MYH9-RD一家系临床特点分析、基因突变检测和致病机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章非肌球蛋白重链9基因相关疾病家系收集、家系诊断和临床特点分析
     目的:收集一非肌球蛋白重链9基因相关疾病(MYH9-RD)家系患者的详细遗传资料。通过分析该MYH9-RD家系的临床特点、遗传方式和实验室特点来对该家系进行诊断,以探讨该家系MYH9-RD的致病机理。
     方法:登记家系所有成员并进行详细的临床体征检查和实验室检测。每一个家系成员进行临床体征包括白内障、神经性耳聋、异常出血、肾损害等检查及其它并发症调查和实验室评估等;分别采用自动血细胞计数仪法和手工法计数血小板数量,同时分析巨大血小板和包涵体的特点和百分率;应用染色体核型分析技术进行细胞学诊断;应用光学显微镜和电子显微镜观察中性粒细胞包涵体和血小板的形态特点和超微结构特点。
     结果:通过实验室评估和临床表现显示:该家系为常染色体显性遗传性MYH9-RD,外周血染色体核型分析正常。调查的该MYH9-RD家系4代32人中有15人患病。所有患者均具有典型的“血小板减少、巨大血小板和粒细胞包涵体”三联症,都有轻至中度的出血倾向,并且与血小板的数量或大小无关。而且大多数患者的临床表型高度复杂,其中一些患者还伴有严重的白血病、青光眼、心功能不全、转氨酶升高、血脂升高、哮喘、鼻炎及白内障等多种疾病,不同于目前国内外报道的家系。MYH9-RD家系患者机数血小板数明显低于镜数血小板数(P<0.01)。电镜下可见清晰的巨大血小板和包涵体的超微结构,包涵体电镜下的结构为椭圆形或梭形,位于中性粒细胞的边缘。此外,正常对照者血小板数量、形态和结构均正常,而且中性粒细胞中未见包涵体。
     结论:通过临床表现和实验室特点分析,该家系MYH9-RD诊断成立。该家系具有规模大、患者人数多、临床表型复杂多样的特点,是一个不同于目前国内外报道的大家系。该家系将为MYH9相关疾病的深入研究奠定基础。此外,为了正确反映巨大血小板患者的血小板数量,我们应使用人工计数法而不是细胞自动计数仪法来计数血小板的数量。
     笔二章MYH9-RD家系MYH9基因突变检测与分析
     目的:探讨和分析—MYH9-RD家系非肌球蛋白重链9(MYH9)基因的突变情况。
     方法:签定知情同意书后,采集患者和家系成员的外周血。应用聚合酶链反应和直接测序的方法对15例家系患者MYH9基因的全部40个外显子和侧翼区进行突变检测和分析,选择家系正常个体为对照。测序结果通过DNAMAN软件与Genebank中的正常MYH9基因序列进行比对。
     结果:家系患者MYH9基因的所有外显子与侧翼区均未检测到致病性突变,只有25号和18号外显子各有一同义突变。
     结论:本家系可能存在新的基因突变类型或此类疾病的另一个新的致病基因或其它原因,其临床表型复杂多样可能与此有关。对该家系的深入研究将对进一步阐明该遗传性疾病形成的分子机制具有重要的意义。
     第三章MYH9-RD家系非肌性肌球蛋白重链ⅡA在中性粒细胞中的定位与表达
     目的:观察该MYH9-RD家系患者非肌性肌球蛋白重链ⅡA (nonmuscle myosin heavy chain-ⅡA, NMMHC-ⅡA)在中性粒细胞中的定位和表达,阐明MYH9-RD中性粒细胞包涵体的性质和形成特点,以探讨MYH9-RD的致病机制。
     方法:分离MYH9-RD患者和正常对照者外周血中性粒细胞。应用免疫荧光染色技术,观察MYH9-RD患者与正常对照者NMMHC-ⅡA在胞浆中的分布情况;应用Westernblot技术分析MHY9-RD中患者和正常对照者之间NMMHC-ⅡA蛋白的表达水平。
     结果:MYH9-RD患者中性粒细胞胞浆中存在“椭圆形及梭形”包涵体的形态和轮廓,与瑞特姬姆萨染色显示的包涵体形状、大小基本一致,但更为清晰;而正常对照中性粒细胞胞浆中的荧光呈弥散分布,无丛集现象,未见包涵体;Westernblot结果显示患者NMMHC-ⅡA含量较正常对照降低。
     结论:免疫荧光技术和Westernblot技术均显示患者和正常人之间MYH9基因编码蛋白NMMHC-ⅡA在中性粒细胞中的表达和分布存在异常,提示NMMHC-ⅡA的显性负性效应导致了中性粒细胞包涵体的产生,表明本家系MYH9-RD患者中性粒细胞包涵体的主要构成成份和性质是非肌性肌球蛋白ⅡA, NMMHC-ⅡA是本家系致病机理的一个重要方面。虽然本家MYH9基因40个外显子和侧翼区未检测到致病性突变,但本家系的致病基因有可能还是由MYH9基因异常导致的。同时,免疫荧光染色技术较瑞特姬姆萨染色法更敏感,特异性更强,对诊断MYH9-RD具有重要的意义。
     第四章MYH9-RD家系血小板中NMMHC-ⅡA和膜糖蛋白的检测与分析
     目的:通过分析该MYH9-RD家系患者血小板膜糖蛋白表达差异和NMMHC-ⅡA在血小板中的分布特点,来进一步探讨该家系血小板与MYH9-RD之间的致病机理。
     方法:采取家系患者和正常对照者的外周血,并分离血小板。应用流式细胞术对MYH9-RD家系患者与正常个体之间的血小板膜糖蛋白GPⅡb/IIIa(CD41/61)、GP I a(CD49b)、GP I b/IX/V (CD42a) GPⅠb(CD42b)和GPⅣ(CD36)进行检测,运用免疫荧光方法观察NMMHC-ⅡA在正常人和患者之间的分布。
     结果:家系患者血小板膜糖蛋白GPⅡb/Ⅲa(CD41/61)、GP I a(CD49b)、GPⅠb/Ⅸ/Ⅴ(CD42a) GPⅠb(CD42b)和(GPIV(CD36)检测结果正常,血小板膜糖蛋白表达量在家系患者和正常对照者之间,无统计学意义(P>0.05);但家系患者个体之间血小板的活化水平不同。免疫荧光结果显示患者血小板中NMMHC-ⅡA在血小板中央区染色分布均匀,但是在血小板的外围染色较密集;而正常人结果显示NMMHC-ⅡA在血小板中是呈均匀分布的。
     结论:家系患者中血小板中NMMHC-ⅡA蛋白分布存在异常,提示家系患者巨大血小板的形成可能与NMMHC-ⅡA异常分布有关;虽然家系患者和正常个体之间的血小板膜糖蛋白表达没有差异,但是家系患者之间血小板的活化水平差异却较大,提示MYH9-RD本家系患者临床表型复杂多样可能与血小板活化水平相关。
PART I Family collection, diagnosis and clinical features analysis of non-myosin heavy chain 9 related disease
     Objective To collect the detailed genetic resource in this family with non-muscle myosin heavy chain 9 related disease(MYH9-RD) and make a diagnosis for this family by analyzing the clinical manifestations,inheritance, laboratory features to explore the pathgenic mechanism of MYH9-RD in this family.
     Methods All of the family members were enrolled in the current study and a detailed screening including clinical and laboratory features were made for this family members. Family members were screened for the presence or absence of clinical manifestations including nephritis, sensorineural hearing loss, cataract, abnormal bleeding or renal disease etc, and other complications and laboratory evaluation. Platelet counts were examined by automatic blood cell counter and morphology, respectively. Meanwhile characteristic and percentage of giant platelet and neutrophil inclusion bodies were analyzed by morphology.Technique of chromosome karyotyping was applied to carry diagnostic cytogenetics, technique of light microscope and electron microscope were applied to analyze the cell morphology and ultrastructure of platelet and inclusion bodies in granulocytes.
     Results Based on the laboratory evulation of peripheral blood and clinical manifestations,15 patients with a autosomal dominant disorder markedly showed thrombocytopenia, giant platelets and inclusion bodies in granulocytes among 32 menbers of four generations investigated in this family. All the patients not only have thrombocytopenia, giant platelets and neutrophils inclusion, but also have easy bruising and mild to moderate bleeding tendency which is not associated with platelet count or diameter. Moreover, most patients presented complicated clinical manifestations, and some even suffered from serious phenotypes, such as leucocythemia, glaucoma, cataract, proteinuria, abnormal hepatic function, hyperlipemia and disordered action of heart etc, which is distinguished from those families reported previously. Chromosome karyotyping of patients are normal. Platelet count from cell counter was lower than that from microscope (P<0.01). Ultrastructurally, giant platelets and neutrophil inclusions were clearly observed and neutrophil inclusions were oval or spindle-like, localized in the periphery of the neutrophils. Meanwhile, the unaffected members from the family were chosen as control among which normal platelet count, normal platelet volume and without neutrophils inclusions.
     Conclusion The family patients were diagnosed as MYH9-RD based on clinical and laboratory features. Also not only this family is large, but also the phenotypes of the patients from the family had complicated clinical manifestations which were more serious than those families ever reporeted. Therefore, this large family is established and will lay the foundation for the further studying of MYH9-RD. Moreover,microscopic cell counter rather than automatic blood cell counter should be used to examine the correct platelet counts for the giant platelets patients.
     PARTⅡMutation screening and analysis of non-myosin heavy chain 9 gene of the MYH9-RD family
     Objective Mutation screening and analysis of non-myosin heavy chain 9 (MYH9) gene in this family patients with MYH9-RD were given to explore the pathogenic mechanism of MYH9-RD in this family.
     Methods After informed consent, we obtained blood samples from fifteen patients and their normal family members in the family with MYH9-RD. Under standard PCR conditions, genomic DNA was extract-ed from peripheral blood leukocytes. All the 40 exons and franking regions of MYH9 gene from 15 patiens and the normal family member were amplified by polymerase chain reaction (PCR), and PCR products were analyzed by using direct sequcing method.The normal family members were chosen as control subjects, and results of sequence was analyzed comparing with the normal MYH9 gene in the Genebank by DNAMAN software.
     Results Of all the patients, there is no pathogenic mutation in the exons and franking regions of MYH9 gene except a synonymous mutation in the 25 and 18 exon in patients. Meanwhile, there is no mutation in the 40 exons and franking regions of MYH9 gene in normal family members.
     Conclusion There may be a novel mutation or another novel pathogenic gene or other reasons with MYH9-RD which is related to its complex clinicl phenotype of this family. It is of significance to reveal the molecular pathogenesis mechanism of MYH9-RD by further studying this large family.
     PartⅢLocalization and expression of non-myosin heavy chain-ⅡA in granulocytes of the MYH9-RD family
     Objective To infer the formation characterics of neutrophils inclusions and explore the. pathologic mechanism of this MYH9-RD family by detecting and analyzing the localization or distribution and the expression of NMMHCⅡA in neutrophils of MYH9-RD patients.
     Methods Neutrophils were isolated from periperal blood of MYH9-RD patients and normal family members. Normal family members were chosen as control subjects. Immunofluorescence technique was used to observe localization or distribution of NMMHCⅡA in MYH9-RD patients and normal family members. NMMHCⅡA levels in neutrophils from patients and normal family members were analyzed by westernblot.
     Results Oval or spindle-like neutrophils inclusions with green fluorescence in MYH9-RD patients were markly showed by immunofluorescence technique, which matched very well in localization, size and shape, compared with the inclusions, displayed by light microscope (Wright-Giemsa's stain). Meanwhile, no inclusions in the normal family members were observed except a diffusive distribution of fluorescent spot in neutrophils cytoplasm. The result of western blot revealed that the expression of NMMHC-ⅡA in neutrophils of MYH9-RD patients was down regulated than normal family members.
     Conclusion The distribution and expression of NMMHC-ⅡA in neutrophils between patients and the normal family members are all differently revealed by immunofluorescence technology and westernblot technology. It is concluded that the molecular pathogenesis mechanism of this MYH9-RD family may be also resulted from abnormal MYH9 gene because the major component of neutrophils inclusions from this MYH9-RD family patients are NMMHC-ⅡA, and dominant negative effect of NMMHC-ⅡA is involved in the formation of inclusion bodies even though there is no pathogenic mutation in the 40 exons and franking regions of MYH9 gene in this family.It is of significance to reveal the molecular pathogenic mechanism of this MYH9-RD family by the study of NMMHC-ⅡA. Meanwhile, immunofluorescence technology is more sensitive and specific than Wright-Giemsa's staining in detecting inclusions of MYH9-RD patients.
     PartⅣDetection and analy sis of NMMHC-ⅡA and membrane glycoprotein in platelets of the MYH9-RD family
     Objective To further explore the pathogenic mechanism by detect ing and analyzing the distribution of NMMHC-ⅡA and expression of membrane glycoprotein in the platelets of MYH9-RD patients.
     Methods we obtained periperal blood from MYH9-RD patients and normal family members. Meanwhile, platelets were isolated. The platelet membrane glycoprotein including GPⅡb/Ⅲa(CD41/61),GP I a(CD49b), GP I b/IX/V (CD42a) GP I b(CD42b) and GPIV(CD36) was examined by flowcytometry and the distribution of NMMHCⅡA in the platelet was observed by immunofluorescence technique. Normal family members were chosen as control subjects.
     Results Platelet membrane glycoprotein GPⅡb/Ⅲa(CD41/61), GPIa(CD49b), GP I b/Ⅸ/Ⅴ(CD42a) GP I b(CD42b)和GP IV (CD36)were in normal range in the family patients. There is no difference in the expression of the platelet membrane glycoprotein between patients and normal family members by flowcytometry(P> 0.05),while the activated level of platelet membrane protein among the family patients was different. Immunofluorescence technique showed well-distributed staining of NMMHC-ⅡA in the central zone and intensive stainning in the periphery in platelets of the patients, while only showed well-distributed staining in the normal family members.
     Conclusion The distribution of NMMHC-ⅡA in platelets between patients and normal family members was differently displayed by immunofluorescence technology. It revealed that the formation of giant platelets may be related to the abnormal distribution of NMMHC-ⅡA. The difference for the level of platelet membrane glycoprotein between family patients and normal family members is normal while the difference among family patients are quite differently.It revealed that the difference for the activated level of platelet may be involved in the clinical manifestations of family patients.
引文
[1]Hegglin R. Gleichzeitige konstitutionelle veranderungen and neutrophilen un thrombozyten[J]. Helv Med Acta,1945,12:439-440.
    [2]Peterson, LC, Rao, KV, Crosson, JT, et al. Fechtner syndrome:a variant of Alport's syndrome with leukocyte inclusions and macrothrombcytopenia[J]. Blood,1985,65(2):397-406.
    [3]Epstein CJ, Sahud MA, Piel CF, et al. Hereditary macrothrombocytopathia, nephritis and deafness[J]. Am J Med,1972,52(3):299-310.
    [4]May R. Leukozyteneinschlusse[J]. Dtsch Arch Klin Med,1909,96:1-6.
    [5]Heath KE, Campos-Barros A, Toren A, et al. Nonmuscle myosin heavy chain ⅡA mutations define a spectrum of autosomal dominant macrothrombocyto-Penias:May-Hegglin anomaly and Fechtner,Sebastian,Epstein,and Aport-Like sydrome[J].Am.J.Hum.Genet,2001,69(5):1033-1045.
    [6]Noris P, Spedini P, Belletti S, et al. Thrombocytopenia, giant platelets, and leukocyte in-clusion bodies (May-Hegglin anomaly):clinical and laboratory findings[J].Am J Med,1998,104(4):355-360.
    [7]Kodama R, Taketani T, Kunishima S,et al. A rare case of MYH9 disorders presenting with macrothrombocytopenia and deafness caused by MYH9-R 702C mutation[J].Thromb Res,2009,124(4)508-511.
    [8]Yoshinari M, Kunishima S,Miyabayashi S,et al.A Unique Immuofluorescence Method Promotes Accurate Diagnosis in MYH9 Disorders:A Case Report. J Pediatr Hematol Oncol,2004,26(9):579-583.
    [9]Kimura N,Matsumoto M,Matsumoto K,et a/.Usefulness of immunofluo-rescence analysis of neutrophil nonmuscle myosin heavy chain-A for diagnosing in two sisters with May-Hegglin anomaly[J].Rinsho Ketsueki, 2008,49(12):1614-1618.
    [10]Seri M,Cusano R, Gangarossa S, et al. Mutations in MYH9 result in the May-Hegglin anomaly, and Fechtner and Sebastian syndromes.The May-Heggllin/Fechtner Syndrome Consortium. Nat Gneet, Genet,2000,26(1): 103-105.
    [11]Kunishima S, Kojima T,Tanaka T, et al. Mapping of a gene for May-Hegglin anomaly to chromosome 22q[J]. Hum.Genet,1999,105(5):379-383.
    [12]Satio H, Kunishima S. Historical hematology:May-Hegglin anomaly[J].Am J Hematol,2008,83(4):304-306.
    [13]Pecci A, Canobbio I, Balduini A, et al.Pathogenetic mechanisms of hematolo-gical abnormalities of patients with MYH9 mutations[J]. Hum.Mol.Genet, 2005,14(21):3169-3178.
    [14]Franke JD, Dong F, Rickoll WL, et al. Rod mutations associated with MYH9-related disorders disrupt nonmuscle myosin-ⅡA assembly[J].Blood, 2005,105(1):161-169.
    [15]Seri M, Pecci A, Di Bari F, et al. MYH9-Related Disease:May-Hegglin Anomaly, Sebastian Syndrome, Fechtner Syndrome, and Epstein Syndrome are not Distinct Entities but Represent a Variable Expression of a Single Illness [J]. Medicine,2003,82(3):203-215.
    [16]Dong F, Li S, Pujol-Moix N,et al.Genotype-phenotype correlation in MYH9-related thrombocytopenia[J]. Br J Haematol,2005,130(4):620-627.
    [17]Pecci A, Panza E, Moix NP,et al. Position of nonmuscle myosin heavy chain II A (NMMHC-Ⅱ A) mutations predicts the natural history of MYH9-related disease[J]. Hum Mutat,2008,29(3):409-417.
    [18]Kunishima S, Hamaguchi M, and Saito H. Differential expression of wild-type and mutant NMMHC-ⅡA polypeptides in blood cells suggests cell-specific regulation mechanisms in MYH9 disorders[J]. Blood,2008,111 (6):3015-3023.
    [19]Miyajima Y,Kunishima S. Identification of the first in cis mutations in MYH9 disorder[J]. Eur J Haematol,2009,82(4):288-291.
    [20]Toren A,Rozenfeld-Granot QHeath KE.et al.MYH9 spectrum of autosomal-dominant giant platelet syndromes:unexpected association with fibulin-1 variant-D inactivation[J]. Am.J.Hematol,2003,74(4):254-262.
    [21]华瑛,王芳,赵卫红等.非肌性肌球蛋白重链9基因突变相关疾病:一个家系报告[J].北京大学学报(医学版),2008,40(2):160-164.
    [22]徐敏,凌柱山,张广森等May-Hegglin异常二例.中华血液学杂志,2001,22(3):152-153.
    [23]Pujol-Moix N,Kelley MJ,Hernandez A,et al.Ultrastructural analysis of granulocyte inclusions in genetically confirmed MYH9-related disorders [J]. Haematologica,2004,89(3):330-337.
    [24]Burns ER. Platelet studies in the pathogenesis of thrombocytopenia in May-Hegglin anomaly [J]. Am J Pediatr Hematol Oncol,1991,13(4):431-436.
    [25]Greinacher A, Bux J, Kiefel V, et al. May-Hegglin anomaly:a rare cause of thrombocytopenia. Eur J Pediatr.1992,151(9):668-671.
    [26]Everlien M,Knoch K,Farah I, et al.Coronary bypass surgery in May-Hegglin anomaly. Dtsch Med Wochenschr,2001,126(3):47-49.
    [27]Balduini Cl, Noris P,Belletti S, et al.In vitro and in vivo effects of desmopressin on platelet function[J]. Haematologica,1999,84(10):891-896.
    [28]Mayer K,Schildknecht o,von Felten A. May-Hegglin anomaly:further studies on thrombocyte dysfunction[J].Schweiz Med Wochenschr,1997,127(26):1134-1140.
    [29]Kunishima S. May-Hegglin anomaly--from genome research to clinical laboratory [J]. insho Byori,2003,51(9):898-904.
    [30]Mhatre AN, Kim Y,Brodie HA,et al.Macrothrombocytopenia and progressive deafness is due to a mutation in MYH9[J]. Otol. Neurotol,2003,24(2):205-209.
    [31]Nel N, van Rensburg BW, du Plessis L, et al. Coincidental finding of May-Hegglin anomaly in a patient with end-stage renal failure[J], Am J Hematol,1992,40(3):216-219.
    [32]Fujita Y, Fujii T,Nishio A, et al.Familial case of May-Hegglin anomaly associated with familial spastic paraplegia.Am J Hematol,1990,35(3):219-221.
    [33]张广森,易彦,徐敏,等一个May-Hegglin异常家系非肌性肌球蛋白重链9基因突变位点之鉴定[J].中华医学杂志,2002,82(13):918-920.
    [34]Ma ES, Wong CL,Shek TW,et al.Hematologic and genetic characterization of an MYH9-related disorder in a Chinese family[J]. haematologica/hematol,2005, 91(7):1002-1003.
    [35]邵秀如,李家曾,马军,等.一例May-Hegglin异常家系临床及分子生物学研究[J].中华血液学杂志,2004,25(9):548-551.
    [36]杨海燕,王兆钺,苏雁华等.1例Fechtner综合征临床与分子缺陷研究——附文献复习.中华血液学杂志,2007,28(3):160-164.
    [37]杨海燕,王兆钺.MYH9综合征的免疫荧光检测与基因分析[J].苏州大学学报(医学版),2006,26(6):973-976.
    [38]张淑芳,张应爱,王顺兰,等.—非肌球蛋白重链9相关疾病家系临床及分子生物学特点分析.《吉林大学学报》(医学版),2011,1(37):109-112.
    [39]Martignetti JA, Heath KE,Harris J, et al.Thegene for May-Hegglin anomaly localizes to a<1-Mb region on chromosome 22q1 2.3-13.1[J]. Am J Hum Genet, 2000,66(4):1449-1454.
    [40]Savoia A, De Rocco D, Panza E, Bozzi V, et al. Heavy chain myosin 9-related disease (MYH9-RD):Neutrophil inclusions of myosin-9 as a pathognomonic sign of the disorder[J]. Thromb Haemost,2010,19:103(4):826-832.
    [41]Kunishima S, Matsushita T, Hamaguchi M, et al. Identification and characterization of the first large deletion of the MYH9 gene associated with MYH9 disorders.Eur J Haematol,2008,80(6):540-544.
    [42]Yi Y, Sen Zhang G, Xu M, et al. Analysis of clinical manifestations, mutant gene and encoded protein in two Chinese MYH9-related disease families[J]. Clin Chim Acta,2006,373(2):49-54.
    [43]Kelley MJ, Jawien W, Ortel TL, et al. Mutation of MYH9,encoding non-muscle myosin heavy chain A, in May-Hegglin anomaly. Nat Genet,2000, 26(1):106-108.
    [44]Kahr WH, Savoia A, Pluthero FQ et al. Megakaryocyte and platelet abnormalities in a patient with a W33C mutation in the conserved SH3-like domain of myosin heavy chain Ⅱ A.Thromb Haemost,2009,102(6):1241-1250.
    [45]Kunishima S, Matsushita T, Kojima T,et al.Identification of six novel MYH9 mutations and genotype-phenotype relationshipsin autosomal dominant macrothrombocytopenia with leukocyte inclusions[J].J Hum Genet,2001, 46(12):722-729.
    [46]Hodge TP,Cross R, Kendrick-Jones J, et al.Role of the COOH-terminal nonhelical tailpiece in the assembly of a vertebrate nonmuscle myosin rod[J]. J Cell Bio,1992,118(5):1085-1095.
    [47]Toothaker LE,Gonzalez DA, Tung N, et al.Cellular myosin heavy chain in human leukocyte:isolation of 5-prime cDNA clones,characterization of the protein,chromosomal localization,and upregulation during myeloid differentiation[J]. Blood,1991,78(7):1826-1833.
    [48]Marigo V, Nigro A, Pecci A, et al. Correlation between the clinical phenotype of MYH9-related disease and tissue distribution of class Ⅱ nonmuscle myosin heavy chains. Genomics,2004,83(6):1125-1133.
    [49]Deutsch S, Rideau A,Bochaton-Piallat ML,et al.Asp1424Asn MYH9 mutation results in an unstable protein responsible for thephenotypes in May-Hegglin anomaly/Fechtner syndrome[J]. Blood,2003,102 (2):529-534.
    [50]Hu A, Wang F, Sellers JR. Mutations in human nonmuscle myosin ⅡA found in patients with May-Hegglin anomaly and Fechtner syndrome result in impaired enzymatic function[J]. J Biol Chem,2002,277(48):46512-46517.
    [51]Maup in P, Philip s CL, Adelstein RS, et al. Differential localization of myosin2 II isozymes in human cultured cells and blood cells[J]. J Cell Sci,1994, 107(7):3077-3090.
    [52]Mansfield PJ, Shayman JA, Boxter LA. Regulation of polymophonu clear leukocyte phagocytosis by myosin light chain kinase after activation of mitogen-activated protein kinase[J]. Blood,2000,95(7):2407-2412.
    [53]Kunishima S, Kojima T, Matsushita T, et al. Mutations in the NMMHC-A gene cause autosomal dominant macrothrombocytopenia with leukocyte inclusions (May-Hegglin anomaly/Sebastian syndrome) [J]. Blood,2001,97(4): 1147-1149.
    [54]Morin N. A, Oakes P.W, Hyun Y.-M, et al. Nonmuscle myosin heavy chain Ⅱ A mediates integrin LFA-1 de-adhesion during T lymphocyte migration[J]. J.Exp.Med,2008,205(1):195-205.
    [55]Kunishima S, Matsushita T, Kojima T, et al.Immunofluorescence analysis of neutrophil nonmuscle myosin heavy chain-A in MYH9 disorders:association of subeellular localization with MYH9 mutations[J]. Lab Invest,2003,83(1): 115-122.
    [56]张淑芳,张应爱,王顺兰,等.一例遗传性MYH9相关疾病家系老年白内障患者临床和基因突变特点分析.中国老年医学杂志,2011,(30):1475-1477.
    [57]易彦,张广森May-Hegglin异常中性粒细胞包涵体的免疫荧光定位和非肌性肌球蛋白重链A鉴定[J].中华医学杂志,2003,83(15):1313-1316.
    [58]杨海燕,王兆钺,曹丽娟,等Fechtner综合征的非肌性肌球蛋白重链ⅡA的表达与功能研究[J].中国实验血液学杂志,2008,16(4):871-874.
    [59]Canobbio I, Noris P, PecciA, et al. Altered cytoskeleton organization in platelets from patients with MYH9-related disease. Thromb Haemost,2005, 3(5):1026-1035.
    [60]Kelley MJ, Jawien W, Lin A,et al. Autosomal dominant macrothromboc-ytopenia with leukocyte inclusions (May-Hegglin anomaly) is linked to chromosome 22q12-13[J]. Hum Genet,2000,106(5):557-564.
    [61]Greinacher A,Nieuwenhuis HK,White JC.Sebastian platelet syndrom:a new variant of hereditary macrothrombocytopenia with leukocyte inclusions [J]. Blut,1990,61(5):282-288.
    [62]Sellers JR. Myosins:a diverse superfamily.Biochim Biohphys Acta,2000, 1496(1):3-22.
    [63]Noris P, Pecci A, Di Bari F,et al. Application of a diagnostic algorithm for inherited thrombocytopenias to 46 consecutive patients. Haematologica,2004, 89(10):1219-1225.
    [64]Pecci A, Noris P, Invemizzi R, et al. Immunocytochemistry for the heavy chain of the non-muscle myosin HA as a diagnostic tool for MYH9-related disorders [J].Br J Haematol,2002,117(1):164-167.
    [65]White JG, Sauk JJ. The organization of microtubules and microtubule coils in giant platelet disorders[J]. Am J Pathol,1984,116(3):514-522.
    [66]Ault KA. Flow cytometric measurement of platelet function and reticulated platelets[J]. Ann NY Acad Sci,1993,677:293-308.
    [67]Davies TA, Drotts DJ, Weil GJ, et al. Flow cytometric measurements of cytoplasmic calcium changes in human platelet[J].Cytometry,1988,9(2): 138-142.
    [68]Michele DP, Patrizia N, Alessandro P, et al. Defective expression of GP Ⅰ b/Ⅸ /Ⅴ complex in platelets from parients with May-Hegglin anomaly and Sebastian syndrome[J]. Haematologica,2002,87(9):943-947.
    [69]Coller BS, Zarrabi MH. Platelet membrane studies in the May-Hegglin anomaly[J]. Blood,1981,58(2):279-284.
    [70]Le'on C, Eckly A, Hechler B, et al. Megakaryocyte-restricted MYH9 inactivation dramatically affects hemostasis while preserving platelet aggregation and secretion[J]. Blood,2007,110(9):3183-3191.
    [71]Fox JE. The platelet cytoskeleton. Thromb Haemost,1993,70(6):884-893.
    [72]Peerschke EIB.Platelet membrane glycoproteins.Functional characterization and clinical applications[J]. Am J Clini Pathol,1992,98(4):455-463.
    [1]Hegglin R. Gleichzeitige konstitutionelle veranderungen and neutrophilen un thrombozyten[J]. Helv Med Acta,1945,12:439-440.
    [2]Peterson, LC, Rao, KV, Crosson, JT, et al. Fechtner syndrome:a variant of Alport's syndrome with leukocyte inclusions and macrothrombocytopenia[J]. Blood,1985,65(2):397-406.
    [3]Epstein CJ, Sahud MA, Piel CF, et al. Hereditary macrothrombocytopathia, nephritis and deafness[J]. Am J Med,1972,52(3):299-310.
    [4]Heath KE, Campos-Barros A, Toren A, et al. Nonmuscle myosin heavy chain IIA mutations define a spectrum of autosomal dominant macrothrombo-cytopenias:May-Hegglin anomaly and Fechtner, Sebastian, Epstein, and Alport-Like syndromes[J], Am. J. Hum. Genet,2001,69(5):1033-1045.
    [5]May R. Leukozyteneinschlusse[J]. Dtsch Arch Klin Med,1909,96:1-6.
    [6]Martignetti JA, Heath KE, Harris J, et al. The gene for May-Hegglin anomaly localizes to a<1-Mb region on chromosome 22q12.3-13.1[J]. Am J Hum Genet, 2000,66(4):1449-1454.
    [7]Kunishima S; Kojima T; Tanaka T, et al. Mapping of a gene for May-Hegglin anomaly to chromosome 22q[J]. Hum.Genet,1999,105(5):379-383.
    [8]Seri M, Pecci A, Di Bari F, et al. MYH9-Related Disease:May-Hegglin Anomaly, Sebastian syndrome, Fechtner Syndrome, and Epstein Syndrome are not Distinct Entities but Represent a Variable expression of a single illness[J]. Medicine,2003,82(3):203-215.
    [9]Kunishima S. May-Hegglin anomaly-from genome research to clinical laboratory [J]. insho Byori,2003,51(9):898-904.
    [10]Mhatre AN, Kim Y, Brodie HA, et al. Macrothrombocytopenia and progressive deafness is due to a mutation in MYH9[J], Otol. Neurotol,2003,24(2): 205-209.
    [11]Hodge TP,Cross R, Kendrick-Jones J, et al.Role of the COOH-terminal nonhelical tailpiece in the assembly of a vertebrate nonmuscle myosin rod[J]. J Cell Bio,1992,118(5):1085-1095.
    [12]Toothaker LE,Gonzalez DA, Tung N, et al.Cellular myosin heavy chain in human leukocyte:isolation of 5-prime cDNA clones,characterization of the protein,chromosomal localization,and upregulation during myeloid differentiation [J]. Blood,1991,78(7)1826-1833.
    [13]Mango V, Nigro A, Pecci A, et al. Correlation between the clinical phenotype of MYH9-related disease and tissue distribution of class Ⅱ nonmuscle myosin heavy chains[J]. Genomics,2004,83(6):1125-1133.
    [14]Seri M,Cusano R,Gangarossa S, et al.Mutations in MYH9 result in the May-Hegglin anomaly,and Fechtner and Sebastian syndromes.The May-Heggllin/Fechtner Syndrome Consortium[J]. Nat Genet,2000,26(1):103-105.
    [15]Deutsch S, Rideau A,Bochaton-Piallat ML,et al.Asp1424Asn MYH9 mutation results in an unstable protein responsible for thephenotypes in May-Hegglin anomaly/Fechtner syndrome[J]. Blood,2003,102(2):529-534.
    [16]Hu A, Wang F, Sellers JR. Mutations in human nonmuscle myosin ⅡA found in patients with May-Hegglin anomaly and Fechtner syndrome result in impaired enzymatic function[J]. J Biol Chem,2002,277(48):46512-46517.
    [17]Maup in P, Philip s CL, Adelstein RS, et al. Differential localization of myosin2Ⅱ isozymes in human cultured cells and blood cells[J], J Cell Sci, 1994,107(11):3077-3090.
    [18]Mansfield PJ, Shayman JA, Boxter LA. Regulation of polymophonu clear leukocyte phagocytosis by myosin light chain kinase after activation of mitogen-activated protein kinase[J]. Blood,2000,95(7):2407-2412.
    [19]Kunishima S, Kojima T, Matsushita T, et al. Mutations in the NMMHC-A gene cause autosomal dominant macrothrombocytopenia with leukocyte inclusions (May-Hegglin anomaly/Sebastian syndrome) [J]. Blood,2001,97(4):1147-1149.
    [20]KelleyM J,Ja wienW,O rtelTL, et al.Mutation of MYH9,encodingn on-muscle myosinh eavyc hainA,in May-Hegglin anomaly.Nat Genet,2000,26(1):106 108.
    [21]Obungu VH, Lee Burns A, Agarwal SK, et al. Menin, a tumor suppressor, associates with nonmuscle myosin ⅡA heavy chain[J]. Oncogene,2003, 22(41):6347-6358.
    [22]Leon C, Eckly A, Hechler B,et al.Megakaryocyte restricted MYH9 inactivation dramatically affects hemostasis while preserving platelet aggregation and secretion[J]. Blood,2007,110(9):3183-3191.
    [23]Kohlstedt K, Kellner R, Busse R, et al. Signaling via the angiotensin converting enzyme results in the phosphorylation of the nonmuscle myosin heavy chain Ⅱ A[J]. Mol Pharmacol,2006,69(1):19-26.
    [24]Breckenridge MT, Dulyaninova NG, Egelhoff TT. Multiple regulatory steps control mammalian nonmuscle myosin Ⅱ assembly in live cells[J].Mol Biol Cell,2009,20(1):338-347.
    [25]McMichael BK, Wysolmerski RB, Lee BS. Regulated proteolysis of nonmuscle myosin IIA stimulates osteoclast fusion[J]. J Biol Chem,2009,284(18): 12266-12275.
    [26]Satio H, Kunishima S. Historical hematology[J].May-Hegglin anomaly. Am J Hematol,2008,83(4):304-306.
    [27]Pecci A, Canobbio I, Balduini A, et al. Pathogenetic mechanisms of hemato -logical abnormalities of patients with MYH9 mutations[J].Hum.Mol. Genet,2005,14(21):3169-3178.
    [28]Franke J D, Dong F, Rickoll W L, et al. Rod mutations associated with MYH9-related disorders disrupt nonmuscle myosin-HA assembly [J] Blood, 2005,105(1):161-169.
    [29]Canobbio I, Noris P, PecciA, et al. Altered cytoskeleton organization in platelets from patients with MYH9-related disease [J].JThromb Haemost,2005,3 (5):1026-1035.
    [30]Li Y, Friedmann DR, Mhatre AN, et al. MYH9-siRNA and MYH9 mutant alleles:expression in cultured cell lines and their effects upon cell structure and function[J].Cell Motil Cytoskeleton,2008,65(5):393-405.
    [31]Kunishima S, Hamaguchi M, and Saito H. Differential expression of wild-type and mutant NMMHC-IIA polypeptides in blood cells suggests cell-specific regulation mechanisms in MYH9 disorders[J]. Blood,2008,111 (6):3015-3023.
    [32]Morin NA, Oakes PW, Hyun Y-M, et al. Nonmuscle myosin heavy chain IIA mediates integrin LFA-1 de-adhesion during T lymphocyte migration[J]. J.Exp.Med,2008,205(1):195-205.
    [33]Kunishima S, Matsushita T, Kojima T,et al.Immunofluorescence analysis of neutrophil nonmuscle myosin heavy chain-A in MYH9 disorders:association of subeellular localization with MYH9 mutations[J].Lab Invest,2003,83(1): 115-122.
    [34]Pujol N, Kelley MJ, Hernandez A, et a/.Ultrastructural analysis of granulocyte inclusions in genetically confirmed MYH9-related disorders[J]. Haematologica, 2004,89(3):330-337.
    [35]Alessandro Pecci, Emanuele Panza, Nuria Pujol-Moix, et al. Position of nonmuscle myosin heavy chain IIA (NMMHC-IIA) mutations predicts the natural history of MYH9-related disease[J]. Hum Mutat,2008,29(3):409-417.
    [36]Savoia A, De Rocco D, Panza E, A. Heavy chain myosin 9-related disease (MYH9-RD):Neutrophil inclusions of myosin-9 as a pathognomonic sign of the disorder[J].Thromb Haemost,2010,103(4):826-832.
    [37]Althaus K, Greinacher A. MYH-9 Related Platelet Disorders:Strategies for Management and Diagnosis[J]. Transfus Med Hemother,2010;37(5):260-267.
    [38]Noris P, Pecci A, Di Bari F, et al. Application of a diagnostic algorithm for inherited thrombocytopenias to 46 consecutive patients[J]. Haematologica, 2004,89(10):1219-1225.
    [39]Pecci A, Noris P, Invernizzi R, et al. Immunocytochemistry for the heavy chain of the non-muscle myosin IIA as a diagnostic tool for MYH9-related disorder[J]s. Br J Haematol,2002,117(1):164-167.
    [40]Coller BS, Zarrabi MH. Platelet membrane studies in the May-Hegglin anomaly[J].Blood,1981,58(2):279-284.
    [41]Fox JE. The platelet cytoskeleton[J]. Thromb Haemost,1993,70(6):884-893.
    [42]Dong F, Li S, Pujol-Moix N, et al. Genotype-phenotype correlation in MYH9-related thrombocytopenia[J]. Br J Haematol,2005,130(4):620-627.
    [43]Yi Y, Sen Zhang G, Xu M, et al. Analysis of clinical manifestations, mutant gene and encoded protein in two Chinese MYH9-related disease families[J]. Clin Chim Acta,2006,373(2):49-54.
    [44]Toren A, Rozenfeld-Granot G, Heath KE, et al. MYH9 spectrum of autosomal-dominant giant platelet syndromes:unexpected association with fibulin-1 variant-D inactivation[J]. Am.J.Hematol,2003,74(4):254-262.
    [45]Tzur S, Rosset S, Shemer R, et al.Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene[J].Hum Genet,2010,128(3):345-350.
    [46]Gopalakrishnan I, Iskandar SS, Daeihagh P, et al. Coincident idiopathic focal segmental glomerulosclerosis collapsing variant and diabetic nephropathy in an African American homozygous for MYH9 risk variants[J].Hum Pathol, 2011,42(2):291-294.
    [47]Cheng W, Zhou X, Zhu L, et al. Polymorphisms in the nonmuscle myosin heavy chain 9 gene (MYH9) are associated with the progression of IgA nephropathy in Chinese[J].Nephrol Dial Transplant,2011 Jan 18[Epub ahead of print].
    [48]Ohtsuka Y, Kanaji T, Nishi M, et al. A notable case report of May-Hegglin anomaly with immune complex-related nephropathy:a genetic and histological analysis[J], Clin Nephrol,2011,75(3):255-262.
    [49]Kopp JB, Winkler CA, Nelson GW. MYH9 genetic variants associated with glomerular disease:what is the role for genetic testing? Semin Nephrol,2010, 30(4):409-417.
    [50]Kunishima S, Matsushita T, Kojima T,et al.Identification of six novel MYH9 mutations and genotype-phenotype relationshipsin autosomal dominant macrothrombocytopenia with leukocyte inclusions[J]. J Hum Genet,2001, 46(12):722-729.
    [51]Miyajima Y, Kunishima S. Identification of the first in cis mutations in MYH9 disorder[J]. Eur J Haematol,2009,82(4):288-291.
    [52]Kunishima S, Matsushita T, Hamaguchi M, et al. Identification and characterization of the first large deletion of the MYH9 gene associated with MYH9 disorders[J].Eur J Haematol,2008,80(6):540-544.
    [53]Kahr WH, Savoia A, Pluthero FG, Li L, et al.Megakaryocyte and platelet abnormalities in a patient with a W33C mutation in the conserved SH3-like domain of myosin heavy chain IIA[J].Thromb Haemost,2009,102(6): 1241-1250.
    [54]Noris P, Spedini P, Belletti S, et al. Thrombocytopenia, giant platelets, and leukocyte inclusion bodies (May-Hegglin anomaly):clinical and laboratory findings[J]. Am J Med,1998,104(4):355-360.
    [55]钟小军,凌柱三.仪器法血小板计数对May-Hegglin异常的误差.临床血液学杂志,2002,15(2):88-89.
    [56]Burns ER. Platelet studies in the pathogenesis of thrombocytopenia in May-Hegglin anomaly[J]. Am J Pediatr Hematol Oncol,1991,13(4):431-436.
    [57]Greinacher A, Bux J, Kiefel V, et al. May-Hegglin anomaly:a rare cause of thrombocytopenia[J]. Eur J Pediatr,1992,151(9):668-671.
    [58]易彦,张广森May-Hegglin异常中性粒细胞包涵体的免疫荧光定位和非肌性肌球蛋白重链A鉴定.中华医学杂志,2003,83(15):1313-1316.
    [59]G reinacherA,N ieuwenhuisH K,WhiteJ C.Sebastian platelet syndrome:a new variant of hereditary macrothrombocytopenia with leukocyte inclusions[J]. Blut, 1990,61(5):282-288.
    [60]Rodriguez V, Nichols WI,C harlesworthJ E,et al.Sebastian platelet syndrome: a hereditarym acrothrombocytopenia[J].Mayo Clin Proc,2003,78(11):1416-1421.
    [61]徐敏,凌柱三,张广森,等May-Hegglin异常2例.中华血液杂志,2001,22(3):152-153.
    [62]Everlien M, Knoch K, Farah I, et al. Coronary bypass surgery in May- Hegglin anomaly [J]. Dtsch Med Wochenschr,2001,126(3).47-49.
    [63]Binder T, Salaj P, Sosna O, et al The May-Hegglin anomaly in pregnancy.2 case reports. Ceska Gynekol,2003,68(5):330-333.
    [64]Chabane H,GallaisY,PathierD,et al Delivery management in a woman with thrombocytopenia of the May-Hegglin anomaly type. Eur J Obstet Gynecol Reprod Biol,2001,99(1):124-125.
    [65]Goto S,Kasahara H,Sakai H,et al. Functional compensation of the low platelet count by increased individual platelet size in a patient with May-Hegglin anomaly presenting with a cute myocardial infarction.Int J Cardiol,1998,64(2):171-177.
    [66]Balduini Cl, Noris P, Belletti S, et al. In vitro and in vivo effects of desmopre-ssin on platelet function[J]. Haematologica,1999,84(10):891-896.
    [67]Althaus K, Greinacher A. MYH-9 Related Platelet Disorders:Strategies for Management and Diagnosis. Transfus Med Hemother,2010,37(5):260-267.
    [68]张广森,易彦,徐敏,等.一个May-Hegglin异常家系非肌性肌球蛋白重链9基因突变位点之鉴定[J].中华医学杂志,2002,82(13):918-920.
    [69]莫武宁,甘宝文,韦红英,等May-Hegglin异常1例报告并文献复习[J].血栓与止血学,2002,8(2):92-92.
    [70]邵秀茹,李家增,马军,等.一例May-Hegglin异常家系临床及分子生物学研究[J].中华血液学杂志,2004,25(9):548-551.
    [71]Ma ES, Wong CL, Shek TW, et al.Hematologic and genetic characterization of an MYH9-related disorder in a Chinese family[J].haematologica/ hematol, 2005,91(7):1002-1003.
    [72]杨海燕,王兆钺.MYH9综合征的免疫荧光检测与基因分析[J].苏州大学学报(医学版),2006,26(6):973-976.
    [73]华瑛,王芳,赵卫红,等.非肌性肌球蛋白重链9基因突变相关疾病:一个家系报告[J].北京大学学报(医学版),2008,40(2):160-164
    [74]于成龙,蔡文宇,李梅,等May-Hegglin异常误诊为特发性血小板减少性紫癜一例[J].中华检验医学杂志,2008,31(6):702-703.
    [75]郝翼洪,朱云.遗传性May-Hegglin异常的实验室检查[J].中华检验医学杂志,2008,31(6):708-710
    [76]张淑芳,张应爱,王顺兰,等.—非肌球蛋白重链9相关疾病家系临床及分子生物学特点分析.《吉林大学学报》(医学版),2011,1(37):109-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700