环化小檗碱类似物和Sansanmycin A衍生物的设计、合成及活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在开展小檗碱(BBR)类衍生物不同生物活性研究中,基于对相关有机反应的深刻理解,巧妙地对其进行了合理的逻辑推导,在BBR分子结构中的1-和13-位骈合了一个芳香环,由此成功构建了一类全新结构骨架的化合物一环化小檗碱(CBBR),化学结构式见图1。由于其具有更好的平面性结构特征,更加容易嵌入双链DNA碱基对里,推测可能具有更好的抗肿瘤作用。生物活性实验测定显示CBBR对肝癌HepG-2细胞的IC50在1.2μM左右,活性显著强于BBR。
     为了深入了解此类化合物抗肿瘤的化学以及生物作用机制,本论文以CBBR为先导化合物,针对分子中的A、C、D及E环侧链结构,开展较为系统的结构修饰与优化,累积设计合成了58个未见文献报道的CBBR类似物,通过对HepG-2细胞的活性评价,阐明此类化合物抗肿瘤活性的构效关系(SAR)。
     (1)BBR分子中引入E环后增加了分子平面性,抗肿瘤活性明显增强;
     (2)D环8-位合适基团取代有助于活性提高;
     (3)A环上取代基以亚甲二氧环和1,2-二甲氧基活性较高;
     (4)13-位苄基取代后,抗肿瘤活性升高;
     (5)季铵正离子为活性必需,C环双键还原活性降低。
     通过体外活性测定,化合物A-34、A-35、A-55、A-58、A-40、A-49和A-56在0.6μg/mL时对HepG-2细胞的抑制率达到85%以上,IC50在0.13到1.01μM之间,对肠癌HCT116细胞的IC50在0.09到5.61μM的范围内;尤其是A-35对阿霉素(DOX)耐药的乳腺癌MCF-7细胞(MCF-7/AdrR)具有显著的抑制作用,提示此类化合物与阿霉素不存在交叉耐药问题。
     初步作用机制研究表明:细胞周期分析A-35主要阻滞HCT116细胞于G2/M期,其在15μg/mL时就对拓扑异构酶Ⅰ(TopⅠ)显示较强的抑制活性(与阳性药HCPT对比);在同样的浓度下对Top Ⅱ的抑制活性接近依托泊苷(VP16)在100μg/mL时的抑制效果。通过分子对接软件eHiTS发现A-35与Top Ⅰ-DNA复合物、Top Ⅱ ATPase结构域具有较好的结合能力,提示CBBR类似物为一类新型Top酶抑制剂。
     小鼠急性毒性试验显示A-35腹腔注射给药,其LD50大于500mg/kg,是一类有前景的新型抗肿瘤化合物,拥有对耐药肿瘤细胞有效的优势。
     另外,本论文还开展了Sansanmycin A (SSA)衍生物的设计、合成和活性研究。研究所从微生物Streptomyces sp SS的发酵液中分离得到了一种新的尿苷肽类抗生素Sansanmycin A,结构式见图2,其对结核菌株H37Ra、标准株H37Rv和3株多药耐药菌株1279、2062和2199的最小抑菌浓度(MIC)为10-40μg/mL。另外,其急性毒性较低,LD50≥2400mg/kg(大鼠,静脉注射给药)。
     基于此,在前期工作的基础上,本论文以SSA为先导化合物,以体外抗结核菌株H37Rv活性为导向,针对分子中的伯胺基、酚羟基、醇羟基等多个结构片段开展初步的结构修饰与优化,设计合成17个未见文献报道的SSA类似物,初步探索了此类化合物抗结核活性的SAR。构效关系表明,在SSA的伯氨基上引入异丙基的衍生物1d的体外抗H37Rv活性优于先导物,而二甲基取代物1a活性与先导物相当。另外,化合物1d抑制耐药的结核菌株与H37Rv菌株活性一样,MIC皆为8μg/mL,同样优于SSA。
In continuation of our ongoing research on different biological activities of BBR analogues, due to well understanding of a related organic reaction, a novel compound-cycloberberine (CBBR) was constructed successfully and then confirmed by MS,1H NMR and13C NMR. Because of its planar structure, which could enhance antiproliferative potency via intercalating into DNA easily, CBBR might have a significant antiproliferative activity. The biological tests showed that the IC50of CBBR against HepG2cells was1.2μM.
     Taking CBBR as a lead compound because of its good activity and original structure,58new derivatives were designed and synthesized through modification of rings A, C, D and E. After measuring the inhibition rate of HepG-2cells, the structure-activity relationship (SAR) of this group of compounds were ascertained.
     (1) After the introduction of the ring E in BBR structure, with increase of the plane of the molecule, CBBR exhibited moderate activity;
     (2) An appropriate volume of group substituting at the8-position of ring D increased the anti-tumor activity;
     (3) The analogues substituted methylenedioxy or1,2-dimethoxy group in ring A had a significant antiproliferative activity;
     (4) Introduction of benzyl at the13-position improved the inhibitory activity;
     (5) The N+was essential, and removing the double bonds in ring C lead to disappearance of activity.
     By screening, compounds A-34、A-35、A-55、A-58、A-40、A-49and A-56showed a increased antiproliferative activity against HepG2with inhibition rate above85%at0.6μg/mL. The IC50of these derivatives against HepG2ranged from0.13to1.01μM, while it ranged from0.09to5.61μM against HCT116cells. Moreover, compound A-35exhibited anti-tumor effect against MCF-7/ADrR cells with an IC50of3.66μg/mL. So we could draw a conclusion that cross drug-resistance between CBBR and doxorubicin might not exist.
     Cell cycle analysis of the DNA profile in the HCT116verified that A-35resulted in a distinct accumulation of cells in the G2/M phase. The mechanism research revealed that A-35displayed a significant inhibitory activity against Top I and Top II at the concentration of15μg/mL. Besides, through the docking software-eHiTS, the docking models of A-35and the Top I-DNA or Top II ATPase domain were obtained. Consequently, we considered CBBR analogues to be a new class of Top I and Top II dual inhibitor.
     The acute toxicity in mice was tested and the results showed the LD50was more than500mg/kg (ip).
     Meanwhile, a series of sansanmycin (SSA) derivatives were designed and synthesized. SSA isolated from Streptomyces sp SS in our institute is a new uridyl-peptide antibiotic which exhibited moderate inhibitory effect against H37Ra, H37Rv and multidrug-resistant strains1279,2062,2199(MIC=10-40μg/mL). What's more, the LD50was more than2400mg/kg (iv) in rats.
     However, natural SSA could not become antitubercular drug due to its weak activity. In order to improve its antitubercular effect,17derivatives were designed, semi-synthesized and evaluated for their activities with SSA as the lead compound. After measuring the MIC of drug-sensitive M. tuberculosis H37Rv, the SAR of this group of compounds were ascertained.
     The compound Id substituting isopropyl group at N-terminal displayed high potency against H37Rv, while compound la bearing dimethyl group at N-terminal was equal in potency to the SSA. The analogue1d was then assayed for effect against multidrug-resistant M. tuberculosis2199. Interestingly, the compound1d exhibited better inhibitory effect against multidrug-resistant M. tuberculosis2199than the natural product.
引文
1. 李波,朱维良,陈凯先.小檗碱及其衍生物的研究进展.药学学报,2008,43:773-787.
    2. Stefano ID, Raspaglio G, Zannoni GF, Travaglia D, Prisco MG, Mosca M, Ferlini C, Scambia G, Gallo D. Antiproliferative and antiangiogenic effects of the benzophenanthridine alkaloid sanguinarine in melanoma. Biochemical Pharmacology,2009,78:1374-1381.
    3. Chaturvedi MM, Kumar A, Darnay BG, Chainy GB, Agarwal S, Aggarwal BB. Sanguinarine (pseudochelerythrine) is a potent inhibitor of NF-κB activation, IκBα phosphorylation, and degradation. J Biol Chem.,1997,272: 30129-30134.
    4. Kuo CL, Chi CW, Liu TY. The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Lett.,2004, 203:127-137.
    5. Eom KS, Hong JM, Youn MJ, So HS, Park R, Kim JM, Kim TY. Berberine induces Gl arrest and apoptosis in human glioblastoma T98G cells through mitochondrial/caspases pathway. Biol Pharm Bull.,2008,31:558-562.
    6. Kanzawa F, Nishio K, Ishida T, Fukuda M, Kurokawa H, Fukumoto H, Nomoto Y, Fukuoka K, Bojanowski K, Saijo N. Anti-tumour activities of a new benzo[c]phenanthridine agent,2,3-(methylenedioxy)-5-methyl-7-hydroxy-8-methoxybenzo[c]phenanthridinium hydrogensulphate dihydrate (NK109),against several drug-resistant human tumour cell lines. British Journal of Cancer,1997,76:571-581.
    7. Okamoto K, Seno C, Onda T, Toyoda E, Nishikawa K. Rapid DNA breakage induced by a novel anti tumor agent, NK314. Proc Am Assoc Cancer Res.,2005,46:319-b.
    8. Iwasa K, Kamigauchi M, Sugiura M, Nanba H. Antimicrobial activity of some 13-alkyl substituted protoberberinium salts. Planta Med.,1997,63:196-198.
    9. Ikekawa T, Ikeda Y. Antitumor activity of 13-methyl-berberrubine derivatives. J Pharmacobio-dyn.,1982,5: 469-474.
    10. Hoshi A, Ikekawa T, Ikeda Y, Shirakawa S, Iigo M. Antitumor activity of berberrubine derivatives. Gann.,1976, 67:321-325.
    11. Pommier Y. DNA Topoisomerase I Inhibitors:Chemistry, Biology, and Interfacial Inhibition. Chem Rev.,2009, 109:2894-2902.
    12. Iwasa K, Kamigauchi M, Ueki M, Taniguchi M. Antibacterial activity and structure-activity relationships of berberine analogs. Eur J Med Chem.,1996,31:469-478.
    13. Zuo F, Nakamura N, Akao T, Hattori M. Pharmacokinetics of berberine and its main metabolites in conventional and pseudo germ-free rats determined by liquid chromatography/ion trap mass spectrometry. Drug Metab Dispos., 2006,34:2064-2072.
    14. Cheng Z, Chen AF, Wu F, Sheng L, Zhang HK, Gu M, Li YY, Zhang LN, Hu LH, Li JY, Li J.8, 8-Dimethyldihydroberberine with improved bioavailability and oral efficacy on obese and diabetic mouse models. Bioorg Med Chem.,2010,18:5915-5924.
    15. Staker BL, Feese MD, Cushman M, Pommier Y, Zembower D, Stewart L, Burgin AB. Structures of Three Classes of Anticancer Agents Bound to the Human Topoisomerase I-DNA Covalent Complex. J Med Chem.,2005,48: 2336-2345.
    16. Wei H, Ruthenburg AJ, Bechis SK, Verdine GL. Nucleotide-dependent Domain Movement in the ATPase Domain of a Human Type IIA DN A Topoisomerase. J Biol Chem.,2005,280:37041-37047.
    17. Raviglione MC, Snider DE Jr, Kochi A. Global epidemiology of tuberculosis:morbidity and mortality of a worldwide epidemic. JAMA,1995,273:220-226.
    18. World Health Organization. Global Tuberculosis Report,2012.
    19. Xie Y, Chen R, Si S, Sun C, Xu H. A New Nucleosidyl-peptide Antibiotic, Sansanmycin. J Antibiot.,2007,60: 158-161.
    20. Isono F, Inukai M, Takahashi S, Haneishi TJ, Chen R. Mureidomycins A-D, novel peptidylnucleoside antibiotics with spheroplast forming activity. II. Structural elucidation. J Antibiot.,1989,42:667-673.
    21. Chen RH, Buko AM, Whittern DN, McAlpine JB. Pacidamycins, a novel series of antibiotics with anti-Pseudomonas aeruginosa activity. II. Isolation and structural elucidation. J Antibiot.,1989,42:512■520.
    22. Boojamra CG, Lemoine RC, Blais J, Vernier NG, Stein KA, Magon A, Chamberland S, Hecker SJ, Lee VJ. Synthetic dihydropacidamycin antibiotics:A modified spectrum of activity for the pacidamycin class. Bioorg Med Chem Lett.,2003,13:3305-3309.
    23. Kimura K, Bugg TD. Recent advances in antimicrobial nucleoside antibiotics targeting cell wall biosynthesis. Nat Prod Rep.,2003,20:252-273.
    24. Bugg TD, Lloyd AJ, Roper DI. Phospho-MurNAc-pentapeptide translocase (MraY) as a target for antibacterial agents and antibacterial proteins. Infect Disord Drug Targets,2006,6:85-106.
    25. Dini C. MraY Inhibitors as Novel Antibacterial Agents. Curr Top Med Chem.,2005,5:1221-1236.
    [1]李波,朱维良,陈凯先.小檗碱及其衍生物的研究进展[J].药学学报,2008,43:773-787.
    [2]Lin CC, Lin SY, Chung JG, Lin JP, Chen GW, Kao ST. Down-regulation of cyclin Bl and up-regulation of Weel by berberine promotes entry of leukemia cells into the G2/M-phase of the cell cycle[J]. Anticancer Res.,2006,26: 1097-1104.
    [3]Letasiova S, Jantova S, Cipak L, Muckova M. Berberine-antiproliferative activity in vitro and induction of apoptosis/necrosis of the U937 and B16 cells[J]. Cancer Lett.,2006,239:254-262.
    [4]Mantena SK, Sharma SD, Katiyar SK. Berberine inhibits growth, induces G1 arrest and apoptosis in human epidermoid carcinoma A431 cells by regulating Cdki-Cdk-cyclin cascade, disruption of mitochondrial membrane potential and cleavage of caspase 3 and PARP[J]. Carcinogenesis,2006,27:2018-2027.
    [5]Hwang JM, Kuo HC, Tseng TH, Liu JY, Chu CY. Berberine induces apoptosis through a mitochondria/caspases pathway in human hepatoma cells[J]. Arch Toxicol.,2006,80:62-73.
    [6]Kuo CL, Chi CW, Liu TY. The anti-inflammatory potential of berberine in vitro and in vivo[J]. Cancer Lett.,2004, 203:127-137.
    [7]Eom KS, Hong JM, Youn MJ, So HS, Park R, Kim JM, Kim TY. Berberine induces G1 arrest and apoptosis in human glioblastoma T98G cells through mitochondrial/caspases path way [J]. Biol Pharm Bull.,2008,31:558-562.
    [8]Peng PL, Hsieh YS, Wang CJ, Hsu JL, Chou FP. Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2[J]. Toxicol Appl Pharmacol.,2006,214:8-15.
    [9]Mantena SK, Sharma SD, Katiyar SK. Berberine, a natural product, induces Gl-phase cell cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells[J]. Mol Cancer Ther.,2006,5:296-308.
    [10]Lin JP, Yang JS, Lee JH, Hsieh WT, Chung JG. Berberine induces cell cycle arrest and apoptosis in human gastric carcinoma SNU-5 cell line[J]. World J Gastroenterol.,2006,12:21-28.
    [11]Hoshi A, Ikekawa T, Ikeda Y, Shirakawa S, Iigo M. Antitumor activity of berberrubine derivatives[J]. Gann.,1976, 67:321-325.
    [12]Pang JY, Qin Y, Chen WH, Luo GA, Jiang ZH. Synthesis and DNA-binding affinities of monomodified berberines[J]. Bioorg Med Chem.,2005,13:5835-5840.
    [13]Ma Y, Ou TM, Tan JH, Hou JQ, Huang SL. Synthesis and evaluation of 9-O-substituted berberine derivatives containing aza-aromatic terminal group as highly selective telomeric G-quadruplex stabilizing ligands[J]. Bioorg Med Chem Lett.,2009,19:3414-3417.
    [14]Long YH, Bai LP, Qin Y, Pang JY, Chen WH, Cai ZW, Xu ZL, Jiang ZH. Spacer length and attaching position-dependent binding of synthesized protoberberine dimers to double-stranded DNA[J]. Bioorg Med Chem., 2006,14:4670-4676.
    [15]Qin Y, Pang JY, Chen WH, Zhao ZZ, Liu L, Jiang ZH. Inhibition of DNA topoisomerase I by natural and synthetic mono-and dimeric protoberberine alkaloids[J]. Chem Biodivers.,2007,4:481-487.
    [16]Ma Y, Ou TM, Hou JQ, Lu YJ, Tan JH, Gu LQ, Huang ZS.9-N-Substituted berberine derivatives:Stabilization of G-quadruplex DNA and down-regulation of oncogene c-myc[J]. Bioorg Med Chem.,2008,16:7582-7591.
    [17]Orfila L, Rodriguez M, Colman T, Hasegawa M, Merentes E, Arvelo F. Structural modification of berberine alkaloids in relation to cytotoxic activity in vitro[J]. Journal of Ethnopharmacology,2000,71:449-456.
    [18]Zee-Chang K, Paull K., Cheng C. Experimental antileukemic agents. Coralyne, analogs, and related compounds [J]. Journal of Medical Chemistry,1974,17:347-351.
    [19]Iwasa K, Moriyasu M, Yamori T, Turuo T, Lee DU, Wiegrebe W. In vitro cytotoxicity of the protoberberine-type alkaloids[J]. J Nat Prod.,2001,64:896-898.
    [20]姚其正,李晶晶,李耐三.具有抗肿瘤作用的13-正辛基小檗碱新衍生物[P].中国,200710019854.4,2007-08-08
    [21]Kobayashi Y, Yamashita Y, Fujii N, Takaboshi K, Kawakami T, Kawamura M, Mizukami T, Nakano H. Inhibitors of DNA topoisomerase I and II isolated from the coptis rhizomes[J]. Planta Med.,1995,61:414-418.
    [22]Yu FS, Yang JS, Lin HJ, Yu CS, Tan TW, Lin YT, Lin CC, Lu HF, Chung JG. Berberine inhibits WEHI-3 leukemia cells in vivo[J]. In Vivo,2007,21:407-412.
    [23]Letasiova S, Jantova S, Muckova M, Theiszova M. Antiproliferative activity of berberine in vitro and in vivo[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub.,2005,149:461-463.
    [24]杨菁,林菁.盐酸小檗碱对小鼠移植性肿瘤的抑制作用[J].药物研究,2009,18:4-5.
    [25]Mitani N, Murakami K, Yamaura T, Ikeda T, Saiki I. Inhibitory effect of berberine on the mediastinal lymph node metastasis prod uced by orthotopic implantation of Lewis lung carcinoma[J]. Cancer Lett.,2001,165:35-42.
    [26]Jagetia GC, Baliga MS. Effect of Alstonia scholaris in enhancing the anticancer activity of berberine in the Ehrlich ascites carcinoma-bearing mice[J]. Journal of Medicinal Food,2004,7,235-244.
    [27]Peng PL, Kuo WH, Tseng HC, Chou FP. Synergistic tumor-killing effect of radiation and berberine combined treatment in lung cancer:the contribution of autophagic cell death[J]. Int J Radiation Oncology Biol Phys.,2008,70: 529-542.
    [28]Nishino H, Kitagawa K, Fujiki H, Iwashima A. Berberine sulfate inhibits tumor-promoting activity of teleocidin in two-stage careinogenesis on mouse skin[J]. Oncology,1986,43:131-134.
    [29]Manoharan S, Muneeswaran M, Baskaran N. Chemopreventive efficacy of berberine in 7,12-dimethylbenz[a]anthracene (DMBA) induced skin carcinogenesis in Swiss albino mice[J]. Int J Res Pharm Sci., 2010,1:521-529.
    [30]Anis KV, Rajeshkumar NV, Kuttan R. Inhibition of chemical carcinogenesis by berberine in rats and mice[J]. J Pharm Pharmacol.,2001,53:763-768.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700