76):1967-1971.
    [80]Knowlton N, Weigt LA. New dates and new rates for divergence across the Isthmus of Panama [J]. Pro c. R. Soc. Lond.1998, (B265):2257-2263.
    [81]Wang Q, Vuitton DA, Qiu J, Giraudoux P, Xiao Y, Schantz PM, Raoul F, Li T, Yang W, Craig PS. Fenced pasture:a possible risk factor for human alveolar echinococcosis in Tibetan pastoralist communities of Sichuan, China [J]. Acta Tropica,2004, (90):285-293.
    [82]范微.高原鼠兔饲养管理和基本动物实验技术的建立[J].四川动物,2010,29(3):478-480.
    [83]刘季科,张云占,辛光武.高原鼠兔数量与危害程度的关系[J].动物学报,1980,(26):378-385.
    [84]蒋志刚,夏武平.高原鼠兔食物资源利用的研究[J].兽类学报,1985,(5):251-262.
    [85]丁晓涛,何秀琼,曹玉琼,代龙.高原鼠兔寄生虫感染调查报告[J].四川动物,1999,18(1):34,43.
    [86]李德浩主编.青海经济动物志[M].西宁:青海人民出版社,1989.689-691.
    [87]李富忠,汪立茂,李广清,吴国康,魏柏青,陈洪舰,刘振才.青海田鼠活动规律的调查[J],现代预防医学,2001,28(4):429-430.
    [88]杨文.四川藏区包虫病流行现状与防治对策[C],全国人兽共患病学术研讨会论文集,2006,319-320.
    [89]刘君丽.一例人体寄生包虫以及我国不同地区包虫的鉴定[D].上海:第二军医大学,2008.
    [90]Bretagne S, Guillou JP, Morand M, Houin R. Detection of Echinococcus multilocularis DNA in fox faeces using DNA amplification [J]. Parasitology, 1993, (106):193-199.
    [91]Dinkel A, von Nickisch-Rossenegk M, Bilger B, Merli M, Lucius R, Romig T. Detection of Echinococcus multilocularis in the definitive host:coprodiagnosis by PCR as an alternative to necropsy [J]. J. Clin. Microbiol.1998, (36): 1871-1876.
    [92]Nonaka N, Hirokawa H, Inoue T, Nakao R, Ganzorig S, Kobayashi F, Inagaki M, Egoshi K, Kamiya M, Oku Y. The first instance of a cat excreting Echinococcus multilocularis eggs in Japan [J]. Parasitol. Int.,2008, (57): 519-520.
    [93]Abbasi I, Branzburg A, Campos-Ponce M. Copro-diagnosis of Echinococcus granulosus infection in dogs by amplification of a newly identified repeated DNA sequence [J]. Am. J. Trop. Med. Hyg.,2003, (69):324-330.
    [94]Dinkel A, Njoroge EM, Zimmermann A, Walz M, Zeyhle E, Elmahdi IE, Mackenstedt U, Romig T. A PCR system for detection of species and genotypes of the Echinococcusus granulosus-complex with reference to the epidemiological situation in eastern Africa [J]. Int. J. Parasitol,2004, (34):634-653.
    [95]Stefanic S, Shaikenov BS, Deplazes P, Dinkel A,. Torgerson PR, Mathis A. Polymerase chain reaction for detection of patent infections of Echinococcus granulosus ("sheep strain") in naturally infected dogs [J]. Parasitol. Res.,2004, (92):347-351.
    [96]王虎.青海不同宿主原细粒棘球蚴的病原生物学考察[J].地方病通报,1993,8(1):9-10.
    [97]郭再宣,何多龙,李予青,赵国强,马应福,刘培运.青海高原野生动物棘球绦虫感染情况的调查[J].中国寄生虫学与寄生虫病杂志,1999,S1:135-137.
    [98]吴献洪,王虎,张静宵,马宵,刘玉芬,韩秀敏,刘海涛,蔡辉霞,赵延梅,马俊英,刘培运,曾诚.青海省治多县棘球蚴病流行病学调查报告[J].中国寄生虫学与寄生虫病杂志,2007,25(3):229-231.
    [99]王虎,马俊英,韩秀敏,吴献洪,肖宁,Akira Ito,Philips Craig青海省果洛州人与动物棘球蚴病调查[J].中国地方病学杂志,2007,26(5):553-556.
    [100]张静宵,王虎.青海省动物棘球蚴病及棘球绦虫感染的流行病学调查[J].中国寄生虫学与寄生虫病杂志,2007,25(4):350-352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700